Editorials See related article, pages 399 – 407 Does Ca2ⴙ/Calmodulin-Dependent Protein Kinase ␦c Activate or Inhibit the Cardiac Ryanodine Receptor Ion Channel? Naohiro Yamaguchi, Gerhard Meissner T Downloaded from http://circres.ahajournals.org/ by guest on July 12, 2017 he multifunctional Ca2⫹/calmodulin-dependent protein kinase II␦ (CaMKII␦) modulates cardiac muscle function by regulating Ca2⫹ transport proteins and nuclear signaling molecules. Aberrant activity of CaMKII␦ is implicated in heart disease. In this issue, Yang et al1 report that acute overexpression of constitutively active splice variant CaMKII␦C phosphorylates the cardiac ryanodine receptor ion channel (RyR2) to decrease the rate of occurrence of local Ca2⫹ release events (Ca2⫹ sparks) and Ca2⫹ waves in cultured rat cardiomyocytes. A dominant negative form of CaMKII␦C was shown to have opposite effects. The cardiac ryanodine receptors are cation selective channels that release Ca2⫹ from an intracellular Ca2⫹ storing compartment, the sarcoplasmic reticulum (SR), during a cardiac muscle action potential, in a process known as excitation-contraction coupling.2 Released Ca2⫹ cause cardiac muscle to contract. Sequestration of released Ca2⫹ by the SR Ca2⫹-transporting ATPase and extrusion by the Na⫹-Ca2⫹ exchanger restore the myofibrillar Ca2⫹ concentration from 10-6 - 10-5 to ⬇10-7 M, causing muscle to relax. The RyR2s are regulated by a variety of effectors.3 During a cardiac action potential, closely apposed dihydropyridine-sensitive L-type Ca2⫹ channels in the surface membrane and T-tubule mediate influx of Ca2⫹, which triggers massive release of Ca2⫹ from SR by opening RyR2s. In addition to Ca2⫹, endogenous effectors such as Mg2⫹, ATP, reactive oxygen and nitrogen molecules regulate RyR2. RyR2 is also regulated by calmodulin, cAMP-dependent protein kinase A (PKA), calmodulindependent kinase II (CaMKII), protein kinase C, and protein phosphatases 1 and 2A. Phosphorylation of RyR2-Ser2030 by PKA4 and Ser2809 by PKA5,6 and CaMKII5 has been described. Marks and colleagues6 report that PKA-mediated phosphorylation of RyR2-Ser2809 causes a small subunit, FKBP12.6 or calstabin 2, to dissociate from RyR2, which results in a “leaky” SR channel, aberrant contractile function, and heart failure. But other laboratories fail to support this.4,7,8 Wehrens et al9 identified a third RyR2 phosphorylation site. Mutagenesis suggests that CaMKII uniquely phosphorylates Ser2815 near S2809 on recombinant RyR2 ex- pressed in human embryonic kidney 293 cells. However, incorporation of more than one 32P per monomer into the native, immunoprecipitated receptor indicates the presence of another CaMKII site in RyR2, in partial agreement with Rodriguez et al10 that there are 4 CaMKII phosphorylation sites per PKA site or 8 sites based on 2 PKA sites per RyR2 monomer.4 In the presence of CaM and elevated local Ca2⫹ concentrations, the multimeric CaMKIIs are autophosphorylated to become constitutively active. The function of 2 CaMII␦ splice molecules has been extensively studied in cardiomyocytes. The CaMII␦B variant has a nuclear localization signal and transcriptionally regulates signaling pathways that contribute to cardiac myopathies.11,12 The cytosolic variant CaMII␦C phosphorylates, not only RyR2, but also the voltage-dependent L-type Ca2⫹ channel13 and Thr17 of the SR Ca2⫹ pump regulatory protein phospholamban.14 These phosphorylation events indirectly influence SR Ca2⫹ release by increasing Ca2⫹ entry and SR Ca2⫹ content, and thereby RyR2 activity. The functional consequences of CaMKII-mediated RyR2 phosphorylation are less clear. Single channel experiments indicate that phosphorylation by CaMKII increases WTRyR2 activity5,9 and Ca2⫹ sensitivity but not of the mutant RyR2-S2815A that lacks the RyR2 CaMKII phosphorylation site.9 Other groups report more complex regulation by protein kinases. Valdivia et al15 suggest PKA regulates RyR2 by increasing its responsiveness to photo-released Ca2⫹ that results in reduced levels of the steady state open channel. Hain et al16 speculate that phosphorylation of one subunit of the tetrameric RyR2 by endogenous CaMKII results in channel blockade by Mg2⫹, whereas phosphorylation of all 4 subunits by exogenous CaMKII opens the channel. Transgenic mice that overexpress CaMII␦C exhibit reduced contractility and altered cardiomyocyte Ca2⫹ signaling. Increased phosphorylation of RyR2, coimmunoprecipitation of CaMKII and RyR2, and enhanced Ca2⫹ spark activity despite reduced SR Ca2⫹ content taken together imply that CaMKII␦C RyR2 phosphorylation results in the formation of a leaky SR channel.17,18 It is perplexing that some laboratories report that CaMKII RyR2 phosphorylation inhibits the RyR2 ion channel. The Table compares the results by Kohlhaas,19 Guo,20 Wu21 and Yang1 and colleagues, using intact, permeabilized or patchclamped adult rabbit, mouse or rat cardiomyocytes. Isolated cardiomyocytes were used to minimize the effects of overexpressing CaMKII for prolonged times in an animal model. The effects of acute overexpression or perfusion of wild-type, constitutively active or dominant negative CaMKII␣ or CaMKII␦C are summarized in the Table. Conflicting results The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association. From the Departments of Biochemistry and Biophysics (N.Y., G.M.), and Cell and Molecular Physiology (G.M.), University of North Carolina, Chapel Hill, NC. Correspondence to Gerhard Meissner, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 275997260. E-mail [email protected] (Circ Res. 2007;100:293-295.) © 2007 American Heart Association, Inc. Circulation Research is available at http://circres.ahajournals.org DOI: 10.1161/01.RES.0000259327.56377.55 293 294 Circulation Research February 16, 2007 Effects of CaMKII Kohlhaas et al19 Cardiomyocytes CaMKII SR Ca2⫹ content Ca2⫹ transient amplitude Ca2⫹ sparks Resting Ca2⫹ Rabbit Guo et al20 ⫺/⫺ Mouse WT and PLB permeabilized Wu et al21 Yang et al1 Rabbit patch-clamped Rat acute overexpression of WT CaMKII␦C end. CaMKII & exo. preactivated CaMII␣ CA CaMKII␣ acute overexpression of WT, CA and DN CaMKII␦C decreased WT increased PLB⫺/⫺ unchanged increased unchanged decreased (not significant) N.D. decreased unchanged increased frequency increased duration and frequency N.D. WT unchanged, CA decreased, DN increased frequency unchanged variable N.D. unchanged S2815 increased S2809 increased increased N.D. WT unchanged, CA increased, DN decreased PLB Thr17⬃P increased WT increased N.D. WT unchanged, CA increased, DN deceased ICa current increased N.D. increased CA increased RyR2⬃P Downloaded from http://circres.ahajournals.org/ by guest on July 12, 2017 N.D., not determined; PLB, phospholamban; CA, constitutively active; DN, dominant negative were obtained with regard to SR Ca2⫹ content, SR Ca2⫹ release and RyR2 phosphorylation. How can then these differences be explained? Yang et al1 suggest species dependent differences between rat and rabbit or use of intact versus perfused myocardiocytes. Indeed, overexpression of wildtype–CaMKII␦C increased RyR2 phosphorylation and activity (measured as Ca2⫹ sparks) in rabbit19 but not rat cardiomyocytes.1 The constitutively activated CaM kinase was required for increased RyR2 phosphorylation; however, this correlated with a decrease in Ca2⫹ spark frequency, a result opposite to that obtained with rabbit cardiomyocytes. A second plausible explanation is that phospholamban Thr17 phosphorylation is responsible for the differences by causing de-inhibition of the SR Ca2⫹ transport ATPase and increased SR Ca2⫹ content. However against this possibility argues that phospholamban KO cardiomyocytes exhibit increased Ca2⫹ spark frequency and duration despite unchanged SR Ca2⫹ content.20 Moreover, intact cardiomyocytes display increased Ca2⫹ spark frequency despite a decreased SR Ca2⫹ content.19 A third explanation we favor is that RyR2 phosphorylation (as a measurement of CaMKII activity) does not correlate with RyR2 activity. Most studies report relative RyR phosphorylation changes that depending on the control RyR2 phosphorylation level can represent a small or large increase in RyR2 phosphorylation status. As noted above, the extent of RyR2 phosphorylation may affect its activity.16 In this issue in a related study, Curran et al16a use a pharmacological approach to show in accordance with their previous work that CaMKII increases RyR2 activity. A new finding is that the -adrenergic receptor agonist isoproterenol results in a CaMKII-dependent but cAMP- and PKAindependent increase in diastolic SR C2⫹ leak by a signaling mechanism that remains to be determined. The functional role of CaMKII␦C in normal and diseased heart remains to be determined. Yang et al1 suggest that a CaMKII␦C-dependent decrease in RyR2 Ca2⫹ sensitivity in the normal heart provides a mechanism that compensates the effects of increased Ca2⫹ influx (ICa, Table). An opposing view is that an increased heart rate enhances CaMKII␦C autophopshorylation and RyR2 phosphorylation and activity, and thereby contractile function.9 In failing heart, CaMKII␦Cdependent RyR2 phosphorylation may have no major role1 or result in a leaky SR Ca2⫹ channel and contractile dysfunction.22 The role of CaMKII␦ in failing hearts is likely more complex because its cytosolic variant not only modulates the activity of key Ca2⫹ transport proteins in excitationcontraction but also has a role in gene regulation.23 Sources of Funding Support by National Institutes of Health Grants HL073051 and AR018687 is gratefully acknowledged. Disclosures None. References 1. Yang D, Zhu WZ, Xiao B, Brochet DXP, Chen SRW, Lakatta EG, Xiao RP, Chang H. Ca2⫹/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2⫹ sparks and Ca2⫹ waves in cardiac myocytes. Circ Res. 2007;100:399 – 407. 2. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415: 198 –205. 3. Meissner G. Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium. 2004;35:621– 628. 4. Xiao B, Jiang MT, Zhao M, Yang D, Sutherland C, Lai FA, Walsh MP, Warltier DC, Cheng H, Chen SRW. Characterization of a novel PKA phosphorylation site, Serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res. 2005;96:847– 855. 5. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991;266:11144 –11152. 6. Wehrens XH, Lehnart SE, Marks AR. Intracellular calcium release and cardiac disease. Annu Rev Physiol. 2005;67:69 –98. 7. Stange M, Xu L, Balshaw D, Yamaguchi N, Meissner G. Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. J Biol Chem. 2003;278:51693–51702. Yamaguchi and Meissner Downloaded from http://circres.ahajournals.org/ by guest on July 12, 2017 8. Li Y, Kranias EG, Mignery GA, Bers DM. Protein kinase A phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res. 2002;90:309 –316. 9. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2⫹/calmodulindependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. 2004;94:e61– e70. 10. Rodriguez P, Bhogal MS, Colyer J. Stoichiometric phosphorylation of cardiac ryanodine receptor on serine-2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem. 2003;278:38593–38600. 11. Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J, Brown JH. The cardiac-specific nuclear delta(B) isoform of Ca2⫹/calmodulindependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem. 2002;277:1261–1267. 12. Li B, Dedman JR, Kaetzel MA. Nuclear Ca2⫹/calmodulin-dependent protein kinase II in the murine heart. Biochim Biophys Acta. 2006;1763: 1275–1281. 13. Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ. L-type Ca2⫹ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell. 2006;23:641– 650. 14. Hagemann D, Kuschel M, Kuramochi T, Zhu W, Cheng H, Xiao RP. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem. 2000;275:22532–22536. 15. Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2⫹ and phosphorylation. Science. 1995;267:1997–2000. 16. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995;270: 2074 –2081. 16a. Curran J, Hinton MJ, Ríos Eduardo, Bers DM, Shannon TR. -adrenergic enhancement of sarcoplasmic reticulum Ca2⫹ leak in 17. 18. 19. 20. 21. 22. 23. CaMKII Regulation of RyR2 295 cardiac myocytes is mediated by Ca2⫹/calmodulin dependent protein kinase. Circ Res. 2007;100:391–398. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2⫹ handling: reduced SR Ca2⫹ load and activated SR Ca2⫹ release. Circ Res. 2003;92:904 –911. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J, Bers DM, Brown JH. The ␦C isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res. 2003;92: 912–919. Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Brown JH, Bers DM, Maier LS. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res. 2006;98:235–244. Guo T, Zhang T, Mestril R, Bers DM. Ca2⫹/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res. 2006;99: 398 – 406. Wu Y, Colbran RJ, Anderson ME. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A. 2001;98:2877–2881. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2⫹/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2⫹ leak in heart failure. Circ Res. 2005;97:1314 –1322. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006;116:1853–1864. KEY WORDS: Ca2⫹/calmodulin dependent protein kinase II ryanodine receptor 䡲 protein phosphorylation 䡲 heart failure 䡲 cardiac Does Ca2+/Calmodulin-Dependent Protein Kinase δc Activate or Inhibit the Cardiac Ryanodine Receptor Ion Channel? Naohiro Yamaguchi and Gerhard Meissner Downloaded from http://circres.ahajournals.org/ by guest on July 12, 2017 Circ Res. 2007;100:293-295 doi: 10.1161/01.RES.0000259327.56377.55 Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2007 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/100/3/293 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Circulation Research is online at: http://circres.ahajournals.org//subscriptions/
© Copyright 2026 Paperzz