The Simplex Method on the TI-89 Written by Jeff O’Connell – [email protected] Ohlone College http://www2.ohlone.edu/people2/joconnell/ti/ Example: Maximize P = 50x1 + 80x2 Subject to x1 + 2x2 ! 32 3x1 + 4x2 ! 84 x1 , x2 " 0 3) Set up Initial Simplex Tableau x1 x2 s1 s2 P 1) Introduce slack variables: x1 + 2x2 + s1 = 32 3x1 + 4x2 + s2 = 84 x1 , x2 , s1 , s2 ! 0 4) Put the matrix as matrix [A] into the calculator and display [A]. 2) Set up the Initial System x1 + 2x2 + s1 = 32 3x1 + 4x2 !50x1 ! 80x2 + s2 = 84 +P=0 x1 , x2 , s1 , s2 " 0 5) Pick the Pivot Element x1 x2 s1 s2 P s1 " 1 2 1 0 0 32 % 32 2 = 16 ( pivot row $ ' s2 $ 3 4 0 1 0 84 ' 84 4 = 22 P $# !50 !80 0 0 1 0 '& ) pivot column The Row operations can be found by pressing [2nd][MATH] selecting [4: Matrix] and selecting [J: Row ops]. Row Operation TI-89 Result x1 x2 s1 s2 P s1 " 1 2 1 0 0 32 % $ s2 $ 3 4 0 1 0 84 '' P $# !50 !80 0 0 1 0 '& (a) 1 R1 ! R1 2 Row Operation mRow(1/2,ANS,1) TI-89 s1 " 0.5 1 0.5 0 0 16 % $ s2 $ 3 4 0 1 0 84 '' P $# !50 !80 0 0 1 0 '& Result x1 (b) (!4)R1 + R2 " R2 (80)R1 + R3 " R3 mRowAdd(!4, ANS,1, 2) mRowAdd(80, ANS,1, 3) x2 s1 s2 P x2 " 0.5 1 0.5 0 0 16 % s2 $$ 1 0 !2 1 0 20 '' P #$ !10 0 40 0 1 1280 '& 6) There are still negative numbers in the last row so we must do another pivot operation: Row Operation TI-89 Result 1 (! )R2 + R1 " R1 (a) 2 (10)R2 + R3 " R3 x1 x2 mRowAdd(!0.5, ANS, 2,1) mRowAdd(10, ANS, 2, 3) There are no negative numbers in the last row. The maximum is 1480 at x1 = 20, x2 = 6, s1 = 0, s2 = 0. s1 s2 P x2 " 0 1 1.5 !0.5 0 6 % $ x1 $ 1 0 !2 1 0 20 '' P #$ 0 0 20 10 1 1480 '&
© Copyright 2026 Paperzz