SET WISE SOLUTION /TC–2102/12/06/2017 Target IIT-JEE 2019 +1 TEST (VECTORS) SET WISE Solution Date: 12.06.2017 (Test Code :2102) Q.No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. Set A Set B Set C Set D Q.29/B Q.29/D Q.20/B Q.16/D Q.5/B Q.6/D Q.21/D Q.3/D Q.12/B Q.17/C Q.10/A Q.9/C Q.7/C Q.2/B Q.12/A Q.30/B Q.6/B Q.12/D Q.7/C Q.24/D Q.28/B Q.23/A Q.27/A Q.11/D Q.27/D Q.25/D Q.4/B Q.1/C Q.20/B Q.21/C Q.18/D Q.25/D Q.13/B Q.10/A Q.5/C Q.5/D Q.21/A Q.1/A Q.16/C Q.19/C Q.2/D Q.5/A Q.6/D Q.21/B Q.26/A Q.7/C Q.15/A Q.20/A Q.10/D Q.27/C Q.19/C Q.28/A Q.19/D Q.19/D Q.13/C Q.17/B Q.18/B Q.11/A Q.9/B Q.23/A Q.1/C Q.13/C Q.23/B Q.2/B Q.16/D Q.30/D Q.2/D Q.8/B Q.17/C Q.4/A Q.25/C Q.13/B Q.3/A Q.16/B Q.1/A Q.7/A Q.15/C Q.24/B Q.22/B Q.4/C Q.11/A Q.3/C Q.11/D Q.27/C Q.30/A Q.15/C Q.17/B Q.14/B Q.14/D Q.26/A Q.28/B Q.12/D Q.8/C Q.14/B Q.8/A Q.26/A Q.22/B Q.28/A Q.26/D Q.10/B Q.24/D Q.8/D Q.14/C Q.29/C Q.25/C Q.22/C Q.3/C Q.22/A Q.9/C Q.18/B Q.30/C Q.18/D Q.23/B Q.9/A Q.29/A Q.15/D Q.4/A Q.20/B Q.24/C Q.6/A Page #1 SET WISE SOLUTION /TC–2102/12/06/2017 a b c 0a b c 1. 3. 4. 5. R = 10 N b 120o c a We can find that A B 0 . So A r B Horizontal component = 10 sin 30 = 5N A–BRA+B 27. 6. c acute angle d 28. A B is negative because angle b/w A and B is 7. 11. 2 R = (3P) + (2P) + 2 3P 2 P cos ….(1) On doubling the first force (2R)2 = (6P)2 + (2P)2 + 2 6P 2Pcos 2 2 2 4R = 40P + 24P cos …(2) From (i) & (2) cos = –1/2 = 120 22. Resultant of given vectors is = (4 8)iˆ [3 8]jˆ 12iˆ 5jˆ Dot product of this vector is Zero with the vectors given is each option. Hence all vectors are perpendicular to this vector 23. Sum of three angles should be 3600. B = 20 N A + B = 16 B2 = R2 + A2 ….(1) and ….(2) Given R 8 3 N Solve to get A = 2N, B = 14 N Coordinates of G : (O, a, a) a Coordinates of center of line DC: a, , 0 2 a a (a 0)iˆ a ˆj (0 a)kˆ aiˆ ˆj akˆ 2 2 2 R2 = 13P2 + 12P2cos R cos 60 o B 10 1 B 2 Displacement obtuse (120). 2 Target IIT-JEE 2019 Magnitude = 29. 30. 2 9a 2 3a a a a2 4 2 2 2 Area of parallelogram = | A B | 1 ˆ 1 ˆi 1 ˆj 1 kˆ a [2iˆ 2ˆj k] 4 2 2 4 2 2 2 1 1 1 | a | 1 2 2 4 So, a is not a unit vector 1 Let b ˆi ˆj kˆ we can see that a . b 0 2 r So a b 7 7 7 7 1 1 1 7 Let c ˆi ˆj kˆ ˆi ˆj kˆ a 4 4 8 2 2 So c is parallel to a 2 4 2 24. OC OA AB BC = 30ˆj 20iˆ 20(ˆi) 20(ˆj) 10ˆj 25. Unit vector in the direction of velocity = unit vector along the given vector v̂ 26. 4î 3 ĵ (4) 2 (3) 2 4 3 î ĵ = 12iˆ 9ˆj m/s v | v | v̂ = 15 5 5 B 60o R 90o A Page #2
© Copyright 2026 Paperzz