Ellipses Homework

Algebra 2 CP
9.4 Homework
Ellipses
Homework
Name__________________
Date___________________
Graph the ellipse.
1.
x2 y2

1
4 25
2.
x2
 y2 1
64
3.
16 x 2  121y 2  1936
4.
x2 y2

1
81 25
5.
x2 y2

1
4 49
6.
x2 y2

1
16 20
Find the coordinates of the foci of the ellipse centered at the origin with the given information.
7. Vertices (0, 7) (0, -7)
8. Vertices (-11, 0) (11, 0)
Co-vertices (-5, 0) (5, 0)
Co-vertices (0, -4) (0, 4)
Write an equation of an ellipse whose Center is (0, 0) that satisfies the given information.
9. Vertices (5, 0) (-5, 0)
10. Vertices (0, -6) (0, 6)
Co-Vertices (0, -3) (0, 3)
Co-Vertices (-4, 0) ( 4, 0)
11. Vertices (0, -7) (0, 7)
Foci (0, -3) (0, 3)
12.
13.
14. Vertices (-8, 0) (8, 0)
Co-vertices (0, -7) (0, 7)
Vertices (0, -2) (0, 2)
Foci (0, -1) (0, 1)
Vertices (-7, 0) (7, 0)
Foci (-4, 0) (4, 0)
Algebra 2
9.4 Homework (Day 2)
Name__________________
Date___________________
Ellipses Worksheet
Identify the vertices, co-vertices, and foci. Then, graph the equation.
1.
x2 y2

1
4 25
2.
2
2
3. 16 x  121y  1936
5.
x  22   y  22  1
7.
 x  2 2   y  2 2
64
16
36
x2
 y2  1
64
4.
x  32   y  52
6.
x  32   y  12
81
20
25
16
x 2  y  2

1
4
25
2
1
8.
1
1
Write an equation that satisfies the given information.
9. Center (0, 0); Vertex (5, 0); Co-Vertex (0, -3)
10. Center (0, 0); Vertex (0, -6); Co-Vertex (4, 0)


11. Center (0, 0); Vertex  3 5 , 0 ; Focus (0, -3)
12. Center (0, 0); Vertex (0, 7); Focus (0, -3)
13. Vertices (-3, 4) (5, 4); Foci (-1, 4) (3, 4)
14. Vertices (10, 2) (-8, 2); Foci (6, 2) (-4, 2)
14. Vertices (-2, 1) (-2, 9); Co-Vertices (-4, 5) (0, 5)
15. Vertices (1, 1) (7, 1); Co-Vertices (4, -1) (4, 3)
16. Vertices (1, 5) (1, -1); Co-Vertices (0, 2) (2, 2)
17. Vertices (-1, 4) (7, 4); Foci (1, 4) (5, 4)
Algebra 2 CP
9.2 Homework
Parabolas Worksheet
Name__________________
Date___________________
Identify the focus, directrix, and axis of symmetry. Create a table and graph the equation.
y 2  16 x
1.
x2  2y
2.
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
x
x
y
y
y 2  4x
3.
x 2  8 y
4.
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
x
x
y
y
x  2y 2
5.
y  x2
6.
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
x
x
y
y
y
7.
1 2
x
3
x
8.
1 2
y
10
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
x
x
y
y
x 2  4 y
9.
10. x  5 y
2
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
x
x
y
y
11. y  x
12. y  8 x
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
2
2
x
x
y
y
Write the standard form of the equation of the parabola with vertex at (0, 0) and the given focus or
directrix.
13. Directrix: x 
1
2
14. Directrix: y = -1
3 
, 0
2 
15. Focus: (0, 3)
16. Focus: 
17. Directrix: y = 2
18. Focus: (5, 0)
19. Focus: (0, 4)
20. Directrix: x = -2
21. Directrix: x = 2
22. Directrix: y = -3
23. Focus: (-3, 0)
24. Focus:  0, 
25. Focus: (2, 0)
26. Focus:  0,
27. Directrix: x = -5
28. Directrix: y = 6
29. Focus: (0, -3)
30. Focus: (-7, 0)
31. Directrix: y = 6
32. Directrix: x = -3




3

4
7

4
Algebra 2 CP
9.2 Homework (Day 2)
Name__________________
Date___________________
Parabolas Worksheet
Identify the vertex, focus, directrix, and axis of symmetry. Graph the equation.
1.
y 2  8x
2.
x 2  2 y
Vertex:______________
Vertex:_______________
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
3.
y
1
x  32  2
16
4.
x
1
 y  2 2  4
4
Vertex:______________
Vertex:_______________
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
5.
x
1
 y  22  3
8
6.
y
1
 x  32  1
4
Vertex:______________
Vertex:_______________
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
7.
Axis of Symmetry:______
1
2
y    x  5
12
8.
x
1
 y  2 2  2
8
Vertex:______________
Vertex:_______________
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
9.
x  42  8 y  2
10.
 y  12
 4 x  6 
Vertex:______________
Vertex:_______________
Focus:_______________
Focus:_______________
Directrix:_____________
Directrix:_____________
Axis of Symmetry:______
Axis of Symmetry:______
Write the equation of the parabola with the given conditions.
11. Vertex: (0, 0)
Focus: (2, 0)
12. Vertex: (0, 0)
 7
Focus:  0, 
 4
13. Vertex: (0, 0)
Directrix: x = -5
14. Vertex: (0, 0)
Directrix: y = 6
Focus: (1, -3)
16. Vertex: (2, 5)
Focus: (-7, 5)
15. Vertex: (-4, -3)
17. Vertex: (5, 3)
Directrix: y = 6
18. Vertex: (-2, 5)
Directrix: x = -3
Algebra 2 CP
9.5 Homework
Hyperbolas Worksheet
Name__________________
Date___________________
Identify the vertices, foci, and asymptotes. Then graph the hyperbola.
1.
y2 x2

1
16 81
2.
x2 y2

1
25 49
3.
y2 x2

1
36 100
4.
x2 y2

1
49 144
5.
x2 
6.
y2 x2

1
121 16
y2
1
9
Write an equation of a hyperbola whose center is (0, 0) that satisfies the given information.
7.
Foci (-7, 0) (7, 0)
Vertices (-3, 0) (3, 0)
8.
9.
Foci (0, -5) (0, 5)
Vertices (0, -3) (0, 3)
10. Foci (-7, 0) (7, 0)
Vertices (-1, 0) (1, 0)
11. Foci (-4, 0) (4, 0)
Vertices (-2, 0) (2, 0)
12. Foci (0, -8) (0, 8)
Vertices (0, -1) (0, 1)


13. Foci 53 , 0  53 , 0
Vertices (-5, 0) (5, 0)

Foci (0, -6) (0, 6)
Vertices (0, -2) (0, 2)


14. Foci 0,  41 0, 41
Vertices (0, -4) (0, 4)

Algebra 2 CP
9.5 Homework (Day 2)
Hyperbolas
Worksheet (Day 2)
Name__________________
Date___________________
Identify the center, slope of asymptotes, vertices, and foci. Then graph the hyperbola.
1.
y2 x2

1
16 36
2.
3.
x  32   y  52
1
4.
5.
 y  4  2   x  3 2
1
6.
4
9
25
x2 y2

1
81 9
 y  6 2   x  4 
16
x 2  y  1

1
4
16
2
Write an equation of a hyperbola that satisfies the given information.
2
1
7.
Foci (0, -4) (0, 4)
Vertices (0, -2) (0, 2)
8.
9.
Foci (6, -6) (6, 4)
Vertices (6, -3) (6, 1)
10. Foci (-1, 7) (9, 7)
Vertices (1, 7) (7, 7)
11. Foci (-2, 1) (-2, -9)
Vertices (-2, 0) (-2, -8)


13. Foci 2  53 ,  3 2  53 ,  3
Vertices (9, -3) (-5, -3)
Foci (-6, 0) (6, 0)
Vertices (-2, 0) (2, 0)
12. Foci (-4, 1) (8, 1)
Vertices (-2, 1) (6, 1)




14. Foci 2, 3  41 2, 3  41
Vertices (2, -2) (2, 8)
Identifying Conic Sections WS
Algebra 2 CP
9.6 Homework
Name__________________
Date___________________
Identify the conic section from its equation.
1) For circles also identify the radius and center.
2) For ellipses also identify the center, vertices, co-vertices, and foci.
3) For parabolas also identify the vertex, focus, and directrix.
4) For hyperbolas also identify the vertices and foci.
1.
y  42  x  22
16
81
x 2  y  3

1
25
49
2
1
2.
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
3.
y 2  36x  2
4.
x2
2
  y  5  1
49
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
5.
x  32  y 2  18  0
6.
 x  7 2
16
y
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
7.
x2 
 y  12
9
1
8.
 y  12
 1  x  9
2
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
9.
11x 2  5 y  3  55
2
10.
 x  5 2

1
y
16
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
11.
6 x  8 y  9  24
2
2
12.
x2
2
  y  4  1
18
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________
13.
0  25   y  1  x 2
2
14.
 y  12  5x  1  0
______________________________
______________________________
______________________________
______________________________
______________________________
______________________________