S1 Text Given the set of odes presented in the main text: (1A) π = 1 β π β π 1 β π 2 β π 3 β π 1,2 β π 1,3 β π 2,3 (1B) πΜ = ππ β ππ + π½ππ β (π + πΎ)π (1C) π Μπ = ππ π β π π (π + πΎ) + π½π π π β π(ππ + ππ + ππ π)π π + πππ πππ Μ = ππ β π π,π (π + πΎ) + π½π π,π π β π(ππ + (ππ + ππ )π)π π,π + (ππ + (1D) π π,π π,π π π ππ πππ,π )ππ π ππ + (ππ + ππ πππ,π )ππ π ππ Μ π π We will transform the equations 1B-1D, πΜ = π to π+1 = π+1 πΜ ππ π π = + π½π β (π + π + πΎ) π+1 π+1 1+π 1+π ππ 1 1 = + π½π (1 β ) β (π + π + πΎ) (1 β ) π+1 1+π 1+π ππ π π Μπ π π π π π π πππ = β (π + πΎ) + π½π β π(ππ + ππ + ππ π) + ππ π π + 1 π π + 1 1 + π π 1 + π π 1 + π π π π + 1 π π π π π π π π = β (π + πΎ) (1 β ) + π½π (1 β ) π π + 1 1 + π π 1 + π π π π πππ β π(ππ + ππ + ππ π) (1 β )+ ππ 1 + π π π π + 1 π Μ ππ π,π π π,π π π,π π π,π π π,π = β (π + πΎ) + π½π β π(ππ + (ππ + ππ )π) π π,π + 1 π π,π + 1 1 + π π,π 1 + π π,π 1 + π π,π ππ π ππ π + π π + π π π π,π + 1 π π π π,π + 1 π π ππ π,π 1 1 = β (π + πΎ) (1 β ) + π½π (1 β ) π π,π + 1 1 + π π,π 1 + π π,π π ππ + ππ πππ,π 1 β π(ππ + (ππ + ππ )π) (1 β ππ π ππ )+ 1 + π π,π π π,π + 1 π + ππ + ππ πππ,π π π,π + 1 ππ π ππ It was recently shown that the transformation π π£(π‘) = π(π‘) can be useful for a first order approximation of the equilibrium of similar dynamic systems, after some algebraic manipulation [1]. However, the approximation holds for π(π‘) β 1, so for our set of equations we will define π π£(π‘) = π(π‘) + 1. Now we can use the identity π£(π‘) = πΜ ln(π(π‘) + 1) β π+1 = π£Μ and rewrite the equations with our new, lower case variables, and then use the approximation π π§ β 1 + π§ : π β 1 β π β π1 β π2 β π3 β π1,2 β π1,3 β π2,3 π Μ β ππ (1 β π ) β (π + π + πΎ)(π ) + π½π = π (π½ β ππ β π β π β πΎ) + ππ ππΜ β ππ (π½ β ππ π β π β πΎ β π(ππ + ππ + ππ π)) + ππ π + πππ ππ π π ππ,πΜ β ππ,π (π½ β ππ π,π β π β πΎ β π(ππ + (ππ + ππ )π) + ππ π,π + π(ππ + ππ πππ,π )ππ ππ + π(ππ π + ππ πππ,π )ππ ππ We used the assumption that most patients are uninfected with the specific bacteria we 1 2 model (π > ), to achieve a more accurate approximation, by replacing π π₯ β 1 + π₯ with π π₯ β 8 β Ξ£π£πβ π₯ (1 + π£π ) (corollary (1)).Note that without loss of generality, this assumption 1 holds for any variable π satisfying π > 2 (of course, there could be only one such variable) and the equations could be easily rewritten for such a case. The solution for the stable state is simple for the susceptible population: π β = ππ βπ½ + ππ + π + π + πΎ Each of the single resistant strains has a relatively simple solution as well: ππβ = ππ π + πππ ππ π β (βπ½ + ππ π + π + πΎ + π(ππ + ππ + ππ π)) = ππ π + πππ ππ ππ βπ½ + ππ + π + π + πΎ (βπ½ + ππ π + π + πΎ + π(ππ + ππ + ππ π)) The solution for both double resistant strains is more complex: π β ππ,π = π ππ π,π + π(ππ + ππ πππ,π )ππ ππβ + π(ππ + ππ + πππ,π )ππ ππβ (βπ½ + ππ π,π + π + πΎ + π(ππ + (ππ + ππ )π) ππ π + ππ π,π + πππ ππ = ( π π π(ππ + ππ + πππ,π )ππ ππ βπ½ + ππ + π + π + πΎ (βπ½ + ππ π + π + πΎ + π(ππ + ππ + ππ π)) + πππ ππ ππ π + π(ππ + ππ + πππ,π )ππ ππ βπ½ + ππ + π + π + πΎ (βπ½ + ππ π + π + πΎ + π(ππ + ππ + ππ π)) ( ) (βπ½ + ππ π,π + π + πΎ + π(ππ + (ππ + ππ )π) ) A necessary constraint for this approximation is that ο’ οΌ ο¬V ο« c ο« ο§ ο« ο΄ *Treatment ο¨V ο© , ο’V οΉ X . . Where Treatment ο¨V ο© is the fraction of patients of class V treated. ο¨ ο© Usually, ο¬R j ,k οΌ ο¬V and Treatment R j ,k ο³ Treatment ο¨V ο© , ο’V οΉ X and we get that the condition translates to (1) ο¨ ο’ οΌ ο¬R ο« c ο« ο§ ο« ο΄ ο£i ο« ο¨ ο£ j ο« ο£ k ο© d j ,k ο© Proof of corollary (I): We will prove that e x ο½ 8 ο Ξ£vi οΉ x e i ο» 8 ο Ξ£vi οΉ x ο¨1 ο« vi ο© is a more accurate approximation v than e x ο» 1 ο« x . This is equivalent to minimizing the error term: ο¨ ο© ο¨ ο© ο¨ e x ο ο¨1 ο« x ο© ο³ e x ο 8 ο Ξ£vi οΉ x evi ο½ 8 ο Ξ£vi οΉ x ο¨1 ο« vi ο© ο 8 ο Ξ£vi οΉ x ο¨1 ο« vi ο© ο© ο e x ο ο¨1 ο« x ο© ο³ Ξ£ vi οΉ x evi ο Ξ£ vi οΉ x ο¨1 ο« vi ο© ο e x ο ο¨1 ο« x ο© ο³ Ξ£vi οΉ x evi ο Ξ£vi οΉ x ο¨1 ο« vi ο© * ο e x ο Ξ£vi οΉ x evi ο³ ο¨1 ο« x ο© ο Ξ£vi οΉ x ο¨1 ο« vi ο© ο X ο« 1 ο Ξ£Vi οΉ X Vi ο 7 ο³ 1 ο« ln ο¨1 ο« X ο© ο 7 ο Ξ£Vi οΉ X ln ο¨1 ο« Vi ο© ο X ο Ξ£Vi οΉ X Vi ο³ ln ο¨1 ο« X ο© ο Ξ£Vi οΉ X ln ο¨1 ο« Vi ο© ο¨ However, ln ο¨1 ο« X ο© ο Ξ£Vi οΉ X ln ο¨1 ο« Vi ο© ο£ ln ο¨1 ο« X ο© ο ln 1 ο« Ξ£Vi οΉ X Vi ** ο¨ In addition X ο ln ο¨1 ο« X ο© ο³ Ξ£Vi οΉ X Vi ο ln 1 ο« Ξ£Vi οΉ X Vi *** ο¨ ο© ο© ο© ο X ο Ξ£Vi οΉ X Vi ο³ ln ο¨1 ο« X ο© ο ln 1 ο« Ξ£Vi οΉ X Vi ο³ ln ο¨1 ο« X ο© ο οVi οΉ X ln ο¨1 ο« Vi ο© Q.E.D *e z ο³ ο¨1 ο« z ο© ο’z οΎ 0 , **log ο¨1 ο« z ο© is concanve, and therefore subadditive , ***Under Assumption I and the fact that ο¨ z ο log ο¨1 ο« z ο© ο© is monotonically increasing. References: 1. Fujii, Kazuyuki. "Comment on" Epidemiological modeling of online social network dynamics"." arXiv preprint arXiv:1402.1225 (2014). Below we show the approximation (dashed lines) against numerical integration results (solid curves) for parameters ο¬X ο½ 0.07, p1 ο½ p2 ο½ p3 ο½ 0.07, c ο½ 0.1 , ο’ ο½ 0.1, ο¬R ο½ ο¬R ο½ 0.003, ο¬R ο½ ο¬R ο½ ο¬R ο½ 3*10ο5 , 1 2 3 1,3 2,3 ο¬R ο½ 0.0015, ο¬S ο½ c ο ο¬X ο ο¬R ο ο¬R ο ο¬R ο ο¬R ο ο¬R ο ο¬R , ο§ ο½ 0.03, d ο½ 0.778 1,2 1 2 3 1,2 1,3 2,3 for mix3 and mix2 . Embedded plots are enlarged sections of the original plots, made for the reader's convenience. Figure. A Figure. B
© Copyright 2026 Paperzz