Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures OxfordHandbooksOnline Concepts,Theories,andNumbers:AChecklistforConstructing,Evaluating, andUsingConceptsorQuantitativeMeasures GaryGoertz TheOxfordHandbookofPoliticalMethodology EditedbyJanetM.Box-Steffensmeier,HenryE.Brady,andDavidCollier PrintPublicationDate: Aug2008 OnlinePublicationDate: Sep 2009 Subject: PoliticalScience,PoliticalMethodology,Comparative Politics DOI: 10.1093/oxfordhb/9780199286546.003.0005 AbstractandKeywords Thisarticlepresentsguidanceonhowtothinkabouttheconcepts.Itproposestoexploresomeissuesinthe assessmentofconceptsandquantitativemeasures.Itpresentsthebasicprobleminitsgeneraloutlines.Itthen offersaveryshortexample,typicallyusingpublishedresearch.Thestructuringandaggregatingconceptsand measuresindicatesthatonemustfirstconsiderthetheoryembodiedintheconcept.Thenoneshouldsurvey plausibleaggregationandstructuralrelationshipsthatcouldbeappliedinaquantitativemeasure.Itisnotedthat oneneedstoaskabouttheexistenceornotofzeropoints.Thegrayzoneneedstobeexploredindependentlyof thetwoextremes.Homogeneityisanotheraspectofcomparingwithinandbetweenvariousconceptsand measuresofthesamephenomenon.Thisarticlegenerallyhighlightsthatitisthelackofintegrationoftheoryand methodologywhichprovesproblematic. Keywords:structuringconcepts,aggregatingconcepts,quantitativemeasures,aggregationprocedures,homogeneity,zeropoints,grayzone 1Introduction IN thischapterIproposetoexaminesomeissuesintheevaluationofconceptsandquantitativemeasures.These issuesconstituteachecklistofconsiderationswhenevaluatingorconstructingconceptsandquantitative measures.Theyareimportant(p.98) questionsthattheuserofconceptsandmeasuresshouldaskwhensheis planningtoconstruct,evaluate,orusethem.1 TheissuesIcovercanbegroupedintothreelargecategories.Thefirstisthatallcomplexconceptsandmeasures useaggregationprocedures.Themathematicaloperationsusedinquantitativemeasuresneedtorepresent theoreticalconsiderationsontheconceptside,whatIcallthestructureoftheconcept.Rarelydotextbooks providealistofstructuraloraggregationalternatives.Yetconceptandmeasurevaliditydependsonwhyandhow thedimensionsorindicatorsareaggregated. Thesecondsetofthemesdealswithimportantpointsorzonesalongtheconceptormeasurescale.Frequently, zeroandextremepointsplayacrucialroleinconceptandmeasureconstruction.Oftencertainscalepointsare thefocusofthetheorytobetested.Similarly,thegrayzoneinthemiddleisasiteofcontentionbetweenmeasures andaplaceofimportantchoiceswhendichotomizing. Thethirdgroupofconsiderationsdealswiththequestionofequivalenceorhomogeneitywithinorbetween concepts/measures.Tocodetwoobservationsasthe“same”reflectsdecisionsaboutaggregation,zero,and extremepoints(amongothers).Yetrarelydoquestionsabouthomogeneityofmeasurementarise.Oftenoneasksif twomeasuresagreeonagivenobservation,butrarelydoesoneaskifonemeasureisappropriatelycodingtwo Page 1 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures observationsasthesame. ForeachissueIintroducethebasicprobleminitsgeneraloutlines.Ithenprovideaveryshortexample,typically usingpublishedresearch.Theendresult(seetheChecklistattheendforasummary)isalistofconsiderations thatIthinkshouldbeautomaticandstandardwhenusing,constructing,andevaluatingconceptsandquantitative measures.2 2StructureandAggregationinConceptsandMeasures Oneofthemostfundamentaloperationswhenconstructingconceptsandmeasures(by“measures”Imean henceforthquantitativemeasuresorvariables,includingdichotomousones)isthatofstructureoraggregation.I preferthetermstructurebecausetheconceptormeasuremaynotreallybean“aggregation,”butIwilluseboth termsmoreorlessinterchangeably,typicallyusingaggregationwhentheconceptor(p.99) measureinvolves individualsasparts.Onthemeasuresideonetypicallyhastoaggregateindicators.Ontheconceptsideone needstostructuredefiningcharacteristics.Henceacentralquestionwhenevaluatingorconstructinga concept/measureiswhyandhowthisisdone. Thequalitativeliteratureonconceptsandthequantitativeliteratureonmeasuresdifferradicallyonthedefault approachtostructureandaggregation.Thesedifferencesreflecttheoriginoftheseliteraturesandwherepolitical scientistshaveborrowedideas.Thequantitativeworkonmeasurement—whatIwouldcalltheLazarsfeld–Blalock school—borrowedheavilyandexplicitlyfrompsychologyandeducationalstatistics(seeLazarsfeld1966fora history).Forexample,currentworkonidealpointestimation(e.g.Bafumietal.2005)continuesthistraditionof borrowingfromeducationaltesting.Thequalitativeliteraturegotitsideasfromphilosophicallogic.Forexample, Sartori'sclassic1970articledrewitsbasicideaofconceptualstretchingdirectlyfromtheclassicCohenandNagel book(1934)onphilosophicallogic. Perhapsthemostfundamentaldifferencebetweenthesetwotraditionsisthestandardwaytostructureor aggregateameasureorconcept.Drawingonphilosophicallogic(goingbacktoAristotle)thequalitativeliterature hasstructuredconceptsintermsofnecessaryandsufficientconditions:Eachpartisnecessaryandalltheparts togetherarejointlysufficient.Operationallythismeanstakingtheminimum(necessity)orthemaximum (sufficiency)oftheparts.3 Quantitativeapproachestoaggregationmostcommonlyusesomeadditiveprocedure, eitherthesumorthemean.Whenpresentedwithabunchofindicatorsofaconceptthenaturalfirstmoveistoadd themuportaketheirmean.4 Thekeypointisthatthesequalitativeandquantitativetraditionsprovidedifferent optionsonaggregation.Hencewhenconsideringaconceptormeasureoneneedstoaskabouttheaggregation techniqueandwhetheritisbetterandmoreappropriatethanotheralternatives. Onewaytostarttobridgethegulfbetweenthequalitativeandquantitativeschoolsistogoborrowingfrom somewhereelse.Isuggestinthissectionthatagoodplacetogowhenthinkingaboutstructureandaggregationis theliteratureonindividualorsocialwelfare,well‐being,orhappiness.Thisincludesawiderangeoftheoreticaland empiricalstudiesfromeconomics,development,psychology,andphilosophy.Theconceptsofindividualwell‐ beingandsocialwelfarefundamentallydealwithaggregation.Socialwelfareinvolvesbydefinitionaggregating, somehoworanother,thewelfareofindividuals.Individualwell‐beinginvolvesaggregatingthevariousdomainsof lifesuchashealth,family,work,andlibertythatconstituteindividualwell‐being. Oneofthefirstadvantagesofusingtheliteratureonwell‐being(individualorsocial)isthatonemovesawayfrom thevariable–indicatorlanguagetypicalof(p.100) discussionsofmeasurement.Forexample,socialwelfareis constitutedbythewell‐beingofindividualsinthesociety.Thewell‐beingofindividualsisnotanindicator,buta constitutivepartofsocialwelfare. Mostquantitativescholarsaredeeplysuspiciousoflanguageinvolvingwordslike“constitutive.”Thisisseenas typicalofunclearsocialconstructivistthinking.However,thesocialwelfareexampleillustratesthatsuchlanguage isquitenaturalandreasonable.Forexample,AmartyaSen,aprominentplayerintheeconomics,philosophy,and developmentliteraturesonindividualwell‐beingandsocialwelfare,frequentlyusesthissortoflanguagetodiscuss theconceptofwell‐being: Thewell‐beingofapersoncanbeseenintermsofthequality(the“well‐ness,”asitwere)oftheperson's Page 2 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures being.Livingmaybeseenasconsistingofasetofinterrelated“functionings,”consistingofbeingsand doings.Aperson'sachievementinthisrespectcanbeseenasthevectorofhisorherfunctionings.The relevantfunctioningscanvaryfromsuchelementarythingsasbeingadequatelynourished,beingingood health,avoidingescapablemorbidityandprematuremortality,etc.,tomorecomplexachievementssuch asbeinghappy,havingself‐respect,takingpartinthelifeofthecommunity,andsoon.Theclaimisthat functioningsareconstitutiveofaperson'sbeing,andanevaluationofwell‐beinghastotaketheformof theseconstitutiveelements.(Sen1992,39;emphasisintheoriginal). Withsuchaconceptofindividualwell‐being,onemustaggregateinsomemannerorotherthevariousfunctionings intoaglobalmeasure. Theliteratureoninternationalconflictfacesthesameaggregationproblemasthesocialwelfareliterature,butona muchreducedscale.Insteadoftheaggregationofmillionsofindividualsintoasociety,wehavetheaggregationof twocountriesinadyad.Intheonecasewehave“social”welfare,intheotherwehave“dyadic”conceptsof democracy,tradedependence,andthelike.Intheformercaseitis,forexample,theproblemofaggregating individualutilitiesintosocialones;inthelatter,itisaggregatingindividuallevelsof,say,democracy,intoadyadic concept. Table5.1givesabriefsurveyofsomecommonvariablesintheliteratureoninternationalmilitarizedconflict.Many ormostoftheseusualsuspectswillappearinalarge‐Nstudyofinternationalconflict.Thefirstquestionof importancewhenlookingatdyadicconceptsinthistheoreticalandempiricalcontextiswhetherthereis aggregationatall.InTable5.1,Ihavemarkedthosevariablesthatareinherentlydyadicas“relational.”Some tangosrequiretwo,suchasmilitaryalliance.Thesearenotanaggregationofcountry‐levelvariables.Ifthelistin thetableisrepresentative,thenabouthalfofcommonlyusedvariablesarenotaggregations.5 Thedemocracyvariableillustratessomeoftheimportantissueslinkingconcepttheorytoquantitativemeasures. First,itisofnotethatnoneoftheaggregationmeasures—includingthedemocracyvariable—usesthesumorthe average.Givenindividualdemocracylevels(onascalefrom−10to10),whynotdotheobviousthing(p.101) andtaketheaverage?Someearlyworkdidinfactusesomevariationonthemean.6 However,Dixon(1993)made astrongtheoreticalcasethatitwastheleastdemocraticofthedyadthatdeterminedtheimpactofdemocracyin thedyadasawhole.The“weakest‐link”approachquicklybecamethestandardusedinthevastmajorityof studiesontheliberalpeace.Others,notablyRussettandOneal(2001),haveextendedthislogictothetrade dependencyvariable,andHegre(2000)hasuseditforthelevelofdevelopmentvariable. Page 3 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Table5.1.Dyadicconceptsandthestudyofinternationalconflict Dyadicconcept Samplecitation Structuralrelationship Dominantstructure Democracy Dixon(1993) aggregation weakestlink Trade Gleditsch(2002) aggregation weakestlink Major/minorpower Mousseau(2000) aggregation none Levelofdevelopment Hegre(2000) aggregation weakestlink Armsrace Sample(2002) aggregation none Alliance GiblerandVasquez(1998) relational n.a. Contiguity Bremer(1992) relational n.a. Power OrganskiandKugler(1980) relational n.a. IGO OnealandRussett(1999) relational n.a. Issue,territory SeneseandVasquez(2003) relational n.a. n.a.—notapplicable. Trade—leveloftradedependence. Levelofdevelopment—e.g.GNP/capita. Contiguity—geographicalcontiguity. Power—militarycapabilities. IGO—membershipsinintergovernmentalorganizations. Territory—conflictisoverterritory. Source:Goertz(2006,133). Thedemocracyvariableillustratesthatingoodresearchthereisastrongtheoryofthedyadicconcept(e.g. dyadicdemocracy)whichisusedtothestructureofthequantitativemeasure.Onecancontrastthestrongtheory ofthedemocracyvariablewithanotherusualsuspect,majorpowerstatus.Thisvariableismycandidateformost popularandleasttheorizedofthecommoninternationalconflictvariables.Itseemsthatabouthalfofthetimethis iscodedas“atleastonemajorpower”(i.e.maximum)andabouthalfthetimeas“bothmajorpowers”(i.e. minimum).Ifoneisconstantlyaskingthequestion“whatstructure”and“why”thenitislesslikelythatscholarswill automaticallyincludesuchundertheorizedvariables. Thetradedependencyvariableisagoodexamplewheredifferentstructuresareused,butthesearebasedon goodtheoreticalpositions(whichmayormaynotbe(p.102) bornupinempiricalanalyses).Forexample, Barbieri(2002)hasmadeastrongcaseforusingthegeometricmeanasameasureofthesalienceoftrade relationships.Herewehaveacasewheredifferencesbetweenquantitativemeasuresreflectrealtheoretical differences. Page 4 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Returningtotheliteratureonindividualandsocialwelfare,wecanseethatthestructurequestionisverymuch abouttheweightingoftheindividualparts.Justastheweakest‐linkmeasureofdyadicdemocracygives determiningweighttotheleastdemocraticcountry,sodovarioustheoriesofjusticegivedifferingweightsto individualsinsociety.Forexample,theoriesof(social)justicehaveverylargeanddirectionimplicationsforthe measurementofsocialwelfare.ARawlsiantheoryputstremendousweightontheindividualswhoareleastwelloff inaggregatingtothesociallevel.Autilitariantheoryincontrastgiveseveryindividualequalweightindetermining socialwelfare.Aswiththedyadicdemocracyvariable,itisatheory(inthiscaseanormativeone)thatdetermines theweightingoftheindividualparts.Oftenwehaveweaktheoryandthatresultsintheequalweightingofthesum oraverage.However,whenwehavestrongertheorythatcanoftenleadtounequalweighting.7 Itisthephilosophy ofjusticeandwelfarethatdeterminestheweightingusedinanyeventualquantitativemeasure.Awidevarietyof aggregationtechniqueshavebeenusedtoimplementatheoryofsocialwelfare,e.g.summaximization(Harsanyi 1955),lexicographicprioritiesandmaximin(Rawls1971;Sen1977),equality(Foley1967;Nozick1974;Dworkin 1981),oroneofvariousothercombiningrules(Varian1975;Suzumura1983;Wriglesworth1985;Baumol1986; Riley1987).ItisbecauseofthevarietyofaggregationproceduresusedthatIhavesuggestedthewell‐beingand socialwelfareliteratureasasourceofinspirationforthinkingabouthowthetheoryembodiedinconceptscanbe implementedinvariousquantitativemeasures. OneconceptandaggregationproblemPaulDiehlandIhavewrestledwithoverthelasttenyearsisthatofthe severityofamilitarizedinterstaterivalry(DiehlandGoertz2000).Hereweseetheproblemofaggregationover timesincearivalrybydefinitionischaracterizedbyaseriesofmilitarizedinteractions.Onequestionishowto aggregatethoseinteractionsintoameasureofrivalryseverityatanygiventime.Oneobviousoptionwouldbea weightedaverageofallthepreviousactions,witheachobservationexponentiallydiscountedbyitselapsedtimeto thepresent(basicallythisistheCrescenziandEnterline2001proposal).Ihaverecentlybeenintriguedby prominentfindingsinthepsychologicalliteratureonhappiness.Rivalrydealswithemotionsandfeelingsofhatred, whilehappinessdealswiththeopposite,butbothfacethesameaggregationproblem.Aprominentfindingdueto Kahnemanandhiscolleagues(e.g.Kahnemanetal.1993;Kahneman1999;Oliver2004)isthatcurrenthappiness followsa“peak‐end”aggregationrule.Basically,currenthappinessistheaverageofthehappinessatt−1(i.e. “end”)andthemaximumhappiness(i.e.“peak”)overtherelevanttimeperiod. (p.103) Thisisaninterestinghybridstructureforaconcept/measure:Itusesboththeaverageandthemaximum. Itmeansthatmostpastperiodsreceivenoweightatall,whichistheimpactofthemaximum.Itimpliesthat exponentialmemorymodelsaredramaticallyoffsincethepeakexperienceremainsveryimportantandshowslittle decay.Ihavenoideawhetherthiswouldmakesensefordyadicrelationshipsbetweenstates,butitisan interestingaggregationoptionthatIhavepermanentlyaddedtomytoolkit. Thisbriefsectiononstructuringandaggregatingconceptsandmeasuressuggeststhatonemustfirstconsiderthe theoryembodiedintheconcept.Thenoneshouldsurveyplausibleaggregationandstructuralrelationshipsthat couldbeappliedinaquantitativemeasure.Akeyissuethroughoutisthenatureoftheweightingschemeimplied bythetheoryandimplementedbythemeasure. 3ZeroPoints Thezeropointoftenplaysanimportantroleintheoreticalandmethodologicalresearchprograms.Asprospect theoryandourcheckbooksshow,thereisamajordifferencebetweenpositiveandnegative.Methodologicallythe existenceofzeropointshasmanyimportantimplications.Alongarticlecouldeasilybewrittenonzeropoints;I wouldliketodiscussanexamplethatillustratessomekeyissuesthatusersofconceptsandmeasuresshouldbe askingaboutwhenconstructingandevaluatingmeasures. Letmestartwithapersonalanecdote.Thezeropointplaysalargeroleinsomeexpectedutilitytheoriesof internationalconflict.Forexample,BuenodeMesquita's(1981)mainhypothesiswasthatanegativeexpected utilitywasanecessaryconditionforwarinitiation.Asaresultheneededameasureofpreferencesandutilitiesthat hadazeropoint.Hedevelopedwhatisknownastheτbmeasureofpreferences(becauseitisusestheτb statisticalmeasureofassociation).WhenJoeHewittandIwerelookingforameasureof“willingness”toinitiatea militarizedconflictweimmediatelythoughtoftheτbmeasure.Anegativeτbwouldbeasignalofhostile relationshipsandhenceawillingnesstoinitiatemilitarizedconflict(otherfactorssuchasweaknessmightpreventa 8 Page 5 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures countryfromactingonthiswillingness).Operationally,willingnesswasthenanegativeτbscoreforadyad.8 WefirstpresentedthispaperataPeaceScienceConferenceandBuenodeMesquitawasintheaudience.Inthe questionperiodheremarkedthatwemisusedhisτbmeasure.Thereasonwasthatthe“nominal”zerointhedata (e.g.producedbytheEUgenesoftware)wasnotthe“true”zero.Thetruezeropointvarieswithsystemsizeand correspondstoanegativenominalvalue.Assystemsizegoestoinfinitythe(p.104) nominalzeroapproaches thetruezeroatzero.ThestoryendshappilywithBuenodeMesquitaworkingwithustodeveloptheappropriate modifications(Goertz2006,ch.8). Thisanecdotehasanumberofimportantlessons. Thefirstlessonistoaskwhetherthetheoryinquestiondoesinfactneedazeropoint.Inmostusesofτb(orits competitionS:SignorinoandRitter1999;seeSweeneyandKeshk2005forabibliographyofusesofSandτb) thesemeasuresaretreatedasintervalones.9 Thezeropointplaysnorolesincethehypothesisisusuallyofthe form,thelesssimilarthepreferencesthemorelikelywarormilitaryconflict.Thiscorrelationalhypothesisdoesnot requireazerosinceitonlyproposesthatincreasingprobabilityofwarwithdecreasingpreferencesimilarity.Inthis senseBuenodeMesquita's(e.g.1981)andourexplicituseofthezeropointisrelativelyrare.Themoralisthatone needstoaskwhetherzeroplaysaroleinthetheoryandhencemattersinthemeasure. Thesecondlessonisthatoneshouldaskwhetherthemeasureinfacthasazeropoint.Themainalternativetoτb istheSmeasure(SignorinoandRitter1999):Doesithaveazeropoint?Ifyouexaminethedataasgeneratedby EUgeneyouwouldsayyes,becausethedatarangefrom−1to1.However,ifyoulookathowthedataare generated,theanswerisnotsoobviouslyyes.HereisasimplifiedversionoftheSmeasure(seeSignorinoand Ritter1999andSweeneyandKeshk2005formoredetails): Thelaststepinthemeasure‐generatingprocessconsistsof1–2(∙)whichstandardizesthemeasureintothe[−1,1] interval.10 Thisisanarbitraryscaletransformationsotheresultingzeroisnotarealone.Asonecaneasilysee, therangeofthesubstantivepartofthemeasureis[0,1].Insteadofzerobeingamiddlepointitisinfactan extremepoint.Forexample,GiblerandRider(2004)use[0,1]Sdata,whichimpliesthattheydonotseeazero pointinthemiddle.Thesecondlessonisthusthatjustbecausethescaleofthemeasurehaszerovaluesdoesnot meanitisarealzero.11 Thisleadstothethirdlesson:Whatisthemeasurementtheorythatdeterminesthezeropoint?RecallthatBueno deMesquitatoldusthatthenominalzerowasnotthetruezero.Hemustthereforehavehadameasurement theoryaboutalliance(p.105) configurationsthatheusedtodeterminethetruezeropoint.Sooneneedsalways toaskaboutthetheorythatdetermineshowtomeasurethezeropoint.12 Braumoeller(2004)andBrambor,Clark,andGolder(2006)havebroughttheattentionofthepoliticalsciencepublic tothefactthattherearemanyeasy‐to‐fall‐intopitfallsintheuseofinteractionterms.Oneimportantimplicationof thepresenceorabsenceofazeropointisexactlytheroleratiovariablesplayininteractionterms. Oneissueininteractiontermanalysisliesintheinterpretationoftheindividualtermsoftheinteractionterm,e.g.β1 X1andβ2 X2 .Typically,theinterpretationisthatβ1istheimpactofX1whenX2 =0.Thisthenassumes obviouslythatX2 =0reallymeanssomething.IfX2 isanintervalvariablethenX2 =0iscompletelyarbitrary (seeFriedrich1982andAllison1977).Forexample,GiblerandRider(2004)useSininteractionwithlevelofthreat tostudyalliancereliability.Sincelevelofthreatisalwaysgreaterthanzero,itcouldmakeasignificantdifferenceif Sisseentohaveatruezero. Inarelatedmanner,standardizationofvariableswithmeanzeroiscommon.Forexample,Beck,King,andZeng (2004)dothisforallthevariablesintheirneuralnetanalysis.Thesestandardizedvariablesarethenusedina largevarietyofinteractionterms. Insummary,oneneedstoaskabouttheexistenceornotofzeropoints.Doesthetheoryneedthem?Doestheuse ofthevariableininteractiontermsandthelikeimplythatthereisatruezeropoint? 4ExtremePointsandIdealTypes Page 6 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Theideal‐typewaytoconstructconceptshasalonganddistinguishedhistory.InthesocialsciencesitisMax Weber(1949)whomadeaprominentcaseforthisprocedure(e.g.seeBurger1987foradiscussion).While scholarsoftenuseidealtypestoconstructconcepts(e.g.GuntherandDiamond2003),treatmentofthe methodologyofidealtypesisalmostcompletelyabsentfromtextbooks.Welackanalysesofhowtoconstructan idealtype,orwhatconstitutesagoodidealtype.Inspiteofthis,onecandiscerntwodistinctivecharacteristicsof idealtypesastheyappearinnature:(1)theidealtypeisanextremepointonthecontinuum,and(2)actualcases ofthatextremearerareornonexistent. Clicktoviewlarger Fig.5.1. Distributionatextremepoints:politydemocracymeasure Ihavearguedelsewhere(Goertz2006,ch.3)thatideal‐typeconceptsarenotreallyusefulonceonehasa coherentsystemforconstructingconcepts.However,theideaofanidealtypedoesraiseanimportanttheoretical andmethodologicalquestion(p.106) thatmustbeattendedtowhenevaluatingandconstructingconcepts:What isthedistributionofcasesattheidealpointextreme?Ideal‐typeconceptsarecharacterizedbyzerocasesatthe extreme:Isthatagood,bad,orindifferentcharacteristic?Onecanaskthecontrastingquestion:Isitgood,bad,or indifferentiftherearealotofcasesattheextreme? Figure5.1showsthedistributionofpolitydemocracyscores(JaggersandGurr1995)forallcountries1816–1999. Youwillseeahighspikeatthedemocracyextreme.WhenIseeahistogramlikethismyfirstreactionistothink thatthe“true”scalereallyextendsfurther.Becausethemeasurestopstoosoonwegetapilingupcasesatthe barrier(Gould1996).13 LookingatthepolityscoresfortheUnitedStatesmightconfirmthefeelingthatthescalestopstoosoon.Beginning in1870theUnitedStatesalwaysreceivesthemaximumscoreof10.However,thefactthatlargepartsofthe population—e.g.blacks,hispanics,Indians—insomeregions,notablytheSouthandSouthwest,wereeitherdejure ordefactopreventedfromvotingafter1870suggeststhatacountrycouldbemoredemocraticthantheUnited States. Themoralhereisthatoneneedstoexaminethedistributionofcasesattheextremes.“Idealtypish”conceptsand measureswithfewcasesattheextrememightoftenbeagoodgoal.Ifourtemperaturescalemaxedoutat100 degreeswewouldbemismeasuringalotoftemperaturesas100.Whilenotnecessarilyconclusiveevidence againstameasure,largeconcentrationsateitherextremeneedtobeconsciouslyjustified,notacceptedas“that isjustwhathappenswhenyoucodethedata.” (p.107) Page 7 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Table5.2.Disagreementinthegrayzone:levelofdemocracyinCostaRica,1901–10 Year PolityIV Vanhanen Gasiorowski BLM 1901 100 0 0 0 1902 100 0 0 50 1903 100 0 0 50 1904 100 0 0 50 1905 100 0 0 0 1906 100 1 0 0 1907 100 1 0 50 1908 100 1 0 50 1909 100 1 50 50 1910 100 1 50 50 Allmeasureshavebeenrescaledontothe[0,100]interval. Source:Bowman,Lehoucq,andMahoney(2005). 5TheGrayZone Whencomparingvariousconceptsandmeasuresoneusuallyfindsthatcorrelationcoefficientsareusedtoassess similarity.Thisprocedureoftendramaticallyunderestimatesthedissimilarityofmeasures.Onereasonforthisis thatobservationsattheendsofthespectrumusuallyhavemoreweight(instatisticalterms,moreleverage; Belsley,Kuh,andWelsh1980)thanthoseinthemiddle.Itisoftenthecasethatconceptsandmeasuresagreeon theextremecasessincetheyareclear‐cutandeasytocode,whileatthesametimedisagreeingfrequentlyon casesinthemiddle.Pointsinthemiddleoftenhavea“halffish,halffowl”characterthatmakesthemhardto categorizeandclassify.Icallthisareathegrayzone,becausevaluesinitareneitherblacknorwhite. Democracyisaconceptwherethegrayzoneoftenplaysalargeroleinvarioustheoreticalcontextsrangingfrom thewar‐pronenessoftransitionaldemocracies(e.g.MansfieldandSynder2002)tosuccessfuldemocratic transitions(e.g.LinzandStepan1996).CostaRicahaslongbeenseenasoneofthemostdemocraticcountriesin LatinAmerica.AsTable5.2illustrates,prominentmeasuresdiffersignificantlyonhowtheycodeCostaRicainthe crucialfirstdecadeofthetwentiethcentury. Whenthereisasignificantnumberofcasesinthegrayzoneusingacorrelationcoefficientasameasureof similaritycanwildlyunderestimatediscrepanciesbetweenmeasures.Forexample,takethedemocracydatain Figure5.1.Ifonetakesthecasesatextremevalues(i.e.−10and10)asgivenwhichconsistsof23percentofthe data,andthenreplacesalltheobservationsinbetweenwithindependent,random,and(p.108) uniformdata onestillgetsacorrelationcoefficientofalmost.5.Inshort,therecanexistextensivedisagreementbetween measuresinthegrayzoneandonecanstillgetquiterespectablecorrelationcoefficients. Page 8 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Table5.3.Systematicdisagreementinthegrayzone X1 X2 0 1 2 3 4 5 0 50 10 0 0 0 0 1 0 50 40 40 0 0 2 0 0 50 50 40 0 3 0 0 0 50 40 0 4 0 0 0 0 50 10 5 0 0 0 0 0 50 SupposethattherelationshipbetweenthetwomeasuresislikethatofTable5.3(seeGoertz2006,ch.3foran examplewithrealdata).Thereisexcellentagreementontheextremesbutsubstantialdisagreementinthemiddle. Yetahighcorrelationof.87masksdifferencesbetweenthetwo.NotablymeasureX1isalwayslessthanmeasure X2 (thesekindsoftriangulardatapatternsarenotuncommonincomparativeresearch;seealsoBennett2005, figure1foratriangularrelationshipbetweentwodyadicdemocracyvariables).Butbecausealargepercentageof observationsdolieonthediagonalonewillgetsubstantialcorrelations.Thisexamplesuggeststhattheremaynot onlybedisagreementonthemiddlezone,butthereisapatterntothatdisagreement. PatternsofdisagreementlikethoseofTable5.3suggestthatthevariancebetweentwomeasureschanges systematicallyasonemovesawayfromtheextremesandtowardthemiddle.Thechangeinvarianceisdriven onceagainbyagreementattheendsanddisagreementinthemiddle. Figure5.2chartsthechangesinvariancewhencomparingthepolityconceptandmeasureofdemocracy(Jaggers andGurr1995)withFreedomHouse'sconceptandmeasure(Karantycky2000).TodothisIaddedthescoresof theFreedomHousevariables“politicalrights”and“civilliberties”whicheachrangefrom1to7.Ithenconverted themtoa‐10to10scalewhichthenmatchesthepolityscale.Figure5.2givesthevarianceofthepolityscoresfor allcaseswheretheFreedomHousecodesanation‐yearatacertainlevel. Clicktoviewlarger Fig.5.2. Varianceanddisagreementinthegrayzone Weseethenattheextremesofautocracyanddemocracy(i.e.‐10and10)thereisverylittlevarianceinpolity codingswhentheFreedomHouseseesanextremeautocracyordemocracy.Forexample,ontheX‐axiswesee thatthereisalmostnovarianceinthepolitymeasurecaseswhentheFreedomHousecodesamaximaldemocracy (i.e.10).Aswemovetowardthegrayzoneinthemiddleweseethatthevariationinhowpolitycodesagiven nation‐yearincreasessignificantly:Aswemovefrom10to0thevarianceincreases1,000‐foldfrom.025to22.6. Page 9 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Thesame(p.109) sortofthinghappensfromtheautocracyside,thoughtheincreaseis“only”byafactorof 10.14 Alessonhereisthatoneneedstousemultiplecriteriatoevaluateconceptsandmeasures.Inparticular,thegray zoneneedstobeexaminedindependentlyofthetwoextremes.Table5.3andFigure5.2illustratetwopatternsthat mightbequitecommon.Table5.3showsatriangularrelationshipbetweenmeasures,whileFigure5.2shows increasingvarianceasonemovestowardthegrayzone. Weneedagreatervarietyoftechniquesforevaluatingconceptsandmeasures.Inparticularoneneedstolook closelyatparticularpartsoftheconceptcontinuum.Thiswilldependonthetheoryandhypothesesbeingtested, butingeneraltheextremepointsandthemiddlealwaysdeservespecialattention. 6HomogeneitybetweenandwithinConceptsandMeasures Akeyissueintheanalysisofindividualconceptsaswellasthecomparisonoftwoormoreconceptsormeasures, iswhatPrzeworskiandTeune(1970)called“functionalequivalence”orwhatIprefertocall“concept homogeneity”(GerringandThomas2005talkabout“comparability”).Withinaconceptormeasureoneassigns thesamevaluetoapotentiallylargenumberofobservations.Theconcept(p.110) homogeneityquestionis whetheralltheseobservationsarereallyinstancesofthesamething.Forexample,istheUnitedStatesreceivinga polityscoreof10in1950homogeneousorequivalenttoitsreceivingavalueof10in2000?Thekeyquestionin termsofconstructingandevaluatingconceptsandmeasuresthenisthedegreetowhichcodingswithinameasure orbetweenmeasuresagreeoncodingobservationsasthesame. Thehomogeneityissuearisesasadirectconsequenceofaggregation.Inshort,aggregationproceduresproduce homogeneityclaims.Forexample,inthepolitydemocracymeasurethereareavarietyofwaystoget,say,5.The homogeneityclaimisthatallthesewaysaresubstitutableorequivalentintermsofcausalanalyses. Table5.3illustratestheproblemwithconceptsandmeasuresofdemocracyforCostaRica.Allmeasuresare homogeneousfortheyears1909and1910.Theyseethelevelofdemocracybeingthesameforthosetwoyears. Thisishomogeneitybetweenconcepts,or“relativehomogeneity.”Posner(2004,851)remarksthataproblemwith theHerfindahlindex(usedtostudytheimpactofethnicfractionalization)isthatitgivesquitedifferent fractionalizationsthesamevalue.Thisishomogeneitywithinameasure.Thesearebothimportantcriteriafor evaluatingconceptsandmeasures. Itisimportanttonotethatconcepthomogeneityisdifferentthanexaminingtheextenttowhichmeasuresor conceptsagreeonagivenobservation.Fortheyears1909–10allthemeasuresarehomogeneousbutthey disagreeradicallyonthelevelofdemocracy.Whilethedegreeofagreementonleveliscertainlycorrelatedwith thedegreeofhomogeneity,theyareconceptuallyseparatecriteriaofevaluation. Figure5.2directlyassessesthedegreeofrelativehomogeneityofthepolityandFreedomHousemeasuresof democracy.ForeachlevelofFreedomHousedemocracywecandeterminehowhomogeneousthepolitymeasure isrelativetoFreedomHouse.Ifthepolitymeasureanddatacodeddemocracyhomogeneouslywithregardto FreedomHousethenthevarianceofthepolityscoreswouldbezero:Inotherwords,politywouldcodethesame valueandthevariancewouldbezero.Noticeherewearelookingatthevariationofthescores,nottheirlevel.Itis possible—ifveryunlikely—thatthelevelisnotthesame.InFigure5.2weseethatwhenFreedomHousecodes observationsascompletelydemocraticthenitisalmostcertainthatpolitycodesthematthesamelevel.However, oncewemoveintothegrayzonethedegreeofrelativehomogeneitydeclinesprecipitously. Inshort,homogeneityisanotheraspectofcomparingwithinandbetweenvariousconceptsandmeasuresofthe samephenomenon.AsthecomparisonofpolitywithFreedomHouseillustrates,thedegreeofrelativehomogeneity betweenmeasurescanvarysignificantlyalongthecontinuumfromthenegativepoletothepositive.Lookingatthe polityscoresfortheUnitedStatesovertimemightsuggestthattherearehomogeneityconcernswithinthepolity measure.Homogeneitycomparisonsbetweenandwithinconceptsandmeasuresshouldbecomestandard practicewhenevaluatingdifferentconceptsandmeasures. (p.111) 7HomogeneityofNegativeorZeroCases Page 10 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Wehaveseenthatthezeropointcanplayakeyroleinconstructingandevaluatingconcepts.Thezerocategory canbeproblematicfromahomogeneityperspective,especiallyfordichotomousvariables.Frequentlythezero categoryisacatch‐allforallobservationsthatare“not1.”Forexample,MahoneyandI(2004)haveanalyzedthis probleminthecontextofchoosingthepopulationof“negative”cases,whichtypicallyreceivezeroina dichotomouscoding,e.g.nonsocialrevolutions.SweeneyandKeshk(2005)havediscussedthesameproblemin thecontextoftheSmeasure.InoneapplicationofStheyusemilitarizeddisputedatacodeddichotomously.They wonderabouttheverymanyzeros(i.e.nodispute)inthedatasince“thelargenumberofzerosintheMIDdata maybeduetothefactthatcountriesdidnothaveanythingtofightaboutorbecausetheychosetosettleany possibleconflictsinnonmilitarizedways(expressionsofforeignpolicypreferences),orthelargenumberofzeros maybeduetothefactthatcountriescouldnotengageinMIDsbecausetheyweretoofarapartanddidnot interactinanywaythatwouldgiverisetothepossibilityofaMID(mostassuredlynotaforeignpolicypreference revelation)”(SweeneyandKeskh2005,174).Similarly,Goertz,Jones,andDiehl(2005)havearguedthatperiods ofzeromilitarizedconflictaftertheendofarivalryarenothomogeneousastheyaretypicallyconsideredin “repeatedconflict”studies(e.g.Werner1999).Thefirstfifteenyearsorsoafterthelastmilitarizedconflictare differentbecausetherivalryisendingandthereisstillapossibilityoffurtherconflict.However,afterthosefifteen yearstherivalryisoverandthedyaddropsoutofthedata‐set.Inrepeatedconflictstudiesthedyadremainsin untiltheendoftheperiod,typically2001.Hence,Goertzetal.seeheterogeneityinthezerosofrepeatedconflict studies.Thusinavarietyofsettings,thehomogeneityofthe“nodispute/war”observationscanbecalledinto question.15 ThePrzeworskietal.(2000)analysisofthecausesandconsequencesofdemocracyillustratesthenatureofthe problem.Theirdichotomousconceptofdemocracyusesthenecessaryconditionaggregationprocedureonfour dichotomouscomponents.Theirconceptofdemocracystatesthatifacountryhasazerovalue(dichotomously) onanyoneofthefourcomponents,thenthecountryiscodedasanondemocracy.Democracycanbeachieved inonlyoneway(i.e.aoneonallfourcomponents),whereasnondemocracycanoccurinfifteendifferentways (i.e.24 −1=15). Thehomogeneityhypothesisthenbecomesthequestionwhetherthesefifteendifferentwaysofbeinga nondemocracyhavethesameconsequencesforcausalinferencewhenintroducedintoanalysis.Forexample, whenassessingtheconsequencesof(p.112) nondemocracyonfertilityrates,asPrzeworskietal.(2000)do, canweassumethatacountrythathaszerovalueononlyoneofthecomponentsiscausallyequivalenttoa countrythathasazerovalueonallfourcomponents? Przeworskietal.'sfirstanalysisoftherelationship(2000,81)betweenthelevelofeconomicdevelopmentand democracyisaprobitanalysiswithavarietyofindependentvariableswhichareprominentintheliterature.Asan exercise,wecanexaminethehomogeneityofthenondemocracycodingsanditsimpactoncausalinference usingPrzeworskietal.'sdataandmethods. Giventhenecessaryconditionaggregationprocedureused,wecaneasilyrankinthezerosintermsofthe number—1–4—ofcomponentsthatareequaltozero.Onecanthenempiricallyevaluatewhethertheassumptionof theconceptualhomogeneityofzerosseemsconfirmedincausalanalysis.SinceIamalsointerestedincomparing measures,itisusefultotakeademocracymeasurewithastructureanalogoustoPrzeworskietal.'sforthis exercise.16 The“modifiedpolity”measureisonewiththreedimensions,“CompetitivenessofParticipation,”“Executive Recruitment,”and“ConstraintsonExecutive”(seeGoertz2006,ch.4fordetails).Thefirsttwodimensions correspondtothetwohigher‐leveldimensionsofthePrzeworskietal.viewofdemocracywhichare“Contestation” and“Offices;”theformerreferstomultiplepartiesandexecutiveturnoverandthelatterreferstoexecutiveand legislativeofficesbeingfilledbycontestedelections.17 AsIhavereformulatedthepolitymeasurewehavethree dichotomousdimensionsandIrequirethatallthreebepresentforacountrytobecodedasademocracy.So structurallywehavethesamebasiclogicforthePrzeworskietal.measureandthemodifiedpolity.Wealsohave thesamepotentialproblemwiththehomogeneityofthenondemocracycases,whichcanbezeroon1,2,or3 dimensions. Asiscommonlyreported,thecorrelationbetweenthemodifiedpolityandPrzeworskietal.measureofdemocracy ishighat.87.Przeworskietal.(2000,56–7)saythatthestandardpolitymeasurepredicts91percentofPrzeworski Page 11 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures etal.values.Ifitwerenotfortheabovesections,Imightclaimthatsincecorrelationsarehighthemeasuresare basicallythesame.Table5.4showsthatinspiteofa.87correlationwhenusingthemodifiedpolitydatain Przeworskietal.'sanalysisofthecausesofdemocracy,someimportantdifferencesappear.Thefirstcolumnof Table5.4replicatestheprobitanalysisdiscussedinPrzeworskietal.(p.81).18 Somevariables,notablythekey levelofdevelopmentvariable,areverysimilarwithbothmeasuresofdemocracy.However,abouthalfofthe variablesdiffersignificantlyinsignorsignificancelevel,i.e.Stratification,Catholic,Moslem,andEthnic Fraction(alization);consistentresultsshowupforDevelopment,New(p.113) Colony,BritishColony,and Protestant.Hereisthenyetanotherexampleofhowhighcorrelationscanmasksignificantdifferences,thisinthe estimationofcausalimpacts. Page 12 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Table5.4.Causalhomogeneityofnondemocracy:democracyanddevelopment Variable Przeworski Polity ModifiedPolityMeasure Onezero Twozeros Threezeros Intercept −2.7976 −2.0734 .1729 −2.0839 −12.6123 (Pr>X2 ) .0001 .0001 .6817 .0001 .0001 Development .0003 .0003 .0002 .0004 .0018 (Pr>X2 ) .0001 .0001 .0001 .0001 .0001 NewColony −.8490 ‐1.2740 ‐3.7547 −1.1456 −11.4318 (Pr>X2 ) .0001 .0001 .0001 .0001 .9998 BritishColony 1.0167 1.2703 3.4428 1.4706 10.2029 (Pr>X2 ) .0001 .0001 .0001 .0001 .9998 Stratification −.0000 −.1420 −.2386 −.1372 (Pr>X2 ) .9996 .0018 .0004 .0112 Catholic .0038 −.0004 −.0058 .0000 −.0366 (Pr>X2 ) .0005 .7336 .0206 .9951 .0103 Protestant .0025 .0043 −.0049 .0070 .4853 .0131 .0707 .0010 .0001 (Pr>X2 ) 1028 ∞a — Moslem −.0038 −.0013 .0003 −.0005 .0225 (Pr>X2 ) .0030 .3448 .8879 .7571 .0001 EthnicFraction .0163 .0709 −.7415 −.0517 8.4373 (Pr>X2 ) .3242 .0472 .0001 .2843 .0001 GlobalDemocracy 4.0812 1.9914 1.1357 1.8348 14.7266 (Pr>X2 ) .0001 .0003 .1587 .0031 .0001 Nofnondemocracy 2120 1738 346 1258 134 (a)ResultsarebasicallythesamewhenremovingtheStratificationvariableexceptfortheCatholicvariable, whichchangessigns. Page 13 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures TherestofthecolumnsofTable5.4examinetheimpactofhomogeneityassumptionsofthenegativecases.Each ofthesecolumnsusesadifferentpopulationofnegativecases;forexample,“onezero”meansthatforthe negativecasesoneofthemodifiedpolitydimensionsiszerobuttheothertwoareone.Hence,thesenegative casesareclosertodemocracythanthenegativecasesusedin“threezeros”whichhavezeroonallthreepolity dimensions.Thecasesofoneonthedependentvariableremainthesameinalloftheseanalysesbutthenumber ofzerosvariesfromcolumntocolumn(theyaregivenatthebottomofeachcolumn). Theprobitresultsinthe“onezero”columnrepresentwhatmightbecalledthe“mostsimilar”analysis.Theseare thenegativecasesmostsimilartothepositiveonesbecausetheyaremissingonlyonedimensionofdemocracy. Spaceconstraintsprohibitanextensivecomparison,butonecanlookatthreethingswhencomparingacross columns:(1)signchanges,(2)significancelevelchanges,(3)trends,increasingordecreasing,inparameter estimates.Comparingthe“polity”tothe“one(p.114) zero”columnsweseethatthecentraleconomic developmentvariableisconsistent.However,theCatholicvariablewhichwasinsignificantinthepolitycolumnis nowsignificantlynegative.Overall,fourvariablesvaryinimportantwaysbetweenthetwocolumns:Catholic, Protestant,EthnicFractionalization,andGlobalDemocracy(ODWPinthePrzeworskietal.namingscheme). Whenmovingfurtherawayfromdemocracybyexaminingthepopulationwithtwozerosconstitutingthenegative population,wecanseeapatternformingthatsomevariablesarerobustwhileothersarenot.Onceagainthe economicDevelopmentisveryimportantalongwiththeNewColony,BritishColony,andStratificationvariables. Again,thereligionvariables—i.e.Catholic,Protestant,andMoslem,andethnicity—movealot. Movingtotheleastsimilarcountries—i.e.thosewithzeroonallthreedimensions—weseeveryclear‐cutresults.All thevariablesareveryimportant.InfactStratificationisaperfectpredictor.19 Allthereligionvariablesarenow significant.Hencewhenwechoosethemostcontrastingsetofnegativecasesweclearlyseetheimpactof variableswhicharesometimesambiguousinothercomparisons. Ofcourse,thenumbersinTable5.4onlyprovideaquickfirstlookatthequestionofconcepthomogeneityina causalsetting.Avarietyofotheranalyseswouldbeusefulinanextendedanalysis.Forexample,onemightwant torunaPoissonornegativebinomialregressiononthenumberofzerosforthenondemocracycases.Thiswould givesomeideaoftheextenttowhichtheindependentvariablescandistinguishbetweenvariouskindsof nondemocracies.Onewouldwanttothinkabouthowdramaticandclearthefindingstendtobewhenonlyusing completenondemocracies;thestratificationvariableinthe“threezeros”columninTable5.4perfectlypredictsthe outcome,thoughherethesmallNofnondemocraciesmaybepartofthestory20 8Checklist Whenstructuringandaggregatingconceptsandmeasurestherearethreerelatedsetsofitemsonachecklistfor constructingorevaluatingconceptsandmeasures. •Whatisthetheoryembodiedintheconcept? •Howisthattheorytranslatedintoaquantitativemeasure? •Whataretheplausibleoptionsforaggregation?Inparticular,whatistheweightingschemetobeused? (p.115) Inadditiontooverallevaluationsofvariousconceptsandmeasures,oneneedstoinvestigateindividual partsorpointsofthescaleorconceptcontinuum. •Aretherebigspikesateitherextreme?Doesthatsuggestextendingthescale? •Isthereazeropoint?Doesthetheoryunderexaminationneedazeropoint? •Doesthezeropointorlackthereofplayaroleinthecreationorinterpretationofinteractionterms? •Whatisthetheorythatdeterminesthezeropoint? •Whatisgoingoninthegrayzone?Isthatzonecrucialfortheorytesting? Allconceptsandquantitativemeasuresimplyhomogeneityclaims.Theseneedtobeinvestigated. •Whencomparingmeasuresaretherezoneswherehomogeneityislow(e.g.grayzone)? Page 14 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures •Doeshomogeneityvaryinasystematicmanneracrossthecontinuum? •Ifthemeasureorconceptisdichotomousaretheresignificantconcernsaboutthehomogeneityofthe negativeorzerocases?Shouldsomezerosberemovedfromthedata‐set? •Doconcepthomogeneityconcernsappearincausalanalyses?Aresomevariablesmorerobustinthefaceof heterogeneitythanothers? Ofcoursethischecklistisnotexhaustive.Itisalistofconcernswhichrarelymakeitintomethodologyand researchdesigntextbooksandcourses.Ihavetriedtoillustratebrieflyhowtheseissuescanariseincommon data‐setsandconcepts.Ofcourse,alotwilldependonthespecifictheoryandhypothesisunderinvestigation. Thischapterstressesthatitisthelackofintegrationoftheoryandmethodologywhichprovesproblematic.In particularthisistrueofaggregationandstructureproblems.Typicallytheyarisebecausenumericmeasuresare notcloselyenoughtiedtothetheoriestheyaresupposedtoembody.Thesameistrueofmanyoftheissues surroundingzeropoints.Inshort,oneneedscontinuallytoaskwhetherthenumericmeasuresarereallydoing whattheconceptsandtheoriesprescribe. References ALLISON,P.1977.Testingforinteractioninmultipleregression.AmericanJournalofSociology,83:144–53. BAFUMI,J.etal.2005.PracticalissuesinimplementingandunderstandingBayesianidealpointestimation.Political Analysis,13:171–87. BARBIERI,K.2002.LiberalIllusion:DoesTradePromotePeace?AnnArbor:UniversityofMichiganPress. BAUMOL ,W.1986.Superfairness.Cambridge,Mass.:MITPress. BECK,N.KING,G.andZENG,L.2004.Theoryandevidenceininternationalconflict:aresponsetodeMarchi,Gelpi, andGrynaviski.AmericanPoliticalScienceReview,98:379–89. (p.116) BELSLEY,D.KUH,E.andWELSH,R.1980.RegressionDiagnostics:IdentifyingInfluentialDataandSources ofCollinearity.NewYork:JohnWileyandSons. BENNETT,D.2005.Towardsacontinuousspecificationofthedemocracy—autocracyconnection.International StudiesQuarterly,50:513–37. BOWMAN,K.LEHOUCQ,F.,andMAHONEY,J.2005.Measuringpoliticaldemocracy:caseexpertise,dataadequacy,and CentralAmerica.ComparativePoliticalStudies,38:939–70. BRAMBOR,T.CLARK,W.,andGOLDER,M.2006.Understandinginteractionmodels:improvingempiricalanalyses. PoliticalAnalysis,14:63–82. BRAUMOELLER,B.2004.Hypothesistestingandmultiplicativeinteractionterms.InternationalOrganization,58:807– 20. BREMER,S.1992.Dangerousdyads:interstatewar,1816–1965.JournalofConflictResolution,36:309–41. BUENODEMESQUITA,B.1981.TheWarTrap.NewHaven,Conn.:YaleUniversityPress. BURGER,T.1987.MaxWeber'sTheoryofConceptFormation:History,Laws,andIdealTypes.Durham,NC:Duke UniversityPress. CHIN,H.andQUDDUS ,M.2003.Modelingcountdatawithexcesszeroes:anempiricalapplicationtotrafficaccidents. SociologicalMethodsandResearch,32:90–116. COHEN,M.andNAGEL ,E.1934.AnIntroductiontoLogicandScientificMethod.NewYork:Harcourt,Brace. CRESCENZI,M.andENTERLINE,A.2001.Timeremembered:adynamicmodelofinterstateinteraction.International StudiesQuarterly,45:409–32. Page 15 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures DAVIS ,J.2005.TermsofInquiry:OntheTheoryandPracticeofPoliticalScience.Baltimore:JohnsHopkins UniversityPress. DIEHL ,P.andGOERTZ,G.2000.WarandPeaceinInternationalRivalry.AnnArbor:UniversityofMichiganPress. DIXON,W.1993.Democracyandthemanagementofinternationalconflict.JournalofConflictResolution,37:42– 68. DWORKIN,R.1981.Whatisequality?Part1:equalityofwelfare,Part2:equalityofresources.PhilosophyandPublic Affairs,10:185–246,283–345. FOLEY,J.1967.Resourceallocationinthepublicsector.YaleEconomicEssays,7:73–6. FORTNA,V.2003.Insideandout:peacekeepingandthedurationofpeaceaftercivilandinterstatewars. InternationalStudiesReview,5:97–114. FRIEDRICH,R.1982.Indefenseofmultiplicativetermsinmultipleregressionequations.AmericanJournalofPolitical Science,26:797–833. GARTZKE,E.1998.Kantwealljustgetalong?Opportunity,willingness,andtheoriginsofthedemocraticpeace. AmericanJournalofPoliticalScience,42:1–27. GERRING,J.,andTHOMAS ,C.2005.Comparability:akeyissueinresearchdesign.Presentedattheannualmeetingsof theAmericanPoliticalScienceAssociation. GIBLER,D.andVASQUEZ,J.1998.Uncoveringthedangerousalliances,1495–1980.InternationalStudiesQuarterly, 42:785–807. —— andRIDER,T.2004.Priorcommitments:compatibleinterestsversuscapabilitiesinalliancebehavior. InternationalInteractions,30:309–29. GLEDITSCH,K.2002.ExpandedtradeandGDPdata.JournalofConflictResolution,46:712–24. GOERTZ,G.2006.SocialScienceConcepts:AUser'sGuide.Princeton,NJ:PrincetonUniversityPress. —— JONES ,B.andDIEHL,P.2005.Maintenanceprocessesininternationalrivalries.JournalofConflictResolution,49: 742–69. GOULD,S.J.1996.FullHouse:TheSpreadofExcellencefromPlatotoDarwin.NewYork:ThreeRiversPress. (p.117) GUNTHER,R.andDIAMOND,L.2003.Speciesofpoliticalparties:anewtypology.PartyPolitics,9:167–99. HARSANYI,J.1955.Cardinalwelfare,individualisticethics,andinterpersonalcomparisonsofutility.JournalofPolitical Economy,63:309–21. HEGRE,H.2000.Developmentandtheliberalpeace:whatdoesittaketobeatradingstate?JournalofPeace Research,37:5–30. JAGGERS ,K.andT.GURR.1995.Trackingdemocracy'sthirdwavewiththePolityIIIdata.JournalofPeaceResearch, 32:469–82. KAHNEMAN,D.1999.Objectivehappiness.InWell‐Being:TheFoundationsofHedonicPyschol‐ogy,ed.D. Kahnemanetal.NewYork:RussellSageFoundation. —— etal.1993.Whenmorepainispreferredtoless:addingabetterend.PsychologicalScience,4:401–5. KARATNYCKY,A.(ed.)2000.FreedomintheWorld,1999–2000.Washington,DC:FreedomHouse. KING,G.andMURRAY,C.2002.Rethinkinghumansecurity.PoliticalScienceQuarterly,116:585–610. LAZARSFELD,P.1966.Conceptformationandmeasurementinthebehavioralsciences:somehistoricalobservations. InConcepts,Theory,andExplanationintheBehavioralSciences,ed.G.DiRenzo.NewYork:RandomHouse. Page 16 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures LINZ,J.andSTEPAN,A.1996.ProblemsofDemocraticTransitionandConsolidation:SouthernEurope,South America,andPost‐communistEurope.Baltimore:JohnsHopkinsUniversityPress. MAHONEY,J.andGOERTZ,G.2004.ThePossibilityPrinciple:choosingnegativecasesincomparativeresearch. AmericanPoliticalScienceReview,98:653–69. MANSFIELD,E.andSYNDER,J.2002.Democratictransitions,institutionalstrengthandwar.InternationalOrganization, 56:297–337. MAOZ,Z.andRUSSETT,B.1993.Normativeandstructuralcausesofdemocraticpeace,1946–1986.American PoliticalScienceReview,87:624–38. MOUSSEAU,M.2000.Marketprosperity,democraticconsolidation,anddemocraticpeace.JournalofConflict Resolution,44:472–507. MUNCK,G.andVERKUILEN,J.2002.Conceptualizingandmeasuringdemocracy:evaluatingalternativeindices. ComparativePoliticalStudies,35:5–34. NOZICK,R.1974.Anarchy,StateandUtopia.Oxford:BasilBlackwell. OLIVER,A.2004.ShouldwemaximiseQALYs?Adebatewithrespecttopeak‐endevaluation.AppliedHealth EconomicsandHealthPolicy,2004:61–66. ONEAL ,J.andRUSSETT,B.1999.TheKantianpeace:thepacificbenefitsofdemocracy,interdependence,and internationalorganizations,1885–1992.WorldPolitics,52:1–37. ORGANSKI,A.andKUGLER,J.1980.TheWarLedger.Chicago:UniversityofChicagoPress. PECENY,M.andBEER,C.2002.Dictatorialpeace?AmericanPoliticalScienceReview,96:15–26. PEVEHOUSE,J.2004.Interdependencetheoryandthemeasurementofinternationalconflict.JournalofPolitics,66: 247–66. POSNER,D.2004.MeasuringethnicfractionalizationinAfrica.AmericanJournalofPoliticalScience,48:849–63. PRZEWORSKI,A.etal.2000.DemocracyandDevelopment:PoliticalInstitutionsandWell‐BeingintheWorld,1950– 1990.Cambridge:CambridgeUniversityPress. —— andTEUNE,H.1970.TheLogicofComparativeSocialInquiry.NewYork:JohnWileyandSons. RAWLS ,J.1971.ATheoryofJustice.Cambridge,Mass.:HarvardUniversityPress. (p.118) RILEY,J.1987.LiberalUtilitarianism:SocialChoiceTheoryandJ.S.Mill'sPhilosophy.Cambridge: CambridgeUniversityPress. SAMBANIS ,N.2004.Whatiscivilwar?Conceptualandempiricalcomplexitiesofanoperationaldefinition.Journalof ConflictResolution,48:814–58. SAMPLE,S.2002.Theoutcomesofmilitarybuildups:minorstatesvs.majorpowers.JournalofPeaceResearch,39: 669–91. SARTORI,G.1970.Conceptmisformationincomparativepolitics.AmericanPoliticalScienceReview,64:1033–53. SEN,A.1977.Onweightsandmeasures:informationalconstraintsinsocialwelfareanalysis.Econometrica,45: 1539–72. —— 1992.InequalityReexamined.Cambridge,Mass.:HarvardUniversityPress. SENESE,P.andVASQUEZ,J.2003.Aunifiedexplanationofterritorialconflict:testingtheimpactofsamplingbias,1919– 1992.InternationalStudiesQuarterly,47:275–98. SIGNORINO,C.andRITTER,J.1999.Tau‐bornottau‐b:measuringthesimilarityofforeignpolicypositions. Page 17 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures InternationalStudiesQuarterly,43:115–44. SUZUMURA,K.1983.RationalChoice,CollectiveDecisionsandSocialWelfare.Cambridge:CambridgeUniversity Press. SWEENEY,K.andKESHK,O.2005.Thesimilarityofstates:usingStocomputedyadicinterestsimilarity.Conflict ManagementandPeaceScience,22:165–87. VAREY,C.andKAHNEMAN,D.1992.Experiencesextendedacrosstime:evaluationmomentsandepisodes.Journalof BehavioralDecisionMaking,5:169–86. VARIAN,H.1975.Distributivejustice,welfareeconomicsandthetheoryoffairness.PhilosophyandPublicAffairs,4: 223–47. WEBER,M.1949.“Objectivity”insocialscienceandsocialpolicy.InTheMethodologyoftheSocialSciences.New York:FreePress. WERNER,S.1999.Theprecariousnatureofpeace:resolvingtheissues,enforcingtheterms,andrenegotiatingthe settlement.AmericanJournalofPoliticalScience,43:912–34. WRIGLESWORTH,J.1985.LibertarianConflictsinSocialChoice.Cambridge:CambridgeUniversityPress. Notes: IwouldliketothankBearBraumoeller,BruceBuenodeMesquita,DavidCollier,BradJones,KevinSweeney,and ChadWesterlandforcommentsonthischapter.IwouldliketoalsothankScottBennettandEricGartzkefor respondingtoqueriesregardingtheSmeasure. (1)ThechoiceoftopicsarisesfromworkonmybookSocialScienceConcepts:AUser'sGuide(2006).They representissuesthatarealmostignoredinthatbook(e.g.theimportanceofzeropoints)orthosethatdeserve muchmoreattentionthantheyweregiveninthebook.Thatbookfocusedonconceptconstructionandonly secondarilyonquantitativemeasures.HereIreversethebalancebytiltingmoretowardissuesofconstructing quantitativemeasures.Thedistinctionbetweenthetwoshouldnotbepushedtoofar,asweshallseemany methodologicalproblemsreallyneedtoberesolvedfirstonthetheoreticalandconceptualside. (2)Itshouldbeobviousthatthechecklistisnotexhaustive.Rather,itconsistsoffactorsrarelyconsideredbutthat shouldbe. (3)Davis(2005)criticizesthenecessaryandsufficientconditionviewofconceptsfromthequalitativeperspective, buthisproposaltousefuzzylogicremainsinthedomainoflogic,albeitatwentieth‐centurykind. (4)Thebigexceptiontothisruleseemstobeconceptsthatareusedtocollectpopulationsofdata.Herethe dominantprocedureisanimplicit,necessary,andsufficientconditionstructure.Typically,apotentialobservation mustsatisfyallthecodingrules(thesufficiencycondition)andifitfailsononecodingruleitisexcludedfromthe population(i.e.necessity).SeeSambanis's(2004)surveyofcivilwarconceptsanddata‐setsforexamplesofthis. (5)Aggregationissuescanariseevenintheserelationalvariables.Forexample,iftwocountrieshavemultiple alliancecommitmentsthenonemustaggregatethemtoformasingledyadicalliancemeasure.Typicallythe strongest(i.e.maximum)alliancecommitmentistheaggregationprocedureusedinthiscase. (6)MaozandRussett(1993)usetheformulaDemij=((Demh+Deml)/(Demh‐Deml+1))whereDemhisthe maximumdemocracyscoreandDemlistheminimum.Thisisinterestingbecauseitisbasicallyameasureofhow spreadapartthetworegimetypesare.Thissuggestsonepotentialaggregationcategorybasedontheideaof variance;measuresofinequalitywouldfallintothiscategory.SeeBennett(2005)foranothermeasureofspread betweenregimetypes. (7)Sometimesscholarsthinkthatbyusingnecessaryconditionaggregationthatnoweightingisused.Thisis clearlyincorrect;foranexampleofthisconfusionseeKingandMurray's(2002)measureof“humansecurity.” Page 18 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Thismeasureiscloselyrelatedtoworkonsocialwelfare. (8)MostoftenτborSisusedasacontrolvariableandhencetherearenorealtheoreticalclaimsregardingit,e.g. Fortna(2003)orPevehouse(2004). (9)AninterestingquestionistheextenttowhichthisisanissueforGartzke's(1998)measureof“affinity”which usesSpearman'srankordercorrelation.Likeτbthisrangesfrom−1to1. (10)Inequation(1)fppisthe“foreignpolicypreference,”kisastandardizationparameterwhichmakesthe absolutedifferenceinforeignpoliciesrangefromzerotoone.TheNinthedenominatorthenmakesthisthe averagedifferenceinforeignpolicies. (11)Forexample,manypeoplerescalethepolitymeasureofdemocracy(JaggersandGurr1995)fromitsoriginal [−10,10]to[0,20].Asanexerciseforthereader,Iaskwhetherthezeroineitheroftheserangescouldbe consideredatruezero?Atruezerocanofcoursebethelowestorthehighestpointonascale.SeeBennett (2005)foravarietyofexampleswherethescalingofthepolitymeasureisimportant.SeeBecketal.(2004,382) whotreatthepolityscaleasratio. (12)Forexample,SweeneyandKeshk(2005)notethatifthenumberofcategoriesusedinconstructingS increases,themeasuremovestoward1.Thesameistrueasthesystemsizeincreases.Hence,theremaybe othercomparabilityconcernsbeyondtheexistenceornotofazeropoint. (13)SeethehistogramsinSweeneyandKeshk(2005,e.g.figures3and4)forotherexamplesoflargespikesat oneextremefortheSmeasure. (14)Ileaveitasanexercisetore‐evaluatePrzeworskietal.'s(2000,58–9)argumentthattheirdichotomous codingofdemocracyproduceslesserrorthanacontinuousmeasureiferrorfollowsthevarianceasillustratedin Figure5.2andthecutpointbetweendemocracyandautocracyiszero. (15)ApotentiallyusefulstatisticaltechniquefordealingwiththeheterogeneityofzerosisZero‐InflatedPoisson (ZIP)regression(e.g.,ChinandQuddus2003).Zerosaremodeledtoarrivethrougha“zero‐event”state,i.e. wheretheeventbasicallycannothappen,orthroughastatewheren>0eventscanoccur. (16)Thestandardpolitymeasureisaweightedaverageofthefiveindicators,henceIhavepreferredtousea modifiedpolitymeasurewiththesamelogicalstructureasthePrzeworskietal.one. (17)Thepolitymeasureisuniqueinitsincorporationofconstraintsontheexecutiveasacorepartofthe democracyconcept.Infact,itisthemostheavilyweightedofthefiveindicatorsused;seeMunckandVerkuilen (2002)foradiscussion. (18)ThevariableRELDIF—religiousfractionalization—isnotinthedata‐setforthebooksoitdoesnotappear. (19)Somesoftware,e.g.Stata,automaticallyremovestheseveryimportantvariablesbecauseoftechnical problemsinstatisticalestimation.Iprefertoincludethemandindicatetheirimportancewithparameterestimatesof “∞.” (20)ItisstrikinghowthestratificationvariablewasnotsignificantwhenusingthePrzeworskietal.democracy variablebutwasconsistentlyimportantusingthemodifiedpolitymeasure. GaryGoertz GaryGoertzisprofessorofpoliticalscienceattheUniversityofArizona.Heistheauthororeditorofninebooksandoverforty articlesonissuesofmethodology,internationalinstitutions,andconflictstudies,includingNecessaryConditions:Theory, Methodology,andApplications(Rowman&Littlefield,2003),SocialScienceConcepts:AUser’sGuide(PrincetonUniversityPress, 2006),ExplainingWarandPeace:CaseStudiesandNecessaryConditionCounterfactuals(Routledge,2007),Politics,Gender, andConcepts:TheoryandMethodology(CambridgeUniversityPress,2008),andATaleofTwoCultures:ContrastingQualitative andQuantitativeParadigms(PrincetonUniversityPress,2012). Page 19 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015 Concepts, Theories, and Numbers: A Checklist for Constructing, Evaluating, and Using Concepts or Quantitative Measures Page 20 of 20 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: Minnesota State University, Mankato; date: 31 July 2015
© Copyright 2026 Paperzz