Review4

Algebra II SOL Review #4
Topics up to/including Matrices
Name: ______________________________
Date: ______________________________
Everything on this review is a topic we have covered. Please put your best effort into it. Even though it
is multiple choice, show your work or jot down notes on how you worked the problems. This way you
know what you are doing wrong and when we start really reviewing for the SOL test you will have some
examples to jog your memory and remind you that we really did do this once!!!! Good luck and do your
best.
1.
The table shows some elements of a function. Which equation is most likely a rule for
the function?
x
f(x)
2
0
9
1
3
2
2.
a.
f ( x)   x  1
b.
f ( x)  2 x 2  1
c.
f ( x)  x 2  2 x  1
d.
f ( x)  x 2  3 x  1
g.
x
Which is the solution to 3x  2  6 ?
f.
h.
3.
4.
4
8
x
3
3
8
8
x  or x  
3
3

j.
Which equation is not equivalent to
8
4
or x  
3
3
8
4
x  or x  
3
3
1 1 1
  ?
3 12 x
a.
4x  x  12
b.
c.
4x 12x  12
d.
3 1

12 x
x x
 1
3 12
If f (n)  2 n  n, then f (3)  ?
f.
3
g.
5
h.
9
j.
11
5.
Which is the solution to 2 x  4  8 ?
a.
c.
6.
2 x  6
x  2 or x  6
b.
d.
x  6 or x  2
x  2 or x  6
Squaring the matrix below gives you the number of one-stop routes which planes can take
between three cities. Which matrix shows the number of possible one-stop routes?
0 1 1 
1 0 2


0 1 0
f.
7.
 5
2 2 1
 2 5 0


1 0 1
g.
 2
Q   1  3 R   
1 
a.
8.
 0 2 2
 2 0 4


0 2 0
h.
1 1 2
0 3 1 


1 0 2
j.
0 1 1 
1 0 4


0 1 0
d.
  2  6
  1  3


Which matrix represents Q  R ?
b.
 6
c.
 2
h.
3
2

0

1

 3
x  y  1
 x

If 2 y  z  3 then  y   ?
x  y  z  4
 z 

f.
  2
3
 
  3
g.
4
10
 
 0 

1
2
1
0

0
1
 j.
2
1

1 1 0 
0 6 3 


4 4  4
9.
Which graph shows a solution to the following system?
a.
b.
c.
d.
0 2  1
A  3 0
4 
1  2  3
10.
y  3

3 y  x  6
 2 x  y  4

 1 2 1 
B   2
0
3  Which matrix is the product A B ?
 3 2  1
f.
1 0 0
5 0 7


 2 0  4
h.
 0  4  1
6
0 12 

 3  4 3 
g.
 5 0  12
 3  2  11


 5  4 14 
j.
 7 2 7 
 9 2  1 


 6  8  2