SARVAJANIK COLLEGE OF ENGG. & TECH. • Patel Tamanna (130420117043) • Potla Divya (130420117045) • Shah Rajvi (130420117053) • Shethnawala Aishwarya (130420117056) Branch Name : Instrumentation & Control (017) 1 Ch-7 CIRCUIT ANALYSIS USING LAPLACE TRANSFORM 2 Defination 3 Transforms – A mathematical conversion from one way of thinking to another to make a problem easier to solve. transform solution in transform way of thinking inverse transform 4 The Laplace Transform Transform Pairs: f(t) F(s) ( t ) F(s) 1 1 u( t ) f (t ) F ( s) ____________________________________ s 1 st e sa 1 t 2 s n! n t s n 1 The Laplace Transform Transform Pairs: f(t) F(s) at te n at t e sin( wt ) cos( wt ) F(s) 1 s a 2 n! ( s a )n 1 w s2 w2 s s2 w2 The Laplace Transform Transform Pairs: f(t) F(s) e sin( wt ) at e at cos( wt ) sin( wt ) cos( wt ) F(s) w (s a)2 w 2 sa 2 2 (s a) w s sin w cos s2 w2 s cos w sin 2 2 s w Yes ! The Laplace Transform Theorem: Initial Value Theorem: If the function f(t) and its first derivative are Laplace transformable and f(t) Has the Laplace transform F(s),& the lim sF ( s ) exists, then s lim sF ( s ) lim f ( t ) f (0) s t 0 Initial Value Theorem The utility of this theorem lies in not having to take the inverse of F(s) in order to find out the initial condition in the time domain. This is particularly useful in circuits and systems. The Laplace Transform Theorem: Final Value Theorem: If the function f(t) and its first derivative are Laplace transformable and f(t) lim sF ( s ) exists, then has the Laplace transform F(s), and the s lim sF ( s ) lim f ( t ) f ( ) s0 t Final Value Theorem Again, the utility of this theorem lies in not having to take the inverse of F(s) in order to find out the final value of f(t) in the time domain. This is particularly useful in circuits and systems. Apply Initial- and Final-Value Theorems to this Example Laplace transform of the function. Apply Finalvalue theorem Apply intialvalue theorem 10 RESISTOR Consider the Ohm’s Law in time domain Apply the Laplace transform vR (t ) iR (t ) R VR (s) I R (s) R 11 INDUCTOR Inductor’s voltage – In the time domain: di vL (t ) L dt – In the s-domain: VL (s) L[sI L (s) iL (0 )] 12 INDUCTOR Inductor’s current – Rearrange VL(s) equation: VL ( s) i (0 ) I L ( s) sL s 13 CAPACITOR Capacitor’s current – In the time domain: dv ic (t ) C dt – In the s-domain: I c(s) C[ sVc ( s ) vc (0 )] 14 CAPACITOR Capacitor’s voltage – Rearranged IC(s) equation: sC Vc(s) 1 s v ( 0 I c(s) 1 c ) 15 IMPEDANCE If we set all initial conditions to zero, the impedance is defined as: V ( s ) Z ( s) I ( s) [all initial conditions=0] 16 IMPEDANCE & ADMITANCE The impedances in the s-domain are Z R (s) R Z L ( s ) sL 1 Z C (s) sC The admittance is defined as: 1 YR ( s ) R 1 YL ( s ) sL YC ( s ) sC 17 Ex. 1 Find vc(t), t>0 vc (t ) 0.5 F v L (t ) 1H v R (t ) 3 u (t ) 18 Obtain s-Domain Circuit All ICs are zero since there is no source for t<0 Vc (s) 2 VL (s ) s s VR (s ) I (s) 3 1 s 19 Convert to voltage sourced s-Domain Circuit Vc (s) 2 VL (s ) s s I (s) VR (s) 3 3 s 20 Find I(s) 2 3 By KVL : s 3 I ( s ) 0 s s 3 I (s) 2 s 3s 2 21 Find Capacitor’s Voltage The capacitor’s voltage: 2 6 Vc ( s) I ( s) 2 s s( s 3s 2) Rewritten: 6 6 Vc ( s) 2 s( s 3s 2) s( s 1)( s 2) 22 Using PFE Expanding Vc(s) using PFE: K3 6 K1 K 2 Vc ( s) s( s 1)( s 2) s s 1 s 2 Solved for K1, K2, and K3: 6 3 6 3 Vc ( s) s( s 1)( s 2) s s 1 s 2 23 Find v(t) 6 3 6 3 Vc ( s) s( s 1)( s 2) s s 1 s 2 Using look up table: vc (t ) 3 6e t 3e 2 t u (t ) 24 Ex. 2 Find v0(t) for t>0. 25 s-Domain Circuit Elements Laplace transform all circuit’s elements u (t ) 1 s 1H sL s 1 3 F 1 sC 3 s 26 s-Domain Circuit 27 Apply Mesh-Current Analysis Loop 1 1 3 3 1 I1 I 2 s s s Loop 2 3 3 0 I1 s 5 I 2 s s 1 2 I1 s 5 s 3 I 2 3 28 Substitute I1 into eqn loop 1 1 31 2 3 1 s 5 s 3 I 2 I 2 s 53 s 3 s 8s 18s I 2 3 2 3 I2 3 2 s 8s 18s 29 Find V0(s) V0 ( s ) sI 2 3 2 s 8s 18 3 2 2 2 2 ( s 4) ( 2 ) 30 Obtain v0(t) 3 2 Vo ( s) 2 2 2 ( s 4) ( 2 ) 3 4t v0 (t ) e sin 2t 2 31 TRANSFORM OF CIRCUITSRESISTOR In the time domain: i(t) + v(t)R v(t)=i(t)R In the s-domain: I(s) + V(s)R V(s)=I(s)R 32 TRANSFORM OF CIRCUITSINDUCTOR In the time domain: 33 TRANSFORM OF CIRCUITSINDUCTOR Inductor’s voltage: Inductor’s current: 34 TRANSFORM OF CIRCUITSCAPACITOR In the time domain: 35 TRANSFORM OF CIRCUITSCAPACITOR Capacitor’s voltage: Capacitor’s current: 36 Ex. Find v0(t) if the initial voltage is given as v0(0-)=5 V 37 s-Domain Circuit 38 Apply nodal analysis method V0 10 ( s 1) Vo Vo 2 0.5 10 10 10 s V0 Vo sVo 1 2.5 10 s 1 10 10 1 1 Vo ( s 2) 2.5 10 s 1 39 Cont’d 10 Vo ( s 2) 25 s 1 25s 35 V0 ( s 1)( s 2) 40 Using PFE Rewrite V0(s) using PFE: 25s 35 K1 K2 Vo ( s 1)( s 2) s 1 s 2 Solved for K1 and K2: K1 10; K2 15 41 Obtain V0(s) and v0(t) Calculate V0(s): 10 15 Vo ( s ) s 1 s 2 Obtain V0(t) using look up table: t vo (t ) (10e 15e 2 t )u (t ) 42
© Copyright 2026 Paperzz