PREPRINT 2009:3 Approximating the Pareto Optimal Set using a Reduced Set of Objective Functions PETER LINDROTH MICHAEL PATRIKSSON ANN-BRITH STRÖMBERG Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Göteborg Sweden 2009 Preprint 2009:3 Approximating the Pareto Optimal Set using a Reduced Set of Objective Functions Peter Lindroth, Michael Patriksson, Ann-Brith Strömberg Department of Mathematical Sciences Division of Mathematics Chalmers University of Technology and University of Gothenburg SE-412 96 Göteborg, Sweden Göteborg, January 2009 Preprint 2009:3 ISSN 1652-9715 Matematiska vetenskaper Göteborg 2009 ∗† † † ! "# $ ! % & ' % ( min {f1 (x), . . . , fk (x)} , x∈X x ∈ Rn X ⊆ Rn fi : X → R ! f = {f1, . . . , fk } " K = {1, . . . , k} ! Z " Z = f (X) = {z = f (x) | x ∈ X} # " $ % $ # & ' ∗ x∗ ∈ X ∗ x ∈ X fi (x) ≤ fi (x ), i ∈ K fj (x) < fj (x ) j ∈ K z∗ = f (x∗ ) ' x∗ x∗ ∈ X P ⊆ X x ∈ X y ∈ X fi (x) ≤ fi (y), i ∈ K fj (x) < fj (y) j ∈ K ! ' " ( z z ∗ ! " ! # " !$! # %& ' ('& ) *# %& ' ((&( † + , - . + , - '( /& ! # 0"! " 1$ ! z z ∈ R k z = min f1 (x), . . . , min fk (x) , x∈P z = x∈P ∈ Rk max f1 (x), . . . , max fk (x) . x∈P x∈P x∗ ∈ X ) ' x ∈ X fi (x) < fi (x∗ ), i ∈ K z∗ = f (x∗ ) ) ' x∗ Pw * X = {xj | j ∈ N } N = {1, . . . , N } + & ' * $ ," ∗ ! N ≥ 1 X = {x1, . . . , xN } M 1 x ∈X fi (x∗ ) < fi (xj ) + M (1 − uij ), ∗ j i∈K fi (x ) ≤ i∈K fi (x ) + M (1 − u0j ), i∈{0}∪K uij ≥ 1, j ∈ N , i ∈ K, j ∈ N, j ∈ N, uij ∈ {0, 1}, j ∈ N , i ∈ {0} ∪ K. - - - - ! ," ' ( x∗ ∈ X ' ∗ & x ∈ X fi (x) ≤ fi (x ), i ∈ K i∈K fi (x) < ∗ f (x ) & x ∈ X k k + 1 i i∈K " x∗ ∈ X ' $ j ∈ N k + 1 fi (xj ) > fi (x∗ ), i ∈ K i∈K fi (xj ) ≥ i∈K fi (x∗ ) " ! & - . " - #$ " " - / " P ⊆ X 0 k ) " $ P 1 2345 264 + k ! * $ ! 7 8 2-4 9 ' # fi X + 24 9 " ) # 2:4 " ; < 5 ; < x ∈ X & 0 24 9 " & & 1 = " 2>4 = " 2.4 & & , $ 234 - ' ? 0 '?0 &5 ) Z ! ) ' % * ; < / " k $ ' # 2>4 ! x, y ∈ X x y x y ! $ ' ! % X 9 ' ! @ ) 2>4 # & 2:4 ( % # ' P β P P * ' ! ) # 5 & ' ' " ' " * " A A ' B / $ ' 9 ' ! # - ' / ' ) * $ ! "$ " # 6 ' . " ! $ ! > $ 1 # . C $ $ " ) # ' * & ' 6 -6 ' D 9 ' # 2C4 & $ ' P̂ ! ! $ + P̂ " P 0 $ P̂ P P̂ P̂ P B 2:4 2-E4 " %& (P̂) = max min c(x, y) , x∈P 6 y∈P̂ c : Rn × Rn → R+ ! %& P P̂ * " P β ' $ P ( P $ P β ! $ %& ) % 9 * d(·, ·) % 9 E F " dH (E, F ) = max max min d(u, v); max min d(v, u) . > u∈E v∈F v∈F u∈E 7 & & P 2F4 + & $ n = 2 1 % $ / P, 1, x ∈ ξ(x) = 0, x ∈ P. A A # 234 " " $ ' " + " $ $ $ # g : X → Rr r < k # " g $ ' * ! + ! 2>4( 8 K 2K = {K1, . . . , K2 } B " 2K r {s1, . . . , sr } ⊂ K̂ = {1, . . . , 2k } " # {f1 , . . . , fk } {gs , . . . , gs } r < k, gs = |K1 | i∈K fi Ks gs * & fi gs ∪rj=1 Ks = K * k 1 j sj j sj j j > j r βp = 1, 0, p . p ∈ K̂. 8 A ∈ Bk×2 $ k aip = 1, 0, fi p i ∈ K, p ∈ K̂. ! $ r " β " Aβ ≥ 1k , β Ì 12 ≤ r, C k k β ∈ {0, 1}2 , n # " β P β 1n P̂ ' * $ ' , ) ' $ 5 & ? 2.4 # ! Kβ = {j ∈ K | βj = 1} ! Pw ⊆ X (Pwβ ⊆ X) K (Kβ ) Pwβ ⊆ Pw y∗ ∈ Pwβ ! y ∈ X fi(y) < fi(y∗ ), β K ⊆ K, y ∈ X fi (y) < fi (y ∗ ), i ∈ K y ∈ Pw ∗ i ∈ Kβ ' - k = n = 2, {f1 (x), f2 (x)} X f1 (x) = x1 f2 (x) = x2 X = {(1, 2); (2, 1); (3, 1)} P = {(1, 2); (2, 1)} ( f1 β = (0, 1) P β = {(2, 1); (3, 1)} ⊆ P ! 2>4 ' ) * P β ⊆ P ! Kβ {w1 f1 + w2 f2 , f3 , . . . , fk }, w1 , w2 > 0 ! P ⊆ X (P β ⊆ X) K (Kβ ) P β ⊆ P D $ ' ! " ) ' # P β 9 P ) " ρ ∈ [0, 1] " x ∈ E E X P P β ρ ρ . ρ ) ρ E ρ ⊆ E E ⊆ X E ρ = x ∈ E fi (x) ≤ (1 − ρ)zi + ρzi, i ∈ K . : * E ⊆ X E ρ = E ∩ X ρ # ρ ' P ρ = P ∩X ρ ' P ρ 0 E ⊆ X E 0 = {x ∈ E f (x) ≤ z } E 1 = {x ∈ E f (x) ≤ z } = ∅ + f2 z f(X) f(P \P ) ρ f(E \E ρ ) f(E ρ ) f(E \E ρ ) f(P ρ ) f(P \P ρ ) z f1 + ( 0 ρ % E X ρ ≈ 0.2 ! " * $ ' ! τ ≥ 0 ' 9 ' * " τ Pτ τ * τ ≥ 0 x∗ ∈ X τ ' x ∈ X fi (x) + τ ≤ fi (x∗ ), i ∈ K fj (x) + τ < fj (x∗ ) j ∈ K z∗ = f (x∗ ) τ ' x∗ τ τ Pτ ⊆ X / P ⊆ Pτ̃ ⊆ Pτ τ ≥ τ̃ ≥ 0 = Pτβ β P τ # $%& & * ( 7 r < k ρ ∈ [0, 1] " {s1 , . . . , sr } ⊂ K̂ τ ≥ 0 % 9 dH (f (P ρ ), f (Pτβ,ρ )) + - ! ½ 2 Pτβ,ρ - (Pτβ )ρ ! C ,τ β δ(β, τ ) := dH (f (P ρ ), f (Pτβ,ρ )), Aβ ≥ 1k , β Ì 12 ≤ r, 3 k k β ∈ {0, 1}2 , τ ≥ 0. X E F dH + -( 0 % 9 E ⊆ X F ⊆ X ' ' . ;< 3 ' ( ? Pτβ,ρ β τ ! & $ ' ' . # $ τ ' τ ' * 6- G - & X ' ' ? - - - & w , ∈ N - " x * xj x " X " uij = u0j = vj = w = 1, 0, 1, 0, 1, 0, 1, 0, fi (x ) < fi (xj ), , i∈K fi (x ) ≤ i∈K fi (xj ), , xj x xj x , x ∈ P vj = 1 ∀j), x ∈/ P, : j, ∈ N , i ∈ K, j, ∈ N , i∈{0}∪K uij ≥ 1), j, ∈ N , ∈ N. G ∈ N &( −M uij ≤ fi (x ) − fi (xj ) < M (1 − uij ), −M u0j < i∈K fi (x ) − i∈K fi (xj ) ≤ M (1 − u0j ), vj ≤ i∈{0}∪K uij ≤ (k + 1)vj , N w ≤ j∈N vj ≤ w + N − 1, j ∈ N , i ∈ K, j ∈ N, j ∈ N, uij , vj , w ∈ {0, 1}, j ∈ N , i ∈ {0} ∪ K. F F F F F * ( * F " x ∈ X, ∈ N w , ∈ N " F #$ " ξ = min |fi (xj ) − fi (x )| : i ∈ K, j, ∈ N , |fi (xj ) − fi (x )| > 0 > 0, " " F E . F + P $ ⊆ X " F ∈N w , − fi (xj ) fi (x ) < M (1 − uij ), j i∈K fi (x ) − i∈K fi (x ) ≤ M (1 − u0j ), vj ≤ i∈{0}∪K uij , N w ≤ j∈N vj , uij , vj , w ∈ {0, 1}, j, ∈ N , i ∈ K, j, ∈ N , j, ∈ N , ∈ N, j, ∈ N , i ∈ {0} ∪ K. E E E E E ' ( ! 2k 5 βp , p ∈ K̂ = {1, . . . , 2k } % τ ' {f1, . . . , fk } F {β1 g1 , . . . , β2 g2 } ! hi x ∈ X x∗ ∈ X τ > 0 $ x ∈ X hi (x) + τ ≤ hi (x∗ )5 x ∈ X τ ' ! gp βp = 0 βp gp ≡ 0 ! F " & gp βp = 0 * " u, v w k upj = u0j = vj = w = 1, 0, 1, 0, 1, 0, 1, 0, gp(x ) < gp (xj ) + τ p , , p∈K̂ βp gp (x ) ≤ p∈K̂ (βp gp (xj ) + τ ), , xj τ x p∈{0}∪K̂ upj ≥ 1, xj τ x , x ∈ Pτβ vj = 1 ∀j), x ∈/ Pτβ , 3 k j, ∈ N , p ∈ K̂, j, ∈ N , j, ∈ N , ∈ N. 8 βp , p ∈ K̂ " ∈ N w = 1 x ∈ Pτβ ( −M upj ≤ M (1 − βp ) + βp gp (x ) − βp gp (xj ) + τ < 2M (1 − upj ), −M u0j < p∈K̂ βp gp (x ) − p∈K̂ βp gp (xj ) + τ ≤ M (1 − u0j ), vj ≤ p∈{0}∪K̂ upj ≤ (r + 1)vj , N w ≤ j∈N vj ≤ w + N − 1, upj , vj , w ∈ {0, 1}, j ∈ N , p ∈ K̂, j ∈ N, j ∈ N, j ∈ N , p ∈ {0} ∪ K̂. ! 9 F τ " τ ' H 9 & F ) upj = 0 βp = 0 0 k + 1 F r + 1 + ! {g1, . . . , g2 } β ∈ {0, 1}2 # r$ x ∈ X, ∈ N τ τ k k ' ( ! dH (f (P ρ ), f (Pτβ,ρ )) β τ ρ ! ," -> $ # & X ρ ρ ' dim(P) = k fi (x) − zi fi (x) := , i ∈ K, - zi − zi f (X) ⊆ Rk+ f (x) ∈ [0, 1]k , x ∈ P ' 6. $ & ρ + fi : X → R+ , i ∈ K X = {x1, . . . , xN } ρ ∈ [0, 1] M 1 ! P ⊆ X ρ w = 1 x ∈ P x ∈ X i ∈ K m ∈ N j ∈ N fi (x ) ≤ (1 − ρ)wj fi (xj ) + ρfi (xm ) + M (1 − wm ). 6 + " : ( + x ∈ X ρ 1 i ∈ K & fi (x ) ≤ (1 − ρ) max fi (xj ) + ρ j: wj =1 min m: wm =1 fi (xm ), > 8 ĵ ∈ arg maxj∈N {fi (xj ) | wj = 1} m̂ ∈ arg minm∈N {fi (xm ) | wm = 1} H {j | wj = 1} X ' H & 6 > $ xj xm ⇐ # > ĵ 6 j ∈ N # > m̂ 6 m ∈ N m wm = 1 fi (xm ) ≥ fi (xm̂ ) wm = 0 ⇒ # 6 j ∈ N ĵ j fi (xĵ ) ≥ wj fi (xj ) ! 6 m = m̂ M 1 wm = 1 $ m ∈ N # & m ∈ N m̂ > 0 ' 6. fi 5 - F * bijm = cij = ei = a = 1, 0, 1, 0, 1, 0, 1, 0, fi (x ) ≤ (1 − ρ)wj fi (xj ) + ρfi (xm ) + M (1 − wm ), , m∈N bijm ≥ N, , j∈N cij ≥ 1, , x ∈ X ρ i∈K ei ≥ k), x ∈/ X ρ , j, m, ∈ N , i ∈ K, j, ∈ N , i ∈ K, ∈ N , i ∈ K, ∈ N, ∈ N & a = 1 x ∈ X ρ x ∈ X ρ( −2M bijm < fi (x ) − (1 − ρ)wj fi (xj ) + ρfi (xm ) + M (1 − wm ) , M (1 − bijm ) ≥ fi (x ) − (1 − ρ)wj fi (xj ) + ρfi (xm ) + M (1 − wm ) , N cij ≤ m∈N bijm ≤ cij + N − 1, ei ≤ j∈N cij ≤ N ei , ka ≤ i∈K ei ≤ a + k − 1, bijm , cij , ei , a ∈ {0, 1}, j, m ∈ N , i ∈ K, j, m ∈ N , i ∈ K, j ∈ N , i ∈ K, i ∈ K, j, m ∈ N , i ∈ K. . . . . . . * fi : X → R+ i ∈ K x ∈ ρ ρ X, ∈ N ρ X ρ X \ X . " ? F . η = 1, 0, x ∈ P ρ , x ∈/ P ρ , ∈ N, w + a − 1 ≤ 2η ≤ w + a , ∈ N, η ∈ {0, 1}, ∈ N, C C " " η = 1 ∈ N x ∈ P ρ x ' ρ η = 0 ∈ N x ∈ X \ P ρ ! ( * $ ) B x ∈ X ρ ) {gs , . . . , gs } 8 X β,ρ ⊆ X ! ," -> & ) {β1 g1 , . . . , β2 g2 } p βp = 0 & : " % " . # & 6 ( 1 k ∃j ∈ N : r k fi (x ) ≤ (1 − ρ)fi (xj ) − M (1 − wj ) + ρfi (xm ) + M (1 − wm ), i ∈ K, m ∈ N . : p ∈ K̂, m ∈ N . 3 D fi βp gp $ j ∈ N βp gp (x ) ≤ (1 − ρ)βp gp (xj ) − M (1 − wj ) + ρβp gp (xm ) + M (1 − wm ), E 0 66 p ∈ K̂ j, m, ∈ N " " " ( bpjm = cpj = ep = a = 1, 0, 1, 0, 1, 0, 1, 0, βp gp (x ) ≤ (1−ρ)βpgp (xj ) − M (1−wj ) + ρβp gp (xm ) + M (1−wm), , m∈N bpjm ≥ N, , j∈N cpj ≥ 1, , x ∈ X β,ρ p∈K̂ ep ≥ 2k ), x ∈/ X β,ρ + {β1 g1 , . . . , β2 ( k g2k } ρ . $ −2M bpjm < βp gp (x ) − (1−ρ)βp gp (xj )−M (1−wj )+ρβp gp (xm )+M (1−wm) , j, m, ∈ N , p ∈ K̂, j m M (1−bpjm ) ≥ βp gp (x ) − (1−ρ)βp gp (x )−M (1−wj )+ρβp gp (x )+M (1−wm) , F j, m, ∈ N , p ∈ K̂, F F F F F N cpj ≤ ep ≤ k 2 a ≤ m∈N bpjm j∈N cpj p∈K̂ ep ≤ cpj + N − 1, j, ∈ N , p ∈ K̂, ≤ N ep , ∈ N , p ∈ K̂, k ≤ a + 2 − 1, ∈ N, bpjm , cpj , ep , a ∈ {0, 1}, j, m, ∈ N , p ∈ K̂. 0 F η = 1, 0, x ∈ Pτβ,ρ, x ∈/ Pτβ,ρ, ∈ N, w + a − 1 ≤ 2η ≤ w + a , ∈ N, η ∈ {0, 1}, ∈ N, -E -E η = 1 x ∈ X ρ τ ' x ∈ Pτβ,ρ ∈ N # )& G $ ' ρ 3 0 ρ ' Q " Q = {1, . . . , Q} ! P ρ = x1 , . . . , xQ ! xq ∈ P ρ x ∈ X dql = ||f (xq ) − f (x )||, q ∈ Q, ∈ N # $ θ ∈ R+ 3 θ, θ ≥ min dq , q ∈ Q, ∈N : η =1 θ ≥ min dq , ∈ N : η = 1, q∈Q - η β τ ! - $ θ, (1 − η )M + dq , q ∈ Q, θ ≥ min -- ∈N θ ≥ min dq − (1 − η )M , ∈ N , q∈Q M ≥ max dq | q ∈ Q, ∈ N ! min 1, θ ≥ (1 − η )M + dq , yq = 0, , 1, θ ≥ dq − (1 − η )M, zq = 0, , q ∈ Q, ∈ N , q ∈ Q, ∈ N , " 3 θ, (1 − η )M + dql − θ ≤ 2M (1 − yq ), q ∈ Q, −(1 − η )M + dql − θ ≤ M (1 − zq ), yq ≥ 1, ∈N q∈Q zq ≥ 1, yq , zq ∈ {0, 1}, τ ≥ 0, β (u, v, w, β, τ ) (b, c, e, a) (w, a, η) " (6), " (11), " (19), " (20). ∈ N, q ∈ Q, ∈ N , q ∈ Q, ∈ N, q ∈ Q, ∈ N , -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 ! -6 N 3 2k $ ! N k * $ $ ' H ) ) ) $ 1 $ $ ! $ $ β τ & ! -6 $ β τ ! τ ' ρ 6 ! $ # $ β τ ! ) C ! A FA # " -C > β ) τ ! " E' ρ X -: > " τ β B $ -6 ) β ) $ τ 9 - ' 0 $ % β $ ! $ ! ! , {x1 , . . . , xN } " fi sij ρ̂(fi , fj ) = √ ∈ [−1, 1], sii sjj 1 sij = fi (x ) − N ∈N 1 N fi (x ) fj (x ) − m m∈N fj -> i, j ∈ K, 1 N X = fj (x ) , m i, j ∈ K. m∈N ! 1 X = {x1 , . . . , xN } # ρ̂(fi , fj ) = 1 ' P 5 G * >- " $ ! β $ 1 fi ∈ {f1, . . . , fk } {gs , . . . , gs } 0 + 6 {f1 , . . . , fk } I I fi J ! " r Ks j = 1, . . . , r K fi i ∈ Ks $ 1 r j j Δρ + 6( 0 ) r = 2 ; < Δρ ! )& # 2K K ! $ α α + α ∈ [−1, 1] " Kα := ∈ K̂ | ρ̂(fi , fj ) ≥ α, ∀i, j ∈ K , K ∈ 2K {gs -. ∈ K̂ 0 α {f1 , . . . , fk } 1 , . . . , g } g = s s 1 r j i∈Ks fi sj ∈ K 0 - |Ks | j j ¾ 3 ρ̂(f , f ) = 1 - P 4 !! - f (x) = x i j i 5 "6 " fj (x) = x2 ρ̂(fi , fk ) = ρ̂(fj , fk ) - k ∈ {i, j}! 6 β ∈ {0, 1}|K | gs $ A ∈ Bk×|K | " fi gs 8 ψp := mini∈K ρ̂(gp , fi ) $ z ∈ R M ≥ 2 ! r α α j j p $ z,β z, z ≤ ψp + (1 − βp )M, p ∈ Kα , -C Aβ ≥ 1k , α βÌ 1|K | ≤ r, α β ∈ {0, 1}|K | , r < k + α = −1 2F4 2k % α $ -C 0 ' > & + 6 ! -C B (z ∗ , β∗ ) ∈ B r p∈Kα βp∗ = r 8 s = 0 (z s, βs ) -C p∈K α βps < r * r < k ≤ |K | α ∈ [0, 1] i ∈ K i ∈ K fi * k " Kα K = {} ∈ K ! ψ = 1 = 1, . . . , k $ q ∈ K fq βqs = 0 8 s+1 s+1 s s+1 β ∈ Kα \ {q} βqs+1 = 1 (z s+1 = z s p p p = βs+1 , β )s∈ B z s = p∈Kα βp + 1 8 s = s + 1 p∈Kα βp = r ! p∈Kα βp α α ! )& -C (z ∗ , β∗ ) " B ; < $ -C (z ∗ , β∗ ) -6 / X ' P β $ + ) ρ ," -> x ∈ P β ρ P β ,ρ ⊆ P β $ ! A P0β ,ρ A τ " τ ∗ % 9 f (P ρ ) f (Pτβ ,ρ ) ! ∗ ∗ ∗ ∗ ∗ ∗ τ -: ∗ dH (f (P ρ ), f (Pτβ ,ρ )), τ ≥ 0. ! $ + > ⎤ X ⎦ =⇒ ⎣ ρ {f1 , . . . , fk } ⎡ -C =⇒ β ∗ =⇒ Pρ ∗ P β ,ρ =⇒ -: =⇒ τ ∗ (β ∗ ) + >( ! $ -C -: ? τ ' ρ ," -> ! 1 τ ) -: ! ρ -: " 0 > τ ) > $ ( +$ ρ $ Pτβ P ρ ," -> ∗ ∗ Pτβ ,ρ :≈ ∗ x ∈ Pτβ gp (x) ≤ (1 − ρ) max gp (y) + ρ min gp (y), ∀p ∈ Kα . y∈P y∈P -3 + - P β ⊆ P # ," -> P ρ ⊆ P * P β ,ρ ⊆ P ρ P β ,ρ = P β ∩ X ρ ⊆ P ∩ X ρ = P ρ " & $ -3 X ρ ! + . ∗ ∗ ∗ ∗ f(X) f(P ρ ) dH ∗ f(P0β ,ρ ) + .( B P ρ -: τ * " φ1 (τ ) $ P ρ Pτβ ,ρ φ2 (τ ) $ Pτβ ,ρ P ρ ∗ ∗ φ1 (τ ) = maxρ x∈P φ2 (τ ) = max∗ min∗ d f (x), f (y) , y∈Pτβ ,ρ y∈Pτβ ,ρ minρ d f (y), f (x) . x∈P -F 6E ! 3 "$ β = β∗ δ(β∗, τ ) τ ≥ 0 ∗ δ(β ∗, τ ) = dH (f (P ρ ), f (Pτβ ,ρ )) = max {φ1 (τ ), φ2 (τ )} . 6 τ Pτβ ,ρ φ1 (τ ) 0 φ2 (τ ) ! P ρ Pτβ ,ρ φ1 (τ ) φ2 (τ ) ! δ(β∗, τ ) & $ 2-4 τ + C φ1 (τ ) φ2 (τ ) δ(β ∗, τ ) = max {φ1 (τ ), φ2 (τ )} φ(τ ) := φ2 (τ ) − φ1 (τ ). 6- * " τ ∗ ∈ Tδ := arg min δ(β ∗, τ ). 66 τ ≥0 ∗ ∗ # φ1 (0) ≤ φ2 (0) τ ∗ = 0 + φ1 (0) > φ2 (0) " ε > 0 T1 (ε) = {τ ≥ 0 | φ(τ + ε) ≥ 0, φ(τ ) ≤ 0} ! T1(ε) ⊆ Tδ T2 (ε) ⊆ Tδ T2 (ε) = {τ ≥ 0 | φ(τ ) ≥ 0, φ(τ − ε) ≤ 0}. + : . 6> 1 0.6 φ1 (τ ) φ2 (τ ) 0.9 0.4 0.8 0.2 0.7 0 0.6 −0.2 0.5 −0.4 0.4 −0.6 0 0.02 τ 0.04 0.06 0.08 0.1 −0.8 0 0.12 φ(τ ) 0.02 τ 0.04 7 8 φ1 (τ ) φ2 (τ ) 0.06 0.08 0.1 0.12 78 φ(τ ) + C( ! ( φ1 (τ ) φ2 (τ ) " -F 6E δ(β∗, τ ) " 65 φ(τ ) " 6- + φ1 (τ ) φ1 (τ ) φ2 (τ ) φ2 (τ ) Tδ # T1 (ε)# T2 (ε)# Tδ # T1 (ε)# T2 (ε)# ε 7 8 T2 (ε) ⊆ Tδ ε Tδ # T1 (ε)# T2 (ε)# 78 T1 (ε) ⊆ Tδ + :( # Tδ T1 (ε) φ1 (τ ) φ2 (τ ) ε 78 T1 (ε) ⊆ Tδ ⊇ T2 (ε) T2 (ε) 9 + 1 ε > 0 1 " τ1 ∈ T1 (ε) τ2 ∈ T2(ε) τ ∗ ∈ {τ1 , τ2 } τ ∗ ∈ Tδ ! & φ(τ ) 0 > # X $ ε > 0 -: 0 > ! ) ! τ ∗ $ τ β ∗ >- B % 9 δ (β∗ , τ ∗ (β∗ )) error $ δ(β∗, τ ) ε > 0 # τ β = β∗ β J -C τ ∗ (β) β / δ(β, τ ∗ (β)) βJ (β, τ ) δ(β, τ ) $ 3 / A 1 A 3 ε > 0 ! $ $ A CA ! $ ;< P ; < % τ ! 2C4 2E4 C ' τ ! " # " # $ % $ $ $$$& # # $ $' # '( % $ '( $ $ $$$& 264 # ! $ " f1 (x) := (x1 − 6)2 + 4 (x2 − 4)2 , 9 4 f2 (x) := 4 (x1 − 5)2 + f3 (x) := 4 (x1 − 11 2 2 ) f4 (x) := (x2 − 5)2 , 25 4 (x1 − 4)2 + 9 4 (x2 + 5)2 , f5 (x) := (x1 + 3)2 + (x2 + 3)2 , X := {x1 × x2 | xi ∈ {−10, −9.75, −9.5, . . ., 10}, i = 1, 2} + 4 (x2 + 3)2 , + 3 $ ' ! " -> f1 , . . . , f5 ! P ⊆ X 10 f2 P x2 5 f1 0 f1 f3 −5 f5 −10 −10 f1 f2 f3 f4 f5 −5 f4 0 x1 5 10 f2 f3 f4 f5 E:> E6 E E-3 EC6 ECF E6. EF: E. EEF + 3( 8 " ! ( ? 1 ' P ⊆ X $ $ $ > 6 - + FK ! " $ ' τ > 0 P ρ * ρ = 0.15 H % 9 . + FK : x2 5 10 P ρβ,ρ P β,ρ Pτ 5 x2 10 0 −5 −10 −10 −5 0 x1 5 −10 −10 10 10 P ρβ,ρ P β,ρ Pτ 5 0 −5 −10 −10 −5 x1 0 5 0 5 10 78 r = 3, dH = 0.19, τ ∗ = 0.0037 x2 x2 5 0 −5 7 8 r = 4, dH = 0.11, τ ∗ = 0.00068 10 P ρβ,ρ P β,ρ Pτ P ρβ,ρ P β,ρ Pτ 0 −5 −5 0 x1 5 −10 −10 10 78 r = 2, dH = 0.39, τ ∗ = 0.15 −5 x1 78 r = 1, dH = 0.41, 10 τ ∗ = 0.26 + F( # 9 ' 0 ' τ >0 ! ! $ > " ) = L 6' ) L 7 ! ) 9 ) + ) " ! ) ) " " & % 9 & 9 ! ) 9 " ' ) ! " ' % ) 2C4 ! + E ! " X $ $ # $ |X | = 1296 + - & " $ {f1, . . . , f12 } & X -FC " |P| ' |X | ≈ 0.19 ! ! - 3 z4 lz2 x1 ϕ2 z3 m4 J7 lz3 c5 lz1 k5 x2 ϕ1 c7 m3 J6 c6 k6 k7 k4 c3 k3 c4 z1 m2 m1 c1 z01 k1 lx4 lx5 c2 z02 k2 lx1 z2 lx2 lx3 lx6 + E( ! ) 0 " " lx lz k c m J # $ z0 x z ϕ f1 f2 f3 f4 ) *+, *+- **. ) *.2 *,* ) **. ) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f5 f6 f7 f8 f9 f10 f11 f12 *)- */0 *)1 *+1 *2) *2- **0 *+) *)- *)/ *++ *2/ *)2 *,1 *++ ***// *2- *)) *.) *)0 *)- *+- *)* *.0 **2 *)2 **1 *)1 *), *)0 *)) ) *+0 *)0 *,- **2 **, **- **) ) *+, *++ *,1 *2- **/ *+0 ) *,, *0* **0 *1* *0) ) **. *2- *2+ *)) *++ */2 *0) ) */. *+) ) *10 ) ! -( ? 1 + " τ ' ) $ 0 66 fi (x) $ - fi (x) ∈ [0, 1] i ∈ K x ∈ P # $A "A r = 6 ρ = 0.15 α = 0 ε = 10−4 ! X X X |X| ≈ |X | ! X " β τ " X & ρ τ ' Pτβ,ρ ! ) " - # ! 6 9 r # % 9 dH (P ρ , Pτβ ,ρ ) " > P ρ Pτβ ,ρ Pτβ ,ρ P ρ " ∗ ∗ ∗ ∗ ∗ d (P ρ ∗ , Pτβ∗,ρ ) ∗ = 1 ∗ |P ρ | · |Pτβ∗,ρ | x ∈P ρ ∗ y ∈Pτβ∗,ρ min∗ ||f (x ) − f (y)||; minρ ||f (x) − f (y )|| . y∈Pτβ∗ ,ρ F x∈P 6. ! X & dH d X & dH d 0 τ ∗ z ∗ -C 0 E r dH E F 3 : C . > 6 E3 E-6 E-C E6C E>C E>C E.C E.6 E.3 E.C E.- d EEEEEE> EE EE- EE6> EE> EEC3 EE3. E6 EEC EEFF d H E-F E63 E>> E>: E:C E:. E. EF3 EF6 E36 E:. d EEE. EEEF EE. EE-EEC3 EE6 E:E E-E: E-C E-6 E.- τ∗ E E E E EEE3 EEC EE66 EE:3 EE. EFE E-6C z∗ EF. EF6 EF6 EFEF E3F E:: ECF E.. E>> E3 ! 6( H r ! ) r & 0 $ ! ! 6 ! >A " A (x̂, ŷ) " % 9 > + (x̂, ŷ) ∈ arg max x,y max min ||f (x) − f (y)||; max∗ minρ ||f (x) − f (y)|| , x∈P ρ y∈P β ∗ ,ρ τ∗ y∈Pτβ∗ ,ρ x∈P 6C ||f (x̂) − f (ŷ)|| = 0.585 f(P ρ ) f (x̂) f(Pτβ,ρ ) dH f (ŷ) + ( # (x̂, ŷ) " % 9 ! 9 " " i = maxx∈X fi (x) − minx∈X fi (x) ! 9 (x̂, ŷ) i " ,9(x, y)i = |f (x)−f (y)| ! > 9 x̂ ρ ' ŷ ρ τ ' & + (x̂, ŷ) ||f (x̂) − f (ŷ)|| = 0.585 9 -EM * " i i i ) ∈ arg ( x, y min β ∗,ρ ρ ||f (x) − f (y)|| − d (P , Pτ ∗ ) β ∗,ρ x∈P ρ , y∈Pτ ∗ 6: ! . $ 9 9 (x, y) + (x, y) -E i 1 2 3 4 5 6 7 8 9 10 11 12 fi (x̂) fi (ŷ) FE. FFE --. -63E -3E 663 -:- -:36 >>: .>C C6- CC...E ...E -:>CE -:>>E 3F3 F6 :63C 3--F EC EE ->3C 6-C: i ,9(x̂, ŷ)i ECF EE.3 E-E:F EE: . EE. -F EE3 E33 EE6 EEE EEE 6F>E EE >63 EE> 6E6 E-3 E6F EE 6>E-6 i 1 2 3 4 5 6 7 8 9 10 11 12 fi ( x) fi ( y) 3F6 3FC --:. --.: 663 6E-:> -:.E >C 6F..C .6E ...E ...E -:C-E -:C>: F- FEF :6-C :6FC E.: EC3 ->-: -.6F i ,9(x, y)i ECF EE E.3 EE6 E:F EE> . EE -F EEE33 EE6 EEE EEE 6F>E EE >63 EE 6E6 EEE6F EE6 6>EE6 ! >( ,9 (x̂, ŷ) " ! .( ,9 (x, y) $ % 9 dH = 0.585 d = 0.093 ! . 9 $ 4% 2% ! C ρ 9 0 $ ρ E EE. EE E. E-E E-. E6E dH E.6 E>F E>3 E>C E6: E6> E-- d EE>> EE.E EE>: EE> EE6> EE-3 EE3 d H ECF E3F E3 E:. EC. E:: E:3 d EE. E6 E: EE6 EEFE>: EF. τ∗ EE: EE-EE- EEC EE. EE> EEE: ! C( H ρ r = 6 $ ' " % ρ ( ρ ' ! C X X 0 $ ρ |P ρ | ) " " # ! ) ! $ P * ! " $ $ ' % $ ! $ & $ ! * - & $ # 9 ! ) " " ! $ % 9 ' ! ! $ ' ! " 3)4 5 6 7 -0 829 8)--/9 1/):10. 3+4 ! "' &6 $; +**. 324 ! " # $ < 5 = = 8<5==7 +**/9 & >' &> $; +**/ =( 3,4 # $ %?@ +,2 ? A % ?' @' 5%" BA ; C +**. 314 % & ! " # = D 7 ++ 829 8)--19 +1):+.* 3.4 ' ( ' ) # * !" $ # % # E ; 2, 8)9 8+**29 .2:0+ 3/4 + ( ) & ' # 6 (= E / 8)--09 2,:,/ 304 ! , ( # @< F +**1*)) E ( 5 ??% @ ? +**1 3-4 # # ( ( 7 11 8+**+9 2+-:2,1 3)*4 % * ! !) * ! ) # ! 'G= % = +**2 3))4 * +' # # # !+! 5 6 7 ))- 8+9 8)---9 2/2:2/0 3)+4 * - , # % 5 6 7 ) 8)-//9 )/.:)0, 3)24 ?F7< ? -) . +)/0 123112 )))'!$% !( 3),4 ( ! % . 4 # ? 6 & ( 5 +, 8)-0/9 ))*):))+) 3)14 -) (/ ( ' % ' 5 ( ; 2* 8)-0,9 )2,.:)2,- 3).4 % (' !)6 73832 9,:22;< )))' )$!$% 3)/4 ! ! @ ( $; )--0 3)04 ! ) (<" ; )--/ 3)-4 * " - ' - + ! & >' &> $; )-00 3+*4 0 ( = 5 6 7 )+* 8+***9 21-:2/, --
© Copyright 2025 Paperzz