S1 Text.

S1 Text
Given the set of odes presented in the main text:
(1A) 𝑋 = 1 βˆ’ 𝑆 βˆ’ 𝑅1 βˆ’ 𝑅2 βˆ’ 𝑅3 βˆ’ 𝑅1,2 βˆ’ 𝑅1,3 βˆ’ 𝑅2,3
(1B) 𝑆̇ = πœ†π‘† βˆ’ 𝑐𝑆 + 𝛽𝑆𝑋 βˆ’ (𝜏 + 𝛾)𝑆
(1C) 𝑅̇𝑖 = πœ†π‘…π‘– βˆ’ 𝑅𝑖 (𝑐 + 𝛾) + 𝛽𝑅𝑖 𝑋 βˆ’ 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑)𝑅𝑖 + πœπœ’π‘– 𝑆𝑝𝑖
Μ‡ = πœ†π‘… βˆ’ 𝑅𝑗,π‘˜ (𝑐 + 𝛾) + 𝛽𝑅𝑗,π‘˜ 𝑋 βˆ’ 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑)𝑅𝑗,π‘˜ + (πœ’π‘˜ +
(1D) 𝑅𝑗,π‘˜
𝑗,π‘˜
𝑗
π‘˜
πœ’π‘— π‘‘πœ’π‘–,π‘˜
)πœπ‘…π‘— π‘π‘˜ + (πœ’π‘— + πœ’π‘˜ π‘‘πœ’π‘–,𝑗 )πœπ‘…π‘˜ 𝑝𝑗
Μ‡
𝑉
𝑓
We will transform the equations 1B-1D, 𝑉̇ = 𝑓 to 𝑉+1 = 𝑉+1
𝑆̇
πœ†π‘†
𝑆
𝑆
=
+ 𝛽𝑋
βˆ’ (𝑐 + 𝜏 + 𝛾)
𝑆+1
𝑆+1
1+𝑆
1+𝑆
πœ†π‘†
1
1
=
+ 𝛽𝑋 (1 βˆ’
) βˆ’ (𝑐 + 𝜏 + 𝛾) (1 βˆ’
)
𝑆+1
1+𝑆
1+𝑆
πœ†π‘…π‘–
𝑅̇𝑖
𝑅𝑖
𝑅𝑖
𝑅𝑖
πœπœ’π‘–
=
βˆ’ (𝑐 + 𝛾)
+ 𝛽𝑋
βˆ’ 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑)
+
𝑆𝑝
𝑅𝑖 + 1 𝑅𝑖 + 1
1 + 𝑅𝑖
1 + 𝑅𝑖
1 + 𝑅𝑖 𝑅𝑖 + 1 𝑖
πœ† 𝑅𝑖
𝑅𝑖
𝑅𝑖
=
βˆ’ (𝑐 + 𝛾) (1 βˆ’
) + 𝛽𝑋 (1 βˆ’
)
𝑅𝑖 + 1
1 + 𝑅𝑖
1 + 𝑅𝑖
𝑅𝑖
πœπœ’π‘–
βˆ’ 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑) (1 βˆ’
)+
𝑆𝑝
1 + 𝑅𝑖
𝑅𝑖 + 1 𝑖
Μ‡
πœ†π‘…π‘—,π‘˜
𝑅𝑗,π‘˜
𝑅𝑗,π‘˜
𝑅𝑗,π‘˜
𝑅𝑗,π‘˜
=
βˆ’ (𝑐 + 𝛾)
+ 𝛽𝑋
βˆ’ 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑)
𝑅𝑗,π‘˜ + 1 𝑅𝑗,π‘˜ + 1
1 + 𝑅𝑗,π‘˜
1 + 𝑅𝑗,π‘˜
1 + 𝑅𝑗,π‘˜
πœ’π‘— 𝜏
πœ’π‘˜ 𝜏
+
𝑅𝑝 +
𝑅 𝑝
𝑅𝑗,π‘˜ + 1 𝑗 π‘˜ 𝑅𝑗,π‘˜ + 1 π‘˜ 𝑗
πœ†π‘…π‘—,π‘˜
1
1
=
βˆ’ (𝑐 + 𝛾) (1 βˆ’
) + 𝛽𝑋 (1 βˆ’
)
𝑅𝑗,π‘˜ + 1
1 + 𝑅𝑗,π‘˜
1 + 𝑅𝑗,π‘˜
π‘˜
πœ’π‘˜ + πœ’π‘— π‘‘πœ’π‘–,π‘˜
1
βˆ’ 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑) (1 βˆ’
πœπ‘…π‘— π‘π‘˜
)+
1 + 𝑅𝑗,π‘˜
𝑅𝑗,π‘˜ + 1
𝑗
+
πœ’π‘— + πœ’π‘˜ π‘‘πœ’π‘–,𝑗
𝑅𝑗,π‘˜ + 1
πœπ‘…π‘˜ 𝑝𝑗
It was recently shown that the transformation 𝑒 𝑣(𝑑) = 𝑉(𝑑) can be useful for a first order
approximation of the equilibrium of similar dynamic systems, after some algebraic
manipulation [1]. However, the approximation holds for 𝑉(𝑑) β‰ˆ 1, so for our set of
equations we will define 𝑒 𝑣(𝑑) = 𝑉(𝑑) + 1. Now we can use the identity 𝑣(𝑑) =
𝑉̇
ln(𝑉(𝑑) + 1) β‡’ 𝑉+1 = 𝑣̇ and rewrite the equations with our new, lower case variables, and
then use the approximation 𝑒 𝑧 β‰ˆ 1 + 𝑧 :
𝑋 β‰ˆ 1 βˆ’ 𝑠 βˆ’ π‘Ÿ1 βˆ’ π‘Ÿ2 βˆ’ π‘Ÿ3 βˆ’ π‘Ÿ1,2 βˆ’ π‘Ÿ1,3 βˆ’ π‘Ÿ2,3
𝑠̇ β‰ˆ πœ†π‘† (1 βˆ’ 𝑠) βˆ’ (𝑐 + 𝜏 + 𝛾)(𝑠) + 𝛽𝑠 = 𝑠(𝛽 βˆ’ πœ†π‘  βˆ’ 𝑐 βˆ’ 𝜏 βˆ’ 𝛾) + πœ†π‘ 
π‘Ÿπ‘–Μ‡ β‰ˆ π‘Ÿπ‘– (𝛽 βˆ’ πœ†π‘…π‘– βˆ’ 𝑐 βˆ’ 𝛾 βˆ’ 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑)) + πœ†π‘…π‘– + πœπœ’π‘– 𝑝𝑖 𝑠
𝑗
π‘Ÿπ‘—,π‘˜Μ‡ β‰ˆ π‘Ÿπ‘—,π‘˜ (𝛽 βˆ’ πœ†π‘…π‘—,π‘˜ βˆ’ 𝑐 βˆ’ 𝛾 βˆ’ 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑) + πœ†π‘…π‘—,π‘˜ + 𝜏(πœ’π‘— + πœ’π‘˜ π‘‘πœ’π‘–,𝑗 )𝑝𝑗 π‘Ÿπ‘˜ + 𝜏(πœ’π‘˜
π‘˜
+ πœ’π‘— π‘‘πœ’π‘–,π‘˜
)π‘π‘˜ π‘Ÿπ‘—
We used the assumption that most patients are uninfected with the specific bacteria we
1
2
model (𝑋 > ), to achieve a more accurate approximation, by replacing 𝑒 π‘₯ β‰ˆ 1 + π‘₯ with
𝑒 π‘₯ β‰ˆ 8 βˆ’ Σ𝑣𝑖≠π‘₯ (1 + 𝑣𝑖 ) (corollary (1)).Note that without loss of generality, this assumption
1
holds for any variable 𝑉 satisfying 𝑉 > 2 (of course, there could be only one such variable)
and the equations could be easily rewritten for such a case.
The solution for the stable state is simple for the susceptible population:
π‘ βˆ— =
πœ†π‘ 
βˆ’π›½ + πœ†π‘  + 𝑐 + 𝜏 + 𝛾
Each of the single resistant strains has a relatively simple solution as well:
π‘Ÿπ‘–βˆ— =
πœ†π‘…π‘– + πœπœ’π‘– 𝑝𝑖 𝑠 βˆ—
(βˆ’π›½ + πœ†π‘…π‘– + 𝑐 + 𝛾 + 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑))
=
πœ†π‘…π‘– +
πœπœ’π‘– 𝑝𝑖 πœ†π‘ 
βˆ’π›½ + πœ†π‘  + 𝑐 + 𝜏 + 𝛾
(βˆ’π›½ + πœ†π‘…π‘– + 𝑐 + 𝛾 + 𝜏(πœ’π‘— + πœ’π‘˜ + πœ’π‘– 𝑑))
The solution for both double resistant strains is more complex:
𝑗
βˆ—
π‘Ÿπ‘—,π‘˜
=
π‘˜
πœ†π‘…π‘—,π‘˜ + 𝜏(πœ’π‘— + πœ’π‘˜ π‘‘πœ’π‘–,𝑗 )𝑝𝑗 π‘Ÿπ‘˜βˆ— + 𝜏(πœ’π‘˜ + πœ’π‘— + π‘‘πœ’π‘–,π‘˜
)π‘π‘˜ π‘Ÿπ‘—βˆ—
(βˆ’π›½ + πœ†π‘…π‘—,π‘˜ + 𝑐 + 𝛾 + 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑)
πœ†π‘…π‘˜ +
πœ†π‘…π‘—,π‘˜ + πœπœ’π‘— 𝑝𝑗
=
(
𝑗
π‘˜
𝜏(πœ’π‘˜ + πœ’π‘— + π‘‘πœ’π‘–,π‘˜
)π‘π‘˜ πœ†π‘ 
βˆ’π›½ + πœ†π‘  + 𝑐 + 𝜏 + 𝛾
(βˆ’π›½ + πœ†π‘…π‘˜ + 𝑐 + 𝛾 + 𝜏(πœ’π‘— + πœ’π‘– + πœ’π‘˜ 𝑑))
+ πœπœ’π‘˜ π‘π‘˜
πœ†π‘… 𝑗 +
𝜏(πœ’π‘— + πœ’π‘˜ + π‘‘πœ’π‘–,𝑗 )𝑝𝑗 πœ†π‘ 
βˆ’π›½ + πœ†π‘  + 𝑐 + 𝜏 + 𝛾
(βˆ’π›½ + πœ†π‘…π‘— + 𝑐 + 𝛾 + 𝜏(πœ’π‘˜ + πœ’π‘– + πœ’π‘— 𝑑))
(
)
(βˆ’π›½ + πœ†π‘…π‘—,π‘˜ + 𝑐 + 𝛾 + 𝜏(πœ’π‘– + (πœ’π‘— + πœ’π‘˜ )𝑑)
)
A necessary constraint for this approximation is that
 ο€Ό V  c     *Treatment V  , ο€’V ο‚Ή X . . Where Treatment V  is the fraction of
patients of class V treated.


Usually, R j ,k ο€Ό V and Treatment R j ,k ο‚³ Treatment V  , ο€’V ο‚Ή X and we get that the
condition translates to
(1)

 ο€Ό R  c     i    j   k  d
j ,k

Proof of corollary (I):
We will prove that e x ο€½ 8 ο€­ Ξ£vi ο‚Ή x e i ο‚» 8 ο€­ Ξ£vi ο‚Ή x 1  vi  is a more accurate approximation
v
than e x ο‚» 1  x .
This is equivalent to minimizing the error term:

 
 
e x ο€­ 1  x  ο‚³ e x ο€­ 8 ο€­ Ξ£vi ο‚Ή x evi ο€½ 8 ο€­ Ξ£vi ο‚Ή x 1  vi  ο€­ 8 ο€­ Ξ£vi ο‚Ή x 1  vi 

 e x ο€­ 1  x  ο‚³ Ξ£ vi ο‚Ή x evi ο€­ Ξ£ vi ο‚Ή x 1  vi 
 e x ο€­ 1  x  ο‚³ Ξ£vi ο‚Ή x evi ο€­ Ξ£vi ο‚Ή x 1  vi 
*
 e x ο€­ Ξ£vi ο‚Ή x evi ο‚³ 1  x  ο€­ Ξ£vi ο‚Ή x 1  vi 
 X  1 ο€­ Ξ£Vi ο‚Ή X Vi ο€­ 7 ο‚³ 1  ln 1  X  ο€­ 7 ο€­ Ξ£Vi ο‚Ή X ln 1  Vi 
 X ο€­ Ξ£Vi ο‚Ή X Vi ο‚³ ln 1  X  ο€­ Ξ£Vi ο‚Ή X ln 1  Vi 

However, ln 1  X  ο€­ Ξ£Vi ο‚Ή X ln 1  Vi  ο‚£ ln 1  X  ο€­ ln 1  Ξ£Vi ο‚Ή X Vi
**

In addition X ο€­ ln 1  X  ο‚³ Ξ£Vi ο‚Ή X Vi ο€­ ln 1  Ξ£Vi ο‚Ή X Vi
***




οƒž X ο€­ Ξ£Vi ο‚Ή X Vi ο‚³ ln 1  X  ο€­ ln 1  Ξ£Vi ο‚Ή X Vi ο‚³ ln 1  X  ο€­ Vi ο‚Ή X ln 1  Vi  Q.E.D
*e z ο‚³ 1  z  ο€’z ο€Ύ 0 , **log 1  z  is concanve, and therefore subadditive ,
***Under Assumption I and the fact that  z ο€­ log 1  z   is monotonically increasing.
References: 1. Fujii, Kazuyuki. "Comment on" Epidemiological modeling of online social
network dynamics"." arXiv preprint arXiv:1402.1225 (2014).
Below we show the approximation (dashed lines) against numerical integration results (solid
curves) for parameters
X ο€½ 0.07, p1 ο€½ p2 ο€½ p3 ο€½ 0.07, c ο€½ 0.1 ,  ο€½ 0.1, R ο€½ R ο€½ 0.003, R ο€½ R ο€½ R ο€½ 3*10ο€­5 ,
1
2
3
1,3
2,3
R ο€½ 0.0015, S ο€½ c ο€­ X ο€­ R ο€­ R ο€­ R ο€­ R ο€­ R ο€­ R ,  ο€½ 0.03, d ο€½ 0.778
1,2
1
2
3
1,2
1,3
2,3
for mix3 and mix2 . Embedded plots are enlarged sections of the original plots, made for
the reader's convenience.
Figure. A
Figure. B