<A>Identities from some class invariant We observe that 1 3 17 3 21 9 3 21 5 21 1. 8 8 8 21 3 8 1 3 11 6 3 96 3 1 1 (3 4 4 3 ) 2. 2 2 2 5 17 19 5 17 5 17 3. 2 2 8 17 3 8 6 1 1 3 47 12 15 45 12 15 4 15 15 4 4. 2 2 2 5. 73 42 3 72 42 3 1 3 72 3 3 2 3 4 4 1 3 1 1 3 3 2 2 191 72 7 6 7 4 (3 7) 189 72 7 6 7 4 (3 7) 2 2 6.. 2 2 7 6 7 3 7 6 7 = 3 1 4 1 4 1 3 93 6 73 6 3 6 7. 2 2 4 8. 18 3 33 17 3 33 1 3 6 1 4 9 33 1 33 8 8 In order to prove the such form of identity ,it is hard to compute directly. Therefore we must to find other method to show them .The following are two methods to prove those identities. The first method is to use the class invariant of Ramanujan’s. Before we prove them, we introduce one definition and two theorem. Defintion: (a;q) (1- a q n), q 1, and (q) = (-q; q 2) . .If q=exp(- n ),where n n=0 is a positive rational number , the two class invariants Gn and gn are defined by 1 1 Gn = 2 4 q 24 (q) and gn= 2 4 q 24 (q) . 1 1 Theorem1:Let p= G 4n + G -4n .Then G9 n 1 2 2 2 p - 2 + ( p 1 ) p( 2 = G np + p - 1 2 1 6 4) 2 p - 4 +(p 2 2 2 3 1p ) ( . 4) Theorem2:Let p= g 4n - g -4n .Then g9 n = g np + p 2 1 2 2 2 p + 4 + ( p 1 ) p( + 1 2 1 6 4) 2 p + 2 +(p 2 2 2 3 1p ) ( . Now, we prove the eight identities. 1. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get 1 5 21 6 5 21 G63= 2 2 8 21 3 . (*11) 8 1 4 By theorem 1, 2 2 2 2 2 2 p - 2 + (p 1)(p 4) p - 4 + (p 1)(p 4) 2 G 63 = G 7 p + p -1 2 2 1 6 4 From table of Gn, G7= 2 4 .Then p= 2 4 2 4 1 1 1 -4 = 5 .Thus 2 1 1 6 3 1 5 + 21 17 + 3 21 9 + 3 21 .(*12) G 63 = 2 4 8 8 2 Compare (*11) and (*12), we complete the proof. 2. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get 1 1 1 3 13 4 3 4 4 3 . (*21) G117= 2 3 13 6 2 2 1 3 4) 1 3 13 4 Since G13= , p= 13 . By theorem 1, 2 1 4 1 3 11 6 3 3 13 96 3 G117 = . (*22) 2 3 13 2 2 2 Compare (*21) and (*22), we complete the proof. 1 6 3. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get G153= Since G17= 5 17 8 5 17 8 5 17 G153 = 8 17 3 8 1 3 37 9 17 33 9 17 . (*31) 4 4 2 17 3 5 17 , p= . By theorem 1, 8 2 17 3 5 17 19 5 17 8 2 2 1 6 1 1 7 5 17 (1 9 4 5 1 7 ) ( 1 3 5 17 ) 1 3 5 1 7 4 (1 9 2 ,(*32)where (19 5 17)(13 5 17) 20 4 17 . Compare (*31) and (*32), we complete the proof. 4. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get 1 5 G225= 2 3 2 From table of Gn, G25= 1 3 4 15 15 14 . (*41) 2 1 5 .Then p=7.Thus 2 1 3 47 +12 15 1 5 45 +12 15 G 225 = .(*42) 7 4 3 2 2 2 Compare (*41) and (*42), we complete the proof. 1 6 5. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get 3 5 1 7 ) (1 3 5 17 G333= 6 37 Since G37= 6 37 G 333 = 6 37 7 1 4 1 4 7 1 4 3 2 37 1 6 7 2 3 3 2 3 . (*51) 2 , p= 2 37 . By theorem 1, 3 2 37 1 6 73 42 3 72 42 3 .(* ) 1 3 52 Compare (*51) and (*52), we complete the proof. 6. On the table of Gn from the Ramanujan’s notebook Part V(p.189), we get G441= 3 7 2 3 2 1 6 2 7 74 7 2 7 6 7 3 7 6 7 3 1 4 1 4 . (*61) 1 4 7 74 2 7 74 7 9 4 7 9 3 7 74 Since G49= , G 494 . 2 2 2 2 2 1 Then p= 9 47 . p + p -1 9 4 7 2 3 16 6 7 2 = 9 4 7 2 3(3 7) = (2 3)(3 3 2 7) 3 7 = (2 3) 2 3 By theorem 1, G 441 = 1 2 7 74 7 2 3 191 72 7 A 3 7 189 72 7 A 2 3 2 2 2 1 6 .(*62),where A= (192 72 7)(189 72 7) 6 2016 762 7 6 7 4 1 3 2 (3 7) . 2 Compare (*61) and (*62), we complete the proof. 7. On the table of gn from the Ramanujan’s notebook Part V(p.189), we get (2 g90= Since g10= 5)( 5 6) 1 6 3 6 4 6 1 . (*71) 4 1 1 5 (2 5) 6 , p= 5 . By theorem 2, 2 1 3 93 6 73 6 .(*72) g90 = 2 5 5 6 2 2 Compare (*71) and (*72), we complete the proof. 1 6 1 6 8. On the table of gn from the Ramanujan’s notebook Part V(p.189), we get g198= 1 2 4 2 33) 1 6 9 33 1 33 . (*81) 8 8 Since g22= 1 2 , p= 4 2 . By theorem 2, g198 = 1 2 4 2 33 1 6 18 3 33 17 3 33 .(* ) 1 3 82 Compare (*81) and (*82), we complete the proof. The second method is to use the following theorem. 1 1 Theorem 3:Suppose that c= (a 2 - b) 3 .Then we can write (a + b) 3 x + y ,where 4x3-3cx=a and y=x2-c. For example, consider the identity 2. Let a = 11 6 3 11 6 3 96 3 ,b= ,then c=1.Compute 4x3-3x= .Square both 2 2 2 side and let t=x2. Thus, t(4t-3)2= 11 6 3 3 t=1+ . Hence, 2 4 3 1 4 3 ;y= .The proof is complete. 2 4 The other identities are similar to the above. x= We can use theorem 3 to construct more identities of this form . In order to get such identity , we must give x and c firstly. Then a and y are got by the condition of theorem 3. For example, let x= 3 2 ,c=1.Since 4x3-3cx=a and 4 y=x2-c,a= 1 3 2 2 1 1 2 and y= .And c= (a 2 - b) 3 , then b= .Thus, 2 4 2 3 2 1 2 2 2 1 3 = 3 2 + 4 2 1 . 4 <B>Some identities from n 2 4 3 ( 3 1) 1. 1 1 (2 3) 24 2 4 8 5 17 2. 8 1 1 8 17 3 8 24 1 2 4 17 1 3 4 17 4 4 4 5 1 5 1 8 3. 8 1 1 ( 5 2) 2 2 The three special identities are from 9 , 17 , 25 ,respectively, by using the theorem for n (PartV ,p.290)and the definition of n .i.e., 7 17 3 17 4 4 1 1 1 1 8 12 24 8 n = G -12 (1- 1- G -24 . (1 1G -24 n (G n - G n 1) = n ) 2 n n ) 2 2 Proof of identity 1: From the theorem for n on the Ramanujan’s notebook PartV(p.290), 1 9 2 3 2 2 9 1 4 8 3 3 1 4 3 4 1 1 8 3 1 2 3 3 4 2 1 1 3 3 And G9 ,then 2 2 9 1 8 3 1 1 5 ( 2 3 ( 3 1)) . 4 24 4 8 1 1 (2 3) .Thus the proof is complete. The other identities are similar to the above . In order to construct the equality of the form, we must introduce the following theorem. Theorem 4:If r is any positive real number and t= r- r 2 1 4 1 1 t + - t - 2 2 r 1 , then 8 8 1 t + 1 2 2 1 t + 1 2 . 2 12 If we let G 12 n =r, then we can also get the above identities. For instant, let r= G 9 ,then 1 -12 12 1 -12 24 t=7+4 3 and 9 G 9 (G 9 - G 9 1) = G 9 2 2 3 3 1 G 9- 12 2 4 3 4 1 t + 1 2 2 1 t + 1 2 2 8 8 1 1 ,by theorem 4. And 9 = (1- 1- G 9-24 ) ,then 2 3 3 (1- 1- G9-24 ) = G 9-12 4 8 3 1 .Thus the identity is hold. 4 To construct the equality of the form, we need to give an arbitrary r (r 1)and consider the identity r-1(r- r 2 1 )=1- 1- r -2 . Then by using theorem 4 , we can get such identities. For instant, let r=17, then t= 1- 1- r -2 =(1- 1 17 3 .Thus, 2 1 -1 2 288 );r (r- r 1 )= 17 1 t + 1 2 2 1 t + 1 2 2 8 1 17 2 1 2 1 8117 2 1 2 8 1 2 8 =817 8 2 1 2 2 1 . 2 <C>More identities from class invariant Moreover, if we compute class invariants via Kronecker’s limit formula or modular equation and compare the result with the table of Gn (PartV ,p.189), then we can get other identities. [Kronecker’s limit formula] 9 65 1 1 65 G 65 , ( 74 10 65 (5 65)) 4 8 8 3 63 3 23 3 1 G 69 , 4 4 2 2 187 108 3 9 6 3 3 6 11 2 11 1 (2 22 7 2 182 56 11) G 77 , 4 4 2 3 18 9 3 14 9 3 1 G141 , ( 7855 4536 3 9(7 4 3)) 4 4 2 17 145 9 145 G145 , 2 29 5 5 240 20 145 8 8 G 213 , G 301 , G 445 , 3 21 12 3 1 3 19 12 3 (135619 78300 3) (87 50 3) 2 2 2 2 3 46 7 43 1 42 7 43 ( 7(25941 3956 43) (301 46 43)) 4 2 2 13 89 5 89 71320 7560 89 (189 20 89) 8 8 3 6 113 5 505 105 5 505 G 505 , (130 5 29 101) 169440 7540 505 8 8 3 [modular equation] 7 65 1 G 65 , (3 65 3 5 13) 4 8 G 69 , 5 23 2 2 3 3 23 2 1 2 3 65 1 8 2 748 432 3 747 432 3 2 17 9 3 31419 18144 3 4 3 47 7 247 3 2 G141 , 2 14 9 3 G145 , 17 145 9 145 241 20 145 240 20 145 8 8 3 G 213 , 3 5 3 71 2 59 7 71 2 19 12 3 (41 24 3) 542475 313200 3 2 2 1 2 In Ramanujan’s notebook PartV(p.265), there is an another table of G n which are computed via class field theory. The following are the identities attained from comparing between the table of G n which are computed via class field theory and the table of G n ( p.189). 13 3 1. G 65 , 2 1 4 5 1 2 1 4 7 65 8 11 7 2. G 77 , 8 3 7 2 1 8 1 8 1 4 23 8 11 19 8 11 4 4 1 7 47 12 4 3 47 2 3. G141 , 4. G145 , 2 5 5 2 29 1 4 1 8 1 4 1 2 65 1 8 31420 18144 3 31419 18144 3 1 2 12 145 8 145 4 4 1 1 5 3 5 41 4 7 41 5. G 205 , 2 2 8 41 1 8 1 12 1 1 4 2 2025 315 41 2017 315 41 25 3 41 17 3 41 8 8 8 8 6. G 213 , 1 1 5 3 71 8 59 7 71 12 2 2 7. G 265 , 2 5 7 2 53 1 4 1 4 542476 313200 3 542475 313200 3 16 265 12 265 4 4 23 43 57 7 8. G 301 , 8 3 7 2 1 8 1 8 1 2 1 4 1199 84 43 1195 84 43 4 4 1 21 445 4 13 89 5 89 2 5 2 8 8 9. G 445 , 1 12 1 1 4 2 71325 7560 89 71321 7560 89 85 9 89 77 9 89 4 4 8 8 1 4 1 1 5 2 5 10 101 2 10. G 505 , 1 4 2 292 13 505 288 13 505 4 4 11. G 553 , 1 1 2 4 96 11 79 100 11 79 19163 2156 79 19159 2156 79 4 4 4 4 <D>Other identities 1. A B P Q C The triangle ABC is a right triangle. The two curves are arcs of circles centered at B and C. Thus, c:=BA=BQ and b:=CA=CP. Let a=BC. Underneath the figure, two equalities are given. (b+c- b2 c 2 )2=2( b2 c 2 -b)( b2 c 2 -c) and ( 3 (a b) - 3 a 2 ab b2 )3=3( 3 a3 b3 -a)( 3 a3 b3 -b) 2 2.Let x2=y+a,y2=z+a,z2=x+a, then x3+ 1 2 1 1 x (1+ 4a 7 )- x(2a+1- 4a 7 )+ (a-2-a 4a 7 )=0 2 2 2 x3+ 1 2 1 1 x (1- 4a 7 )- x(2a+1+ 4a 7 )+ (a-2+a 4a 7 )=0. 2 2 2 Let A= 4a 7 .The roots of (*1) are 1+ A 2 1 2A x1 4 a - A s it na (n1 6 3 3 3 3 1 x2 1+ A 2 1 2A 4 a - A s i n ( t a n1 6 3 3 3 3 3 x3 1+ A 2 1 2A 1 4a - A sin( tan 1 ) 6 3 3 3 3 3 ) 1 ) The roots of (*2) are A -1 2 1 2A 1 x4 + 4a + A sin( tan 1 ) 6 3 3 3 3 x4 A -1 2 1 2A 1 + 4a + A sin( tan 1 ) 6 3 3 3 3 3 x4 A -1 2 1 2A 1 + 4a + A sin( tan 1 ) 6 3 3 3 3 3 3. m 3 4m - 8n + n 3 4m + n = 1 3 3 2 2 (4m + n) + 3 4(m - 2n)(4m + n) - 3 2(m - 2n) pf: (u2-2uv-2v2)2= u4-4 u3v+8uv3+4v4 =u(u3+8v3)+v(4v3-4u3) (*) let m=u3 +8v3 ,n=4v3-4u3 1 2 3 3 4 m - 8 n 4 m - 8 n =u3 6 u = 6 1 3 2 4 m + n = v3 6 3 3 4 m + n v = 6 3 Use (*), then the proof is complete. Moreover, (u2+auv-bv2)2 , where a2=2b and a,b are rational number, then (u2+auv-bv2)2 =u(u3-2abv3)+v(b2v3+2au3) let m= u3-2abv3 ,n= b2v3+2au3 Then, by the same procedure, we can get another identity . For instant, let a=2,b=2.Thus, m 3 4m + 8n + n 3 4m - n = 1 3 3 2 2 (4m - n) + 3 4(m + 2n)(4m - n) - 3 2(m + 2n) 4. 3 (m 2 + mn + n 2) 3 (m - n)(m + 2n)(2m + n) + 3mn 2 + n 3 - m3 (m - n) m + 2n 3 (2m + n) m - n 3 (m + 2n) 2m + n = + 9 9 9 2 2 2 3 1 5. 1 3 1 3 cos40 cos80 cos20 1 3 s e c 4 0 1 3 s e c 80 3 3 ( 3 9 2) 2 1 3 1 3 1 3 s e c26 0( 9 1 ) 3 1 1 1 Theorem 5: , , are roots of x3–ax2+bx-1=0, then 3 3 3 a 6 3t 3 , 1 1 1 1 1 3 3 3 b 6 3t 3 where t3–3(a+b+3)t-[ab+6(a+b)+9]=0. Pf:Since 2cos20o, -2cos40o,and -2cos80o are roots of x3–3x-1=0.Let a=0,b=-3,then t=- 3 9 .Thus the proof is complete.
© Copyright 2026 Paperzz