Comparison between Derivative-Free Optimization Methods for DEB parameter estimation of different species Fifth international symposium on Dynamic Energy Budget theory: metabolic organization plays a role in planetary stewardship J.V.Morais, A.L.Custódio and G.M.Marques [email protected] [email protected] 1 June 2017 Summary 1 Problem definition 2 Nelder-Mead Simplex method 3 Directional Direct-Search methods 4 SID-PSM algorithm 5 DS-Random algorithm 6 Numerical results 7 Conclusions and future research 2 Problem definition Biological interpretation Estimation (data) (parameters) 3 Problem definition Biological interpretation Estimation (parameters) (data, results & parameters) ... Final parameters 4 Problem definition DEB parameters estimation π ππ min π β πΊ 1 ππ = ππ ππ πππ π=1 π=1 π=1 (πππ π β πππ ) πππ 2 ππ + ππ2 (π) 1 ππ (π₯) = ππ ππ πππ - Observed values πππ (π₯) π=1 2 πππ - Predicted values π₯ - Parameters 5 Derivative-Free Optimization Methods The problem is to minimize a nonlinear function of several variables 6 Derivative-Free Optimization Methods β’ The derivatives of this function are not available The methods are known as Derivative-Free Optimization methods (DFO) 7 Nelder-Mead Simplex method 8 Nelder-Mead Simplex method - Suited for unconstrained Derivative-free Optimization problems - Simplex can become flat or needle shaped, causing convergence to non stationary points - Final result depends on starting point McKinnon function 10 Directional Direct-Search methods 11 Directional Direct-Search methods β Poll step 12 Directional Direct-Search methods 13 Directional Direct-Search methods - Scalling Sensitive to the dimension of the variables 1. π₯ π₯πππ 2. Log π₯ π₯πππ 14 SID-PSM method (A.L Custódio and L.N Vicente - 2007) Search step Poll step - Optional - Oportunistic polling - Unnecessary for establishing convergence properties - Ordering of the poll directions - Used to improve the numerical efficiency of the method - Based on quadratic polynomial interpolation models 15 SID-PSM method Convergence to some form of stationarity from arbitrary starting points Why? 1. Convergence of step size parameters to zero 2. Control of the geometry of the sample sets with the use of positive bases in the poll step 16 DS-Random method (C.W Royer and L.N Vicente - 2015) Search step No search step Poll step Random sets βπ» f(x) Such that: βπ» f(x) 17 Problem definition π ππ min π β πΊ π=1 π=1 (πππ π β πππ ) πππ 2 ππ + ππ2 (π) 2 Constraints (Ξ©): - Lower and upper bounds πΈπ»π > 0 (maturity at birth) - Linear inequalities π πΈπ»π > πΈπ» (maturity at puberty > maturity at birth) - Black-box constraint ππ£π»π < π ππ2 (ππ π+π + π) (condition required for reaching birth) 18 Nelder-Mead Simplex method - Constraints Extreme barrier approach Consequences: - Rapid degeneration of simplex vertices - Unexplored area near to boundary 19 Directional Direct-Search methods - Constraints Bounds Linear inequalities Black-box constraint β Extreme barrier approach 20 Results Academic Problems (Dimension = 8) 1E+04 Number of function evaluations 1E+02 f(xfinal) - f(xoptimum) 1E+00 1E-02 1E-04 1E-06 1E-08 1E-10 1E-12 1E+02 1E+00 1E-14 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P1 P2 P4 P5 P6 P7 P8 P9 P10 P11 P12 Problem Problem NM Simplex π(ππππππ ) β π(ππππππππ ) 5,90 ππππππ P3 0% SID-PSM 0,08 DS-RANDOM 2,36 -49,57 % -18,62% π(π₯πππππ ) β π(π₯πππ‘πππ’π ) πππ£πππ πππ‘βππ β πππ£πππ ππ πππππππ₯ πππ£πππ ππ πππππππ₯ 21 Results Number of function evaluations Academic Problems (Dimension = 20) f(xfinal) - f(xoptimum) 1E+03 1E+01 1E-01 1E-03 1E-05 1E-07 1E-09 1E+04 1E+02 1E+00 P1 P2 P3 P4 P5 P6 P7 P8 P1 Problem P2 P3 P4 P5 P6 P7 P8 Problem NM Simplex SID-PSM DS-RANDOM π(ππππππ ) β π(ππππππππ ) 709,79 0,28 90,25 ππππππ 0% -81,46 % -77,67% π(π₯πππππ ) β π(π₯πππ‘πππ’π ) πππ£πππ πππ‘βππ β πππ£πππ ππ πππππππ₯ πππ£πππ ππ πππππππ₯ 22 Numerical Results First scaling Best lossfunction value πππππππ Channa punctata ππππππ πππππππ Pleuroxus aduncus ππππππ πππππππ Pleuroxus striatus ππππππ πππππππ Credipula fornicata ππππππ πππππππ Pleuronectes platessa ππππππ NM Simplex 1,9665E+00 2,0020E+03 1,0213E+00 3,0430E+03 3,6570E+00 3,1970E+03 3,8032E+00 2,4000E+03 1,4233E+01 3,0000E+03 Also best SID-PSM 5,2173E-01 1,6002E+04 1,0218E+00 1,6000E+04 9,5702E-01 1,6008E+04 3,4061E+00 1,8088E+04 5,8704E+00 3,0008E+04 Best number of functions evaluations DS-RANDOM 3,1470E-01 1,6000E+04 2,9992E+00 1,3745E+04 1,1759E+00 1,1789E+04 3,5250E+00 2,4000E+04 3,0093E+00 3,0000E+04 Dimension 8 8 8 12 15 23 Numerical Results Second scaling Best lossfunction value πππππππ Channa punctata ππππππ πππππππ Pleuroxus aduncus ππππππ πππππππ Pleuroxus striatus ππππππ πππππππ Credipula fornicata ππππππ πππππππ Pleuronectes platessa ππππππ NM Simplex 1,9665E+00 2,0020E+03 1,0213E+00 3,0430E+03 3,6570E+00 3,1970E+03 3,8032E+00 2,4000E+03 1,4233E+01 3,0000E+03 Also best SID-PSM 1,9621E-03 1,7520E+03 1,9999E+00 1,2710E+03 2,9997E+00 1,7240E+03 5,0293E+00 2,4004E+04 2,2216E+00 2,4330E+03 Best number of functions evaluations DS-RANDOM 7,9500E-01 1,4784E+04 4,2446E-01 6,9800E+02 6,4884E-01 3,8070E+03 2,8043E+00 2,4000E+04 2,0264E+00 6,1560E+03 Dimension 8 8 8 12 15 24 Simplex 2.0 Minimum Numerical Results First scaling Best lossfunction value Channa punctata Pleuroxus aduncus Pleuroxus striatus Credipula fornicata Pleuronectes platessa πππππππ ππππππ πππππππ ππππππ πππππππ ππππππ πππππππ ππππππ πππππππ ππππππ Also best NM Simplex SID-PSM 1,9665E+00 2,0020E+03 1,0213E+00 3,0430E+03 3,6570E+00 3,1970E+03 3,8032E+00 2,4000E+03 1,4233E+01 3,0000E+03 1,9621E-03 1,7520E+03 1,9999E+00 1,2710E+03 2,9997E+00 1,7240E+03 5,0293E+00 2,4004E+04 2,2216E+00 2,4330E+03 Best number of functions evaluations DS-RANDOM βSimplex 2.1β 7,9500E-01 1,4784E+04 4,2446E-01 6,9800E+02 6,4884E-01 3,8070E+03 2,8043E+00 2,4000E+04 2,0264E+00 6,1560E+03 6,3811E-31 1,2401E+04 9,8659E-05 1,5507E+04 5,3102E-05 1,5543E+04 2,4933E+00 2,1161E+04 1,2404E+00 1,3398E+04 26 Numerical Results Second scaling Best lossfunction value Channa punctata Pleuroxus aduncus Pleuroxus striatus Credipula fornicata Pleuronectes platessa fvalue fevals fvalue fevals fvalue fevals fvalue fevals fvalue fevals Also best Best number of functions evaluations NM Simplex SID-PSM DS-RANDOM 1,9665E+00 2,0020E+03 1,0213E+00 3,0430E+03 3,6570E+00 3,1970E+03 3,8032E+00 2,4000E+03 1,4233E+01 3,0000E+03 1,9621E-03 1,7520E+03 1,9999E+00 1,2710E+03 2,9997E+00 1,7240E+03 5,0293E+00 2,4004E+04 2,2216E+00 2,4330E+03 7,9500E-01 1,4784E+04 4,2446E-01 6,9800E+02 6,4884E-01 3,8070E+03 2,8043E+00 2,4000E+04 2,0264E+00 6,1560E+03 βSimplex Turboβ 6,3811E-31 1,2401E+04 9,8659E-05 1,5507E+04 5,3102E-05 1,5543E+04 2,4933E+00 2,1161E+04 1,2404E+00 1,3398E+04 27 Results Pars_init_mypet π© ππ Pars_init_Channa_punctata Optimum SIMPLEX SID-PSM DS-RANDOM SIMPLEX 2.0 z π ππ 28 Conclusions β’ Possible existence of different local minimums β’ SID-PSM and DS-RANDOM present better performance than Nelder-Mead Simplex: β’ in academic problems, both for final objective function value and total number of function evaluations β’ in species problems, in terms of lossfunction value β’ βSimplex 2.0β presents the best lossfunction values 29 Future research β’ Explore global derivative-free optimization β’ Adapt βSimplex 2.0β approach to SID-PSM method β’ Develop the Nelder-Mead Simplex for constrained optimization 30
© Copyright 2026 Paperzz