Jet-Gas Interactions in Seyfert Galaxies Mark Whittle (Virginia) David Rosario (Virginia) John Silverman (Virginia) Charlie Nelson (Drake) Andrew Wilson (Maryland) Outline • Brief review of : AGN & Jets & Emission lines Reasons to study jet-gas interactions (JGI) • Case study of Seyfert Galaxy : Mkn 78 Observations & data overview Heuristic description of JGI Ionization analysis Dynamical analysis Active Galaxies • All galaxies have nuclear black holes • Those currently accreting are “active” • Accretion energy released in two forms A : Photons • Thermal & non-thermal processes • Broad SED : Optical / UV / X-ray • Large range in luminosity : LINER Seyfert QSO AGN Spectral Energy Distribution (SED) Radio far-IR optical EUV X-ray Seyferts (NGC 4151) Low Luminosity Quasars High Luminosity B : Bipolar Outflows (Jets) • Origin uncertain (MHD driven ?) • Velocity uncertain : – Some relativistic, others not + + • Content uncertain : (p e or e e ?) – Relativistic component : e- + B radio – Other (thermal) components ? • Large luminosity range : – Radio loud (radio galaxies/QSRs) – Radio quiet (Seyferts/QSOs) Radio Galaxy 3C 296 Flux ~ few Jy Radio Loud Seyfert Galaxy Mkn 573 Flux ~ few mJy Radio Quiet Emission Lines •From ionized gas : Te ~ 104 K, ne ~ 102 – 109 cm-3 •Ionization mechanism ? – Photoionization (yes) – Shock related (maybe with jets?) •Profiles reveal (Doppler) velocities BLR (R ~ 10-2pc, V2 ~ GMBH/R) NLR-1 (R ~ 1 kpc, V2 ~ GMbul/R) NLR-2 (R ~ 1 kpc, V ~ jet related) •Nested emission line regions BH << AD << BLR << NLR << Gal r/c : min hr week 103 yr 104 yr Why study JGI in Seyferts ? • Jet-gas interactions occur in many contexts – AGN (ISM/IGM) – Stellar jets (DMC/ISM) – Starburst winds (ISM/IGM) • Laboratory for astrophysical hydrodynamics • Seyfert ELRs allow important diagnostics – Gas mass, velocity, KE, momentum, pressure – Complements radio source pressure/energy Mkn 78 : jet-gas archetype Early ground based data suggest prominent JGI : • Luminous triple radio source • Strong double [OIII] profile • FWHM >> gravitational velocities Mkn 78 Unfortunately, Mkn 78 is quite distant : • cz ~ 11,000 km/s 1 arcsec ~ 700pc • BT ~ 15.2 MB ~ -20.8 • Dull looking early type galaxy Need HST resolution Mkn 78 KPNO 2.1m Red Continuum 30 arcsec Mkn 78 : HST & VLA Dataset • VLA : 3.6cm 8hr map • HST images : (FOC, PC, STIS, NICMOS) – Continuum : UV/green/near-IR – Emission line : [OIII] 5007 • HST spectra : (STIS, FOS) – 4 slits : good spatial coverage – 4 gratings : low resolution : UV & optical high resolution : [OIII] 5007 Near IR STIS CCD clear Optical arcsec NICMOS F160W Dust lane [OIII] λ5007 3.6cm radio 4 STIS Slit Positions STIS low dispersion spectral data STIS high dispersion [OIII] 5007 data Mkn 78 Case Study : Jet-gas interactions 1. Heuristic description 2. Ionization study 3. Dynamical study 4. Jet properties Overlay : Radio (contours) & [OIII] (image) STIS high dispersion [OIII] 5007 data 1. Heuristic Description 1. Inner W-knot Jet ends & disrupts; some gas disturbance ? DMC enters & disrupts flow; recent interaction 2. Eastern fan Jet deflected; split lines; “blow-back” shape ? Cloud inertia deflects jet (doesn’t destroy it) ? Radial + lateral motion induced (±300 on 400) ? Intermediate age : begun to disrupt cloud 3. Outer W-lobe Components; complex velocity ; no bow shock ? late stage; dispersing cloud remnants; leaky bubble 2. Ionization Study Low dispersion spectra many line fluxes Compare line ratios with : 1. Ionization models (U, Am/i , Shock) 2. Velocities (Vbulk & FWHM) 3. Location (radius) 4. Other things (radio/color/dust) Ionization mechanisms Three basic contexts explored : 1. U – sequence : AGN photoionization 2. Am/i – sequence : AGN photoionization 3. Shock – sequence : shock ionization Cartoon illustrates these 1) 2) U sequence Am/i sequence Neutral Back Ionized front Optically Thin clouds AGN AGN UV Optically Thick Clouds Only Optically Thick & Thin Clouds UV Ferland’s, CLOUDY U = Ni/Ne ~ 10-2 – 10-3 3) Binette et al : ‘96 Am/i = Am/Ai ~ 0.1 – 10 Vsh Shock sequence Auto-ionizing Shocks Collisionally ionized & photo-ionized post-shock gas Vsh = 100 – 800 km/s shock UV Photo-ionized precursor Doptia & Sutherland : ‘95, ‘96, ‘03 Line ratios vs models a) General excitation/ionization b) Discriminators to separate Sh & U+Am/i c) Discriminators to separate U & Am/i d) [ [OI] 6300 anomalous line ] e) [ Nuclear nitrogen enhancement ] Excitation : All models OK U ~ 10-2 – 10-3 A ~ 30% – 90% Sh ~ 500 – 300 km/s U Am/i Sh U Am/i Sh Discriminators 1 Trends follow U & A Don’t follow shocks Discriminators 2 e.g. [NeV], HeII, & [OIII]4363 U poor, favours Am/i trend fits nicely Note : weak [NeV] U Am/i Sh in Mkn 78 requires new Am/i Ratios vs models : Summary 1. 2. 3. 4. Clean results because enough data to show trends Current shock models are excluded Photoionization by the AGN dominates Gas contains both optically thick & thin clouds Now consider ratios vs gas velocity Excitation vs FWHM Excitation vs V –Vsys Shock Shock Results summary Ratios vs velocity : Summary 1. Essentially no (v. weak) correlations : ionization conditions independent of velocity 2. Shock model predictions very poor Now consider ratios vs radius Excitation vs Radius Radius : • Strong correlation photoionization • U drops ~ r –1 density ~ r –1 [SII] difficult to confirm • Am/i drops with r more thin @ small r Final check : UV Luminosity • Check photoionization : – Can UV luminosity power emission lines ? • But UV is invisible/obscured ?! • Take FIR luminosity = reprocessed UV – LUV ~ LFIR ~ 4πd2FFIR ~ 4πd2 [2.6S60+ S100] Check : – LUV ~ Lem ~ 10 x L5007 as observed – U ~ NUV/ne ~ 10-2.5 as observed 3. Dynamical Study To go beyond heuristic description : – – – – Need physical properties Aim to evaluate these throughout regions First consider ionized gas Then consider other components Slit B : kinematic measurements Peak Velocity FWHM -2 East -1 0 Nuc +1 +2 +3 West Extinction Density Line flux Mass Momentum KE Simple Properties Three regions : Inner knot / East fan / West lobe Region Age : • Age ~ size/velocity : ~ 0.4 / 4 / 8 Myr Ionized gas : • Mass : ~ 0.4 / 1.0 / 1.1 x 106 Msun • Filling factor : ~ 30 / 1.5 / 0.5 x 10-4 • Covering factor : ~ 0.5 / 0.5 / 0.5 Consider other components The Various Components Relativistic gas : ffrel; Prel ~ B2/8π Line Emitting gas : ffem; nem; Pem; Vem Assume/show : Prel ~ Pth ~ Pem ~ Pism Thermal gas : nth; Pth; Tth ISM nism~ 1 Pressures : Prel, Pem, Pth, Prad • • Log P/k ~ 6.5 / 6.0 / 5.5 K cm-3 – Quite high > radio galaxy lobes – All components deep within galaxy ISM All pressures drop with radius (~ r -1) – As expected for galaxy ISM context • Approximate pressure balance between • different components : Prel ~ Pem (~ Pth) Relativistic & radiation pressure too low to accelerate ionized gas (by ~ x10) – Need dynamical (ram) pressure of jet Energy Comparisons Relative energies in different parts : – UV (FIR) ~ 1000 (~1043 erg/s) – – – – – ~ 1000 ~1 ~1 ~1 ~ 0.2 Emission lines Kinetic Relativistic Expansion /lobe Radio Simple inferences Conclusions from energy comparisons 1. Photons dominate by x1000 ; Lem ~ LUV supports photo- over shock ionization should not derive Ljet from Lem (see later) 2. Expansion / KE / Relativistic all similar flows can accelerate gas & power radio source 4. Jet Properties Estimating jet energy and momentum : Use emission line & lobe properties : • Ej ~ KEem + αe Elobe ~ 2-5 Elobe αe = synchrotron loss; adiabatic loss; ffrel Lj = Ej/Tage ~ 2-5 x 1040 erg/s • Gj ~ αm Gem ~ 2-5 Gem αm = covering factor loss ; drag loss Fj = Gj/Tage ~ 2-5 x 1033 dyne JET LUMINOSITY EKE ~ Σ½M V2 Lj Lj ~ (EKE + αeErel )/tage JET MOMENTUM Elobe~ PV ~ αeErel Gem ~ ΣM V Fj Fj ~ αmGem / tage αe ~ αsyn αad αff ~ 2 – 10 αm ~ αdrag αlcf ~ 2 – 5 Jet Properties (model) • Components : – Relativistic & thermal; ratio defined by ffrel – Both move at Vj • Pressure balance : Prel ~ Pth 2 – We know Prel from radio physics ~ Bme/8π • Energy : Ej ~ KEth + Wth + Wrel – Wrel = (4/3)Prel ; Wth = (5/2) Pth • Momentum : Gj ~ Gth + Grel = Gth – Relativistic component has ~zero inertia Jet Properties (derived) Use Lj Gj Pj Aj to derive many properties (>100pc) • Thermal material dominates jet energy and momentum – Relativistic gas has little/no momentum – KEj/Uj ~ Fj/Aj/Pj ~ 10 / 3 / 2 KE dominates energy • Jet velocity ~ 1-few x Vgas – 2Lj/Fj ~ Vj ~ 300 – 3000 km s-1 • Ram pressure dominates : Pram ~ 30 / 7 / 4 x Prel – Can accelerate to Vem over Tage for Ncol ~ 1021 cm-2 – Only mild shocks : Pram ~ ρemVsh2 Vsh ~ 10-50 km s-1 – Not acceleration by impulsive shocks; maybe wind/ablation Jet Properties (derived) • Jet density (thermal) : 0.1 - 5 cm-3 – Consistent with entrained ISM • Jet temperature : Tj ~ Pj/njk ~ 106 K – ~ 0.1-0.7 Temperature from thermalized Vj – again consistent with entrained ISM • Jet Mach number : 5 / 2.5 / 2 transonic – Consistent with entrainment and decollimation • Jet mass flux : ~ Mem over region lifetime – Could be entrained ISM – Could become ‘thermal’ component of lobe Comparison with previous work Many partial interpretations One thorough analysis : Bicknell, Dopita & Sutherland ’98 They use shocks to infer jet properties, in particular : jet energy & momentum This yields significantly different results JET LUMINOSITY EKE ~ Σ½M V2 Our analysis Lj Lj ~ (EKE + αErel )/tage Bicknell et al ‘98 Shock Elobe~ PV ~ αErel Emission Lines : Lem Lj Lj ~ Lem ~ 100 x L5007 For Mkn 78 & other Seyferts : Lj (them) ~ 1000 x Lj (us) JET MOMENTUM Our analysis Gem ~ ΣM V Fj Gradual acceleration Fj ~ αGem / tage Bicknell et al ‘98 Shock 2 ρemVsh Pram ~ ρjVj2 nem~ 103 cm-3 2 ρjVj ~ ρemVsh 2 Vsh~Vem~ 500 km/s Emission Line Cloud Impulsive acceleration For Mkn 78 & other Seyferts : Fj (them) ~ 100 x Fj (us) Jet Property Our Jet Bicknell et al Energy flux : Lj Momentum flux Fj Velocity : Vj x1 x 1000 x1 x 100 300 – 3000 km/s (1 – few Vem) 0.1 – 5 cm-3 x1 10 – 50 km/s ~ 106 K 2–5 15 – 90 x103 km/s (0.05c – 0.3c) 0.1 – 5 cm-3 x 100 500 – 1000 km/s ~ 109 K 1 – few Density : nj Ram pressure : Pj Cloud shock : Vsh Temperature : Tj Mach No. : Mj Comparison : Ours is a kinder, gentler jet. Maybe more plausible ? Summary 1. Jet-gas interactions (JGI) are important 2. VLA & HST data on Seyfert with dominant JGI 3. Inspection reveals likely JGI scenario – 3 regions suggest temporal development 4. Ionization study rejects role of shocks – AGN photoionization of thick & thin components 5. Data provide information on jet properties : – – – relatively low power, low speed, transonic, dense jet dominated by thermal gas, at Tj ~ 0.5 x T(Vj) ram pressure ~ 2-10 x internal pressure 6. Overall context : thermal jet/wind driven ablata New HST Project : 1 or 2 slits on six other objects with evidence for JGI.
© Copyright 2025 Paperzz