I. Previously on IET Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 2 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 3 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 4 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 5 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 6 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 7 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 8 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 9 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 10 Complex Exponential Function e jωt = cos(ωt ) + j sin(ωt ) Im-Axis ω © Tallal Elshabrawy Re-Axis 11 The Fourier Transform Representing functions in terms of complex exponentials with different frequencies Gf gt e © Tallal Elshabrawy jωt dt gt e j2πft dt 12 The Fourier Transform (Cosine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2cos ωt + © Tallal Elshabrawy 13 The Fourier Transform (Cosine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2cos ωt + © Tallal Elshabrawy 14 The Fourier Transform (Cosine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2cos ωt + © Tallal Elshabrawy 15 The Fourier Transform (Cosine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2cos ωt + © Tallal Elshabrawy 16 The Fourier Transform (Cosine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2cos ωt + © Tallal Elshabrawy 17 The Fourier Transform (Sine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis - -ω Re-Axis ejωt e jωt 2jsin ωt © Tallal Elshabrawy 18 The Fourier Transform (Sine Function) e jωt cos ωt jsin ωt e jωt cos ωt jsin ωt Im-Axis Im-Axis ω Re-Axis + -ω Re-Axis ejωt e jωt 2jsin ωt + © Tallal Elshabrawy 19 The Fourier Transform (Sine Function) je jωt jcos ωt sin ωt jejωt jcos ωt sin ωt Im-Axis Im-Axis Re-Axis j e jωt e jωt 2sin ωt ω Re-Axis -ω © Tallal Elshabrawy 20 The Fourier Transform (Sine Function) je jωt jcos ωt sin ωt jejωt jcos ωt sin ωt -ω Im-Axis Re-Axis + Im-Axis Re-Axis j e jωt e jωt 2sin ωt ω + © Tallal Elshabrawy 21 Fourier Transform of Sinusoids e jωt e jωt cos ωt 2 1/2 sin ωt 1/2 -ω 0 ω e j jωt e jωt 2 j(1/2) -ω 0 ω -j(1/2) Notes A real value for the coefficients in the frequency domain means that the starting point for rotation is on the real axis An Imaginary value for the coefficients in the frequency domain means that the starting point for rotation is on the imaginary axis © Tallal Elshabrawy 22 Fourier Transform of Real Valued Functions Im-Axis Im-Axis ωn ω1 Im-Axis Re-Axis Re-Axis Re-Axis ω2 Im-Axis Im-Axis Im-Axis -ω2 Re-Axis Re-Axis Re-Axis -ω1 -ωn A real-valued function in time implies that G(-f) = G*(f) © Tallal Elshabrawy 23
© Copyright 2026 Paperzz