Basic Search Problem 4 A 4 B C 3 S 5 5 G 4 3 D 2 E 4 F 1 S Search Tree from Net Denotes the path S-D A D B C E D D A E B F D B F G C G C E B E A F C G F Denotes the path S-D-A-B-E-F-G G 2 Depth-First Search S A B C D E D F G 3 Breadth-First Search S A D B C E D F D B D A E B F C E B E A F C G 4 Heuristically Informed Methods A B C 10.4 6.7 4.0 11.0 S G 8.9 3.0 6.9 D E F 5 Hill Climbing S 10.4 8.9 A D 10.4 A E 6.9 3.0 6.7 B F G 6 Problems with Hill Climbing Z N E Z N E N Steps in all compass directions from a ridge point cross contour lines going down. High altitude contour line Low altitude contour line E 7 Beam Search (1) S 10.4 A 8.9 D 8 Beam Search (2) S A D 6.7 B 8.9 D 10.4 A 6.9 E 9 Beam Search (3) S A B D 4.0 C D 6.9 E A E 6.7 B 3.0 F Dead end 10 Beam Search (4) A B C D D A E E B F Dead end A C G 11 Optimal Search S D A B E F 13 G 13 12 Branch and Bound (1) S A D 3 4 S A D 4 13 S Branch and Bound (2) A D 3 4 S A D 4 B D 7 8 S 14 A Branch and Bound (3) B D 7 8 D C 4 1 S A D B D A E 7 8 9 6 S C 1 A D 15 B D A Branch and Bound (4) 7 E B 8 9 6 S A C E 11 12 D B D A 7 8 9 E S B F 11 10 B A D 16 B D A 7 8 9 Branch and Bound (5) E S B F 11 10 B A B D D 8 A C E 11 12 E 9 C E B F 11 12 11 10 17 Branch and Bound (6) S A B D D A E B 9 C E E B F C E 11 12 10 11 10 11 12 18 S 11 12 10 11 10 11 12 Branch and Bound (7) S A D A E B D A E B 6 C E E B B F C E 11 12 10 13 11 10 11 12 E S 19 C E E B B F C E 11 12 10 13 11 10 11 12 Branch and Bound (8) E S F A D 10 B C E 11 12 D A E B B F C 13 11 10 11 E B E E D B F D 15 14 14 F 10 20 Branch and Bound (9) S A E D B F C E 10 11 12 Dead end D A E E B B 13 11 F D B F G 15 14 13 Goal S 21 D B F G 15 Branch and Bound (10)14 13 S A E D B F C E 10 11 12 D A E B E B F 13 D B F A C G 15 14 15 15 13 S 22 D B F Branch and Bound15(11)14 A C G 15 15 13 S A E D B F C 10 11 E D A E B E B F 13 D F D B F A C G 14 16 15 14 15 15 13 23 B&B with Underestimates (1) S A D 13.4 12.9 S A D 13.4 A 19.4 E 12.9 24 B&B with A Underestimates (2) D 13.4 12.9 S A D 13.4 A E 19.4 12.9 S A 13.4 D 25 13.4 B&B with Underestimates (3) A E 19.4 12.9 S A D 13.4 A E 19.4 B 17.7 F 13 S 26 19.4 B&B with Underestimates (4) B F 17.7 13 S A D 13.4 A E 19.4 B F 17.7 G 13 27 Dynamic Programming S A Expanded next D 4 B D 7 8 Never expanded 28 B&B with Dynamic Programming (1) S A D 3 4 S A D 29 B&B with Dynamic Programming (2) S A D 4 B D 7 8 S 3 A D 4 30 7 8 B&B with Dynamic Programming (3) S 3 A D 4 B D A E 7 8 9 6 31 B&B with Dynamic Programming (4) S 3 A D B D A 7 8 9 4 E 6 B F 11 10 S 32 B&B with Dynamic Programming (5) B F 11 10 S 3 7 B A D D A 8 9 4 E 6 C E B F 11 12 11 10 S 33 C E B&B with Dynamic 11 12 Programming (6) B F 11 10 S 3 7 B A D D A 8 9 4 E C E B 11 12 11 10 6 F G 34 A* Algorithm Form a one-element queue consisting of a zero-length path that contains only the root node. Until the first path in the queue terminates at the goal node or the queue is empty, Remove the first path from the queue; create new paths by extending the first path to al the neighbors of the terminal node. Reject all paths with loops. If two or more paths reach a common node, delete all those paths except the one that reaches the common node with the minimum cost. Sort the entire queue by the sum of the path length and a lowerbound estimate of the cost remaining, with least-cost paths in front. If the goal node is found, announce success; otherwise, announce 35 failure. Obstacle-Avoidance Problem Initial position Desired position 36 Configuration-Space Transformation 6 5 7 4 8 3 1 2 37 New Configuration Space Initial position Desired position 38 Visibility Graph Initial position 39 Desired position Solution by Shortest Paths Initial position 40 Desired position
© Copyright 2026 Paperzz