Another story on Multi-commodity Flows and its “dual” Network Monitoring Rohit Khandekar IBM Watson Joint work with Baruch Awerbuch JHU Outline • Crash course: – Set cover problem and the greedy algorithm – Framework for distributed covering problems • The maximum multi-commodity problem and its dual passive commodity monitoring problem • Fast converging distributed approximation schemes The Set Cover Problem Given • a set of elements U • subsets S1, S2, …, Sk µ U with costs c1, c2, …, ck ¸ 0 Find • Minimum cost collection of subsets whose union is entire U. min P P ci x i i :e2 Si x i xi i ¸ 2 1 8e 2 U f 0; 1g 8i The Greedy Algorithm 1. x i à 0 for all set s Si 2. r e à 1 for all e 2 U P 3. While 9e 2 U wit h (re = 1 if e is not yet covered) i :e2 S i x i < 1 do: (a) Find a set Si t hat minimizes P ci e2 S i re (b) x i à 1 (c) r e à 0 for all e 2 Si Gives O(log n) approximation where n = |U|. The Fractional Set Cover Problem The LP relaxation of the set cover IP. min P P ci x i i :e2 Si x i xi xi i ¸ 2 ¸ 1 8e 2 U f 0; 1g 8i 0 The Fractional Greedy Algorithm Drawback: #iterations = n/²2 1. x i à 0 for all set s Si 2. r e à 1 for all e 2 U P 3. While 9e 2 U wit h i :e2 S i x i < 1 do: (a) Find a set Si t hat minimizes P ci e2 S i re (b) x i à 1 x i à x i + ² 2 (c) r e à 0 r e à r e ¢(1 ¡ ²) for all e 2 Si Gives O(log n) ( 1 + ² ) approximation. The Fractional Greedy Algorithm 1. x i à 0 for all set s Si 2. r e à 1 for all e 2 U P 3. While 9e 2 U wit h i :e2 S i x i < 1 do: all ci P (a) Find a set Si t hat minimizes e2 S i (b) x i à x i + ² 2 (c) r e à r e ¢(1 ¡ ²) for all e 2 Si re The Fractional Distributed Algorithm Also computes a near-optimum dual solution 1. x i à 0 for all set s Si 2. r e à 1 for all e 2 U P 3. While 9e 2 U wit h i :e2 S i x i < 1 do: (a) Find all Si t hat (approx.) minimize P ci e2 S i re (b) For all such i : do x i à x i ¢(1 + ² 2 ) + ± (c) Decrease r e appropriat ely for all e 2 # iterations = log ( n C ) ²4 ¢log 1± Luby-Nissan (93), Garg-Konemann (98), Young (01) Maximum Throughput Concurrent Multi-commodity Flow ce = capacity Maximum Throughput Concurrent Multi-commodity Flow Send maximum total flow between the pairs subject to the edge-capacity constraints. Maximum Throughput Concurrent Multi-commodity Flow Primal (packing) max P P p fp f p · ce fp ¸ 0 p:e2 p Send maximum total flow between the pairs subject to the edge-capacity constraints. 8e 8p Distributed Computation Model The ROUTERS model: • “Intelligence” is embodied in the network routers • Computations takes place by exchanging messages between neighboring routers Complexity measures: • Approximation ratio ((1+²) approximation) • Message congestion (# messages/router/round) • Space complexity (space needed/router) • Convergence time (# rounds to converge) • Computational complexity (total work) Multicommodity Problem & Its Dual Primal (packing) max P P p fp f p · ce fp ¸ 0 p:e2 p Dual (covering) min 8e 8p P P x e ¸ 1 8p xe ¸ 0 8e e2 p Dual: Probe edges e with frequency xe so that each path gets probed to an extent 1 while minimizing the total cost of probing e ce xe Passive commodity monitoring e ce x e dual = set cover edges = sets paths = elements Main Result There is an algorithm for maximum multicommodity flows and passive commodity monitoring with the following properties L = maximum hop-length of a • (1 + ²) approximation flowpath ³ 3 log j P j ²4 ´ ³ O ( 1) = O L 3 ¢ log ² 4 n ´ • O convergence • ~ ¢L 3 ) messages/router ~ ¢L ) space and O(k O(k • ~ ¢k ¢L 3 ) computational overhead O(m Comparison with Previous Work Reference Rounds Messages Space Comput at ion GK , F, Y m+ k m+ k m+ k m ¢(m + k) LN,Y L nL nL nL AK R, AK m ¢L k ¢L k m 3 ¢k ¢L AL m ¢L m ¢k ¢L m ¢L m 2 ¢L t his work L3 k ¢L 3 k ¢L m ¢k ¢L 3 m = number of edges n = number of vert ices k = number of commodit ies L = maximum hop-lengt h of a ° owpat h The Algorithm Primal (packing) max P P Dual (covering) pfp p:e2 p f p · ce fp ¸ 0 min P 8e 8p P e ce x e x e ¸ 1 8p xe ¸ 0 8e e2 p • Set cover with edges as sets and paths as elements • Associate with each path p, a residual requirement h P r p = exp ¡ ®¢ (® is a constant) i e2 p xe (profit of path p) The Algorithm • Repeat: • For all edges that (approximately) minimize the cost-to-profit ratio: ce P p :e2 p increase rp x e à x e(1 + ² 2 ) + ± • Increase the flow on all paths through such edges P How to compute aaaaaaaa p:e2 p r p X Compute X Y rp = p A shortest path algorithm (Dijkstra) computes: A similar (dynamic programming) algorithm computes: exp[¡ ® ¢x e ] p e2 p X min p le e2 p X Y le p e2 p P Q Computing shortest paths on a “semi-ring” (<; ; ) P How to compute aaaaaaaa p:e2 p r p 1 l1 2 3 4 P l2 l3 l4 P P P P = l1 ¢ 1 + l2 ¢ 2 + l3 ¢ 3 + l4 ¢ 4 Conclusions • First multi-commodity algorithm – Via dual multi-cut problem – Breaks the (m) convergence barrier – Convergence polynomial in path-length L • Question: Can we get O(L) convergence? Thank You
© Copyright 2026 Paperzz