MATHEMATICS-II
UNIT-V
LAPLACE TRANSFORMS
PART B QUESTIONS & ANSWERS
1 .Verify Initial Value theorem for f (t) et sint .
Solution:
Initial Value theorem: lim f (t) lim sF(s)
t 0
s
Now,
lim f (t) lim e t sin t e0 sin 0 1* 0 0
t 0
t 0
1
lim sF(s) lim s.L e t sin t lim s
s s 2 1
s
s
s s 1
1
1
lim s
lim s
2
s (s 1) 1
s s 2 2s 2
s
1
1
lim
lim
0
2 2 s
2 2
s 2
s 1
s 1
s s2
s s2
LHS RHS.
Hence verified.
2. Find the inverse laplace transform of
s 1
log
.
s
Solution:
s 1
1 1 d
1 1 d
s 1
L1 log
t L ds log s t L ds log(s 1) logs
s
1
1
1
1 e t
1
L1
e t 1
t
t
t
s 1 s
s 1 1 e t
L1 log
t
s
3.Find L[3e5t 5cost] .
Solution:
L[3e5t 5cost] 3L[e5t ] 5L[cost]
3
1
s
5
2
s5
s 1
SNSCT-DEPT OF MATHEMATICS
1
MATHEMATICS-II
1 s
L[F(at)] F
a a
4. If L[F(t)]=F(s),prove that
Proof:
By definition, we have
L[f (at)] e stf (at)dt
0
x
dx
put at x t ;dt
a
a
L[f (at)] e s(x / a)f (x)
0
dx
a
s
1 a x
e
f (x)dx
a
0
s
1 a t
e
f (t)dt
a
0
1 s
L[f (at)] F
a a
5. Find
L[eat sinbt]
L[eat sinbt] L[sinbt]ss a
b
s2 b 2 ss a
6. Find
b
(s a)2 b 2
b
2
2
s a 2sa b 2
1
L1
(s 2)3
1
1
L1
e2t L1
3
s3
(s 2)
t2
e 2t
2!
1
t2
L1
e2t
3
2!
(s 2)
7.. If
L[f (t)] F(s)
and
f (t a),t a
g(t)
0,t a
then prove that
a
0
a
L[g(t)] est g(t)dt est g(t)dt est g(t)dt
0
a
0
a
est 0dt estf (t a)dt
SNSCT-DEPT OF MATHEMATICS
2
L[g(t)] easF(s)
MATHEMATICS-II
Put
t a x;t a,x 0
dt dx;t ,x
L[g(t)] es(x a)f (x)dx esxesaf (x)dx
0
0
e sa e sxf (x)dx
0
e sa e st f (t)dt
0
e saF(s)
8. Find
L[te2t cos2t]
L[te2t cos 2t]
d
L[te2t cos 2t]
ds
d
L[cos 2t]ss a
ds
d s
ds s 2 22 ss a
(s 2 4)(1) s(2s)
(s 2 4)2
ss a
s 2 4 2s 2
(s 2 4)2
ss a
4 s2
(s 2 4)2
ss a
(s 2 4)
(s 2 4)
(s 2 4)2
(s 2 4)2
ss a
ss a
(s 2)2 4)
s 2 2s
2
2
2
[(s 2) 4] [s 2s s]2
Hence
L[te2t cos 2t]
s2 2s
[s2 2s s]2
9.
Prove that te3t sintdt 3
50
0
te
0
3t
sintdt est (t sint)dt
0
s 3
d
L[sin t]s 3
ds
(s 2 1)(0) 1(2s)
d 1
ds s 2 1 s 3
(s 2 1)2
s 3
L[t sin t]s 3
2s
2s
6
3
2
2
2
2
2
50
(s 1) s 3 (s 1) s 3 (10)
SNSCT-DEPT OF MATHEMATICS
3
MATHEMATICS-II
Hence te3t sintdt 3
50
0
10. Using Laplace Transforms of derivatives find
By Laplace Transforms of derivatives,
L[eat ]
L{f (t)} sL{f (t)} f (0)
L{f (t)} s 2L{f (t)} sf (0) f (0)
L[eat ] ;
f (t)e at ,f (0)e0 1
f (t)e at ( a)
L[f (t)] sL[f (t)] f (0)
L[aeat ] sL[eat ] 1
s
a
1
s
1 s a 1 s a
sa
a
L[ae at ]
sa
a
aL[e at ]
sa
1
at
L[e ]
sa
11. Verify the initial value theorem for 3+4 cos2t
Theorem:
lim f (t) lim sF(s)
t 0
s
lim (3 4cos 2t) 3 4 lim cos 2t 3 4[cos0] 7
t 0
t 0
lim sF(s) = lim sL[3 4cos 2t] lim s[L(3) 4L(cos 2t)]
s
s
s
1
s
lim s[3L(1) 4L(cos 2t)] lim s 3. 4
2
s
s
s
s 4
1
s2
lim 3 4
lim 3 4
1 4
s
s 2 4 s
s 2
1
1
3 4
3 4 lim
s 1 4
1 4
s 2
1
3 4
7
1 0
L.H.S = R.H.S
SNSCT-DEPT OF MATHEMATICS
4
MATHEMATICS-II
1
L
t
12. Find
1
1
1 2
1 2 1
1
L
L t
1 1
t
s 2
1
1 2
1
1
1
12
12
s s 2
s
1
1
L
1
t
s 2
13. State Initial value theorem on Laplace Transforms.
If the Laplace transforms of f(t) and f ‘(t) exist and
then lim[f (t)] lim [sF(s)]
t 0
14. Find .
L[f (t)] F(s)
s
4s 13
L1
s2 5
4s 13
1 4s
1 13
L1
L 2
L 2
2
s 5
s 5
s 5
s
1
4L1
13L1
2
2
2
2
s ( 5)
s ( 5)
13 1
5
4cos 5t
L
5
s 2 ( 5)2
13
4cos 5t
sin 5t
5
15. State convolution theorem on Laplace Transforms.
If f(t) and g(t) are two functions defined for
t0,
then
L[(f * g)(t)] L[f (t)].L[g(t)]
ie.,
16. Find
L[(f * g)(t)] F(s).G(s)
where
cosat cosbt
L
t
cosat cosbt
L
L cosat cosbt ds
t
s
SNSCT-DEPT OF MATHEMATICS
5
L[f (t)] F(s)
and
L[g(t)] G(s)
MATHEMATICS-II
s
s
L cosat L cosbt ds s2 a2 s2 b2 ds
s
s
1
1
1
log(s 2 a 2 ) log(s 2 b 2 ) log(s 2 a 2 ) log(s 2 b 2 )
2
2
s
2
s
1 s2 a2
1 s 2 (1 a 2 / s 2 )
log
log
2 s 2 b 2
2 s 2 (1 b 2 / s 2 )
s
s
s 2 a 2
1 1 a2 / s2
1
log1 log
log
s 2 b 2
2 1 b 2 / s 2
2
s
s 2 a 2 1 s 2 b 2
1
0 log
log
s 2 b 2 2 s 2 a 2
2
17. Find the inverse Laplace transform of
Now
s2
2
(s 3)(s 4)
s2
2
(s 3)(s 4)
A
Bs c
s 3 s2 4
s 2 A(s2 4) (Bs c)(s 3)
Put s = -3
1 A(9 4) B( 3) c (0) A
1
13
Put s = 0
2 4A c(3) c
10
13
Put s = 1
3 A(5) B c (4) B
s2
2
(s 3)(s 4)
1
13
1
1
s
10
1
2
2
13 (s 3) 13(s 4) 13 (s 4)
1
s2
1
s
10
1
L1
L1
2
2
2
(s 3)(s 4)
13 (s 3) 13(s 4) 13 (s 4)
10 1 1
1 1 1 1 1 s
L
L
L 2
13
(s 4) 13
(s 2 4)
(s 3) 13
1 st 1
10 sin 2t
e
cos 2t
13
13
13 2
1
cos 2t 5sin 2t e st
13
18. Find the inverse Laplace transform of
s5
log
s2 9
s 5
1 1
1
L1 log
L [F(s)] L [F(s)]
t
s 2 9
SNSCT-DEPT OF MATHEMATICS
6
MATHEMATICS-II
Now,
s5
2
F(s) log
log(s 5) log(s 9)
s2 9
1
1
F(s)
.2s
2
s5 s 9
1
s
2s
1 1
L1 F(s) L1
2L1
L
2
s 5
s 5 s 9
s2 9
e5t 2cos 3t
Now,
1
1
2cos 3t e5t
L1 F(s) L1 F(s) e5t 2cos 3t
t
t
t
19. If
L[f (t)]
s2
, find the value of f (t)dt
s2 4
0
st
e f (t)dt
0
s0
s2
2 1
L[f (t)s 0
s2 4 s 0 4 2
20. State the first Shifting theorem on Laplace transforms
If
L[f (t)] F(s)
then
(i)L[eatf (t)] F(s a)
(ii)L[e atf (t)] F(s a)
21. State and prove second Shifting theorem on Laplace transforms.
If
L[f (t)] F(s)
L[f(t a)u(t a)] easF(s) .
then
Proof:
L[f (t a)u(t a)] estf (t a)u(t a)dt
0
a
0
a
est (0)dt estf (t a)dt
[ By defn. of unit step function]
e
s(u a)
f (u)du
put,t a u
0
e
as
e
su
f (u)du
0
tau0
tu
e as F(s)
SNSCT-DEPT OF MATHEMATICS
dt du
7
MATHEMATICS-II
22. Define unit impulse function
The unit impulse function is defined by
,t a
(t a)
0,t a
such that
(t a)dt 1 .It
denoted by
(t a) .
exists only at t = a at which it is infinitely great and is
23.State the Laplace transforms of periodic function with period transforms.
The Laplace transforms of a periodic function f(t) with period ‘p’ given by,
L[f (t)]
24. Find
1
T
e
1 e Ts 0
st
f (t)dt
L sinh 2 2t
We know that
sinh2 2t
1
cosh4t 1
2
cosh 2(2t) 1 2sinh 2 2t
Now,
1
L sinh2 2t L cosh4t 1
2
1
L cosh 4t L 1
2
1 s
1
8
2 s 2 16 s s(s 2 16)
25. Find
1 es
L1
s
[ By Second Shifting property
We can write
L[easF(s)] f(t a)u(t a) ]
1 es
es
1
1
L1 L1
1 L1 e s
L1
s
s
s
s
1
L1 es
s
1
F(s)
s
Consider
Here
1
L1 F(s) L1 1 f (t)
s
1
L1 e s 1.u(t 1)
s
1 e s
1 u(t 1)
L1
s
SNSCT-DEPT OF MATHEMATICS
8
MATHEMATICS-II
t
26. Evaluate e
0
t
e
0
sint
dt
t
using laplace transforms.
sint
dt estf (t)dt
L[f (t)]s 1
t
0
s1
Now,
sint
L[f (t)] L
L[sint]ds
t s
1
s21 ds tan
1
s
(s)
s
tan 1 ( ) tan 1 (s)
tan 1 (s) cot 1 s
2
L[f (t)]s 1
t
0
e
cot 1 ss1 4
sint
dt
t
4
27. Find the Laplace transforms of impulse function.
L[(t a)] lim (t a) lim est (t a)dt
0
0
0
lim
0
st
e (t a)dt lim
0
a
lim
0
0
a
1 e st
0 s
a
0
a
lim
lim
a
0
a
e st (t a)dt lim
a
e st (t a)dt lim
a
1 s(a ) as
e
e
0 s
1
lim e as e as e s
0 s
1 e a
e as
lim
s 0
s
e as
se s e as
lim
s e as
s 0 1
s
SNSCT-DEPT OF MATHEMATICS
1
e st dt
9
a
e st (t a)dt
MATHEMATICS-II
28. Find
e 2s
L1
s 3
1
1 as
L1 e2s
L e F(s) f (t a)u(t a)
s
3
1
1
3t
F(s)
L1 F(s) L1
e
s3
s 3
1
L1 e2s
e3(t 2)u(t 2)
s 3
29. Find
sinat
L
.
t
Hence show that
s
sint
dt
t
2
a
sinat
L
L[sinat]ds
ds
2
2
t s
s s a
=
1
s
s
s
a. tan 1 tan 1 ( ) tan 1 tan 1
a
a
a
2
s
a
s
a
cot 1 (or)tan 1
a
s
Put s = 0 and a = 1 we get
s
30.Find
sint
dt
t
2
1
L1
s(s a)
t
t
1
1
1
1
L1
L [F(s)]dt L
dt
s(s a) 0
s(s a)
0
t
t
eat
1
[eat 1]
eat dt
a
a
0
0
31. Find
s2
L1
2
2
2
(s a )
s2
s
L1 s.
L1
2
2
2
2
2
2
(s a )
(s a )
d t
d 1
s
L
sinhat
2
2
2
dt
(s a ) dt 2a
1
[at coshat sinhat]
2a
SNSCT-DEPT OF MATHEMATICS
10
MATHEMATICS-II
UNIT-V
LAPLACE TRANSFORMS
PART - C QUESTIONS
1. Using convolution theorem find
1
L1
(s 1) (s 2)
.
s2
L1
(s 2 a 2 ) (s 2 b 2 )
2. Using convolution theorem find
.
3. Find the inverse Laplace transform of the following function using convolution
Theorem 3 1 .
s s 5
2
L1
.
2
(s 1)(s 4)
4. Using convolution theorem find
5. Using Laplace transform method solve
y'' 2y' y et given y(0) 2 and y' (0) 1 .
y'' 4y' 4y et
6. Solve the differential equation using Laplace transform
y(0) 0 and y' (0) 0 .
7. Solve by using Laplace transform
8. Solve
d 2y
dt
2
9
dy
cos4t
dt
,
y'' 3y' 2y 4
given that
given that
y(0) 2 , y' (0) 3 .
y(0) 1 , y 1 .
2
9. Solve by Laplace transform the differential equation
d 2y
dt
2
9
dy
18t
dt
given that
y(0) 0 y( ) .
2
10. Using Laplace transform method solve
11. Using Laplace transform method solve
y'' 25y 10cos5t given y(0) 2 and y' (0) 0 .
d 2y
dt
12. Solve using Laplace transform,
2
dy
2y 5sin t given
dt
that
y(0) y' (0) 0 .
y'' 3y' 2y et given y(0) 1 and y' (0) 0 .
13. Using Laplace transform method solve
&
2
y'' 2y' 3y sint given
y'(0) 0
SNSCT-DEPT OF MATHEMATICS
11
that
y(0) 0
MATHEMATICS-II
14. Using Laplace transform method solve
&
y'' 6y' 5y e2t given
that
y(0) 0
y'(0) 1 .
15. Find the Laplace transforms of f(t) if
f (t) et , 0 t 2
&
f (t) f (t 2 )
16. Find the Laplace transform of the triangular wave function
.
t 0t1
f (t)
2 t 1 t 2
and
f (t) f (t 2) .
17. Find the Laplace transforms of the periodic function
18. Find the Laplace transform of
period
1 for 0 t a
f (t)
1 for a t 2a
sint when 0 t
f (t)
0 when t 2
and
f (t)
.
is periodic with
2 .
19. Find the Laplace transforms of rectangular wave function given by
T
A for 0 t 2
f (t)
A for T t T
2
and
f (t T) f (t) .
20. Find the Laplace transform of the periodic function
t 0t
.
f (t)
2 t t 2
21. Find the Laplace transform of the triangular wave function
22. Find the Laplace transforms of
23. Find the Laplace transform of
period
2
E for 0 t
f (t)
E for t 2
and
sin t when 0 t
f (t)
0 when t 2
.
SNSCT-DEPT OF MATHEMATICS
12
t 0tb
.
f (t)
2b t b t 2b
f (t 2 ) f (t) .
and
f (t)
is periodic with
© Copyright 2026 Paperzz