ELEC 3105 Lecture 15 Slides

The Transformer
1
𝒗 𝒕
X X
X X
L
X
B field into page
L
𝝏𝚽
𝝏𝑩 βˆ™ π‘³πŸ 𝒏
𝒗 𝒕 =βˆ’
=βˆ’
𝝏𝒕
𝝏𝒕
Case A: If B and L and orientation, 𝒏 , constant
𝝏𝑩 βˆ™ π‘³πŸ 𝒏
𝒗 𝒕 =βˆ’
=𝟎
𝝏𝒕
No voltage on terminals
2
𝒗 𝒕
X X
X X
L
X
B field into page
L
𝝏𝚽
𝝏𝑩 βˆ™ π‘³πŸ 𝒏
𝒗 𝒕 =βˆ’
=βˆ’
𝝏𝒕
𝝏𝒕
Case B: If B changes as a function of time
with L and orientation, 𝒏 , constant
𝐡 = βˆ’π΅π‘šπ‘Žπ‘₯ sin(πœ”π‘‘)𝑛
𝒗 𝒕 = πŽπ‘³πŸ π‘©π’Žπ’‚π’™ 𝐜𝐨𝐬(πŽπ’•)
Voltage on terminals due to a
changing magnetic field
3
X
X X
X X
𝒗 𝒕
L
B field into page
𝝏𝚽
𝝏𝑩 βˆ™ π‘³πŸ 𝒏
𝒗 𝒕 =βˆ’
=βˆ’
𝝏𝒕
𝝏𝒕
L
Case C: If B and orientation, 𝒏 , constant
with L increasing as a function of time and
𝒗 𝒕
X
X
X
X
M
X
X
𝝏𝑴
𝒗 𝒕 = 𝐋𝐁
𝝏𝒕
L
𝑣
Voltage on terminals
β€œLinear motor”
β€œRail Gun”
4
X X
X X
𝒗 𝒕
X
L
B field into page
𝝏𝚽
𝝏𝑩 βˆ™ π‘³πŸ 𝒏
𝒗 𝒕 =βˆ’
=βˆ’
𝝏𝒕
𝝏𝒕
L
Case D: If B and L constant with orientation, 𝒏 ,
changing as a function of time and
𝐡
πœ”π‘‘
𝑛
𝐡 βˆ™ 𝑛 = π΅π‘π‘œπ‘  πœ”π‘‘
𝒗 𝒕 = πŽπ‘³πŸ ππ’”π’Šπ’ πŽπ’•
Voltage on terminals
β€œRotational motor”
β€œGenerator”
5
Loop on load side
β€œSecondary”
Loop on source side
β€œPrimary”
Zg
𝒗 𝒕
𝐡(𝑑)
𝒗′ 𝒕
Zload
I(t)
Transformer
N1
Primary
N2
core
Secondary
Transformer
optimize coupling,
perform transformation
N1
Primary
N2
core
Secondary
Core: Designed such that as much 𝑩 produced in the primary
passes to the secondary
Iron core
Only a few field lines
pass through
secondary
Magnetic circuit guides field lines
from primary to secondary
ON PRIMARY SIDE
One loop
Area A
=BA
Three loops
Area 3A
=3BA
X
Two loops
Area 2A
=2BA
X
N1 loops
Area N1A
X
X
=N1BA
8
1=BA Flux for each loop on primary
N1 loops
𝒗 𝒕
Area N1A
X
=N1BA
𝝏𝚽
𝝏𝑩𝑨
𝒗 𝒕 =βˆ’
= π‘΅πŸ βˆ’
𝝏𝒕
𝝏𝒕
ON PRIMARY SIDE
𝝏𝑩𝑨
π’—πŸ 𝒕 = π‘΅πŸ βˆ’
𝝏𝒕
Voltage produced for N1
loops
Voltage produced for one loop
9
ON SECONDARY SIDE
One loop
Two loops
Area A
X
’=BA
X
Three loops
X
Area 2A
’=2BA
N2 loops
Area 3A
X
Area N2A
’=3BA
10
’=N2BA
N2 loops
1’=BA
X
Flux for each loop on secondary
Area N2A
𝒗′ 𝒕
11
’=N2BA
ππš½β€²
𝝏𝑩𝑨
𝒗′ 𝒕 = βˆ’
= π‘΅πŸ βˆ’
𝝏𝒕
𝝏𝒕
ON SECONDARY SIDE
𝝏𝑩𝑨
π’—πŸ 𝒕 = π‘΅πŸ βˆ’
𝝏𝒕
Voltage produced for N2
loops
Voltage produced for one loop
π’—πŸ 𝒕
Area N1A
Prefect flux coupling
X
=N1BA
X
Area N2A
π’—πŸ 𝒕 = π‘΅πŸ
𝝏𝑩𝑨
βˆ’
𝝏𝒕
π’—πŸ 𝒕
π’—πŸ 𝒕
=
π‘΅πŸ
π‘΅πŸ
π’—πŸ 𝒕
12
’=N2BA
π’—πŸ 𝒕 = π‘΅πŸ
𝝏𝑩𝑨
βˆ’
𝝏𝒕
Voltage transformation
12
π’ŠπŸ (𝒕)
IDEAL TRANSFORMER
No power loss
X
π’—πŸ 𝒕
N1
Voltage transformation
X
N2
π’—πŸ 𝒕
π’—πŸ 𝒕
=
π‘΅πŸ
π‘΅πŸ
π’—πŸ 𝒕
13
π’ŠπŸ (𝒕)
Power (IN)
Power (OUT)
π‘·π’Šπ’ = π’—πŸ 𝒕 π’ŠπŸ 𝒕
𝑷𝒐𝒖𝒕 = π’—πŸ 𝒕 π’ŠπŸ 𝒕
π’ŠπŸ 𝒕
π’ŠπŸ 𝒕
=
π‘΅πŸ
π‘΅πŸ
Current transformation
π’ŠπŸ (𝒕)
IDEAL TRANSFORMER
No power loss
X
π’—πŸ 𝒕
N1
π’—πŸ 𝒕
π’—πŸ 𝒕
=
π‘΅πŸ
π‘΅πŸ
X
N2
π’—πŸ 𝒕
combine
14
π’ŠπŸ (𝒕)
Zeq looking into transformer
π’ŠπŸ 𝒕
π’ŠπŸ 𝒕
=
π‘΅πŸ
π‘΅πŸ
𝒁𝒆𝒒 =
π‘΅πŸ
π‘΅πŸ
𝟐
𝒁𝒍𝒐𝒂𝒅
Zload
π’ŠπŸ (𝒕)
IDEAL TRANSFORMER
No power loss
X
π’—πŸ 𝒕
N1
X
N2
π’—πŸ 𝒕
15
π’ŠπŸ (𝒕)
π’ŠπŸ (𝒕)
π’—πŸ 𝒕
Zeq
N1
𝒁𝒆𝒒 =
Remove transformer
π‘΅πŸ
π‘΅πŸ
𝟐
𝒁𝒍𝒐𝒂𝒅
Zload

A 10-kVA; 6600/220 V/V; 50 Hz transformer is
rated at 2.5 V/Turn of the winding coils.
Assume that the transformer is ideal. Calculate
the following:
A) step up transformer ratio
ο‚‘ B) step down transformer ratio
ο‚‘ C) total number of turns in the high voltage and low
voltage coils
ο‚‘ D) Primary current as a step up transformer
ο‚‘ E) Secondary current as a step down transformer.
ο‚‘
SOLUTION PROVIDED IN CLASS
16
N1 β€œPrimary”
N2 β€œSecondary”
2Ω
𝒗 𝒕
𝒗′ 𝒕
32Ξ©
I(t)

Find N1/N2 ratio such that maximum power
transfer to the load is observed.
SOLUTION PROVIDED IN CLASS
𝒁𝒆𝒒 =
π‘΅πŸ
π‘΅πŸ
𝟐
𝒁𝒍𝒐𝒂𝒅
17
Work in phasor domain
Zs
𝒗 𝒕
Zload
I(t)
In general:
Then
𝑧𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠
𝑉
𝑉
𝐼= =
𝑍 𝑍𝑠 + π‘π‘™π‘œπ‘Žπ‘‘
π‘§π‘™π‘œπ‘Žπ‘‘ = π‘…π‘™π‘œπ‘Žπ‘‘ + π‘—π‘‹π‘™π‘œπ‘Žπ‘‘
𝑉
𝐼=
𝑅𝑠 + π‘…π‘™π‘œπ‘Žπ‘‘ + 𝑗 𝑋𝑠 + π‘‹π‘™π‘œπ‘Žπ‘‘
2
Time average power to load 𝑃 = 𝐼 π‘…π‘™π‘œπ‘Žπ‘‘
2
Find
maximum
18
𝑉
𝑃=
𝑅𝑠 + π‘…π‘™π‘œπ‘Žπ‘‘
2
2
+ 𝑋𝑠 + π‘‹π‘™π‘œπ‘Žπ‘‘
2
Step 1: Make ( ) as small as possible with
respect to the complex β€œreactance” part
𝑃=
𝑉
2
𝑅𝑠 + π‘…π‘™π‘œπ‘Žπ‘‘
2
π‘…π‘™π‘œπ‘Žπ‘‘
2 2
Find
maximum
π‘…π‘™π‘œπ‘Žπ‘‘
2 2
π‘‹π‘™π‘œπ‘Žπ‘‘ = βˆ’π‘‹π‘ 
Find
maximum
19
𝑉
𝑃=
2
𝑅𝑠 + π‘…π‘™π‘œπ‘Žπ‘‘
2
π‘…π‘™π‘œπ‘Žπ‘‘
2 2
Rs= 50Ω
𝑉𝑠
Rload= 50Ω
𝑧𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠
2
= 200
Find maximum
π‘§π‘™π‘œπ‘Žπ‘‘ = 𝑅𝑠 βˆ’ 𝑗𝑋𝑠
20
Autotransformer
Ip
N1
Primary core
Is
N2
Secondary
Starting motors
ELEC 4602
Single phase
Ip
N1
Primary
N2
core
Is
Secondary
Single phase
Maximum power transfer to the
load
Center tapped
Ip
Ns1
Is1
Vs1
N1
Ns2
Primary
core
Is2
Secondary
Vs2
ground
With ground Vs1 180o out of phase
with Vs2. Two phase household
Center tapped
Ip
Ns1
Is1
Vs1
N1
Ns2
Primary
core
Is2
Secondary
Vs2
ground
With ground Vs1 180o out of phase
with Vs2. Two phase household
Center tapped
A
B
C
Three
phase
NA1
NA’2
NB1
NB’2
NC1
NC’2
A’
B’
C’
Interconnection
n turns ratio
Topic of ELEC 3508: Power Electronics
35
36
LabVolt Module used in ELEC 3508
37