Lecture #16 Topics • Linear Model Assembly – Lockheed C5A Galaxy • Aircraft modes • Develop approximate models for aircraft modes • Connection between static and dynamic stability Lockheed C-5A Galaxy Longitudinal State-Space Description *************************************************** Longitudinal State Space Model Alon = -0.1407 -0.0002 -0.0000 0 Blon = 0 -0.0378 -1.5616 0 17.0992 0 -32.1763 -0.6076 0.9591 -0.0020 -3.1928 -0.6971 0.0002 0 1.0000 0 Lateral-Directional State-Space Description *************************************************** Lateral/Directional State Space Model AlatD = -0.0208 0.0000 -0.9942 0.0517 0 -1.8718 -0.6576 0.0396 0 0 0.8650 -0.0383 -0.0163 0 0 0 1.0000 0.0384 0 0 0 0 1.0007 0 0 BlatD = 0.0016 0.6076 0.0266 0 0 0.0010 -0.0168 -0.6031 0 0 Approximate Models Longitudinal Model (Straight & Level) u X X u U Z 0 Zu q M M u X Pu X Xq Z Pu Z Zq U 0 M Pu M M P Mq 0 1 0 g cos 0 u XT g sin 0 ZT 0 q MT 0 0 X E Z E T M E E 0 Rearrange the left hand side 1 0 0 0 X U 0 Z M 0 0 0 u Xu 0 0 Z u 1 0 q M u 0 1 X Pu X Xq Z Pu Z Zq U 0 M Pu M M P Mq 0 1 0 g cos 0 u XT g sin 0 ZT 0 q MT 0 0 X E Z E T M E E 0 Short Period Approximation The approximation is based on the following observations: • Dominant in angle-of-attack and pitch rate dynamics • Velocity of the aircraft has no components of the short-period mode; i.e., velocity is virtually constant when the airplane is excited in the short-period mode Thus, short-period approximation is obtained by removing the velocity and pitchattitude dynamics (deleting 𝑢 𝑎𝑛𝑑 𝜃) Z U 0 Z 0 q M M 1 P M where C Mq C L H X Ref X ACH U 0c W 2 qH SH q SW Z q U 0 ZT M q q MT Z E T M E E Short Period Approximation: Characteristic Equation (Z q U 0 ) Z M Mq U 0 Z U 0 Z M q Zq U 0 Z M M P 0 U 0 Z U 0 Z 2 Which implies (Z q U 0 ) Z 2 SP SP M Mq U 0 Z U 0 Z Zq U 0 M M P U Z U Z 0 0 2SP Z Mq Z M Mq U0 Mq Z U0 M M P Root-Locus of SP eigenvalues (Navion) Augmentation System Pitch Damper (Augmentation System) • Used to increase short period damping • From the characteristic equation damping can be increased by increasing the effective pitch damping derivative (Z q U 0 ) Z 2 SP SP M Mq U 0 Z U 0 Z Z M Mq U0 • But pitch damping derivative is effectively pitching moment due to pitch rate. Thus, to provide additional damping we need to provide additional pitching moment proportional to pitch rate. Designing Pitch Damper Begin from longitudinal state space form X 0 0 u X u X Pu X 1 0 U Z 0 0 Z Z Z 0 Pu u M 1 0 q M u M Pu M M P 0 0 0 0 1 0 0 Xq Zq U 0 Mq 1 g cos 0 u XT g sin 0 ZT 0 q MT 0 0 X E Z E T M E E 0 And use the perturbation control input as 𝛿𝑒 = 𝐾𝑞 𝑞 = 𝐾𝑞 𝜃 1 0 0 0 X U 0 Z M 0 0 0 u Xu 0 0 Z u 1 0 q M u 0 1 X Pu X Xq X e K q Z Pu Z Zq U 0 Z EK q M Pu M M P M q M EK q 0 1 0 g cos 0 u XT g sin 0 ZT T 0 q M T 0 0 Vary the feedback gain Kq until desired damping is achieved. IMPORTANT: Feedback gain has units. Larger the gain, larger the commanded signal. Implementation: Stability Augmentation System Without augmentation 𝛿𝑒0 Aircraft (Full Nonlinear System) Pilot command to maintain trim Reference Condition + Perturbation Response With augmentation 𝛿𝑒0 Pilot command to maintain trim Aircraft (Full Nonlinear System) 𝛿𝐸 Perturbation input Kq Reference Condition + Perturbation Response q Perturbation pitch-rate
© Copyright 2026 Paperzz