CORRIGENDUM TO “Lp -GENERIC COCYCLES HAVE
ONE-POINT LYAPUNOV SPECTRUM”
ALEXANDER ARBIETO AND JAIRO BOCHI
Lemma 4 in [1] is not true, unless k = 1 (this case was used in page 78, line 9).
For arbitrary k, the correct statement is:
Lemma 4’. Given k ∈ {1, . . . , d} and P > 0, there is C = C(P, k, d) > 0 such
that for every A, B ∈ GL(d, R) with kAk, kBk ≤ P , we have
log+ k∧k Bk ≤ log+ k∧k Ak + CkB − Ak.
Proof. Let L = ∧k B − ∧k A. Let {ei ; 1 ≤ i ≤ d} be an orthonormal basis of Rd .
Then {ei1 ∧ · · · ∧ eik ; 1 ≤ i1 < · · · < ik ≤ d} is an orthonormal basis of ∧k Rd . We
have
L(ei1 ∧ · · · ∧ eik ) = (B − A)ei1 ∧ Bei2 ∧ · · · ∧ Beik +
Aei1 ∧ (B − A)ei2 ∧ Bei3 ∧ · · · ∧ Beik + · · · +
Aei1 ∧ · · · ∧ Aeik−1 ∧ (B − A)eik .
It follows that kL(ei1 ∧· · ·∧eik )k ≤ kP k−1 kB −Ak. Therefore kLk ≤ CkB −Ak for
some constant C. Then k∧k Bk ≤ k∧k Ak+CkB −Ak and using that log+ (x+y) ≤
log+ x + y for all x, y ≥ 0, the lemma follows.
Now we indicate the necessary modifications in the proof of part (a) of Theorem 2. In the case condition (3) is satisfied, we let N and K be as before. Take
P = eKN and let C be given by lemma 4’. We modify the definition of δ 0 in (5)
to δ 0 = min {η, εC −1 e−K(N −1) }. If x ∈ G then kAN (x)k, kB N (x)k ≤ P . So we
can apply lemma 4’ and the estimative (8) becomes
Z
Z
C
1
+
k N
log k∧ B k ≤ Λk (A) + 2ε +
kB N − AN k.
N G
N G
Then the upper bound in (9) becomes Λk (A) + 3ε, and so the first case of part (a)
follows.
R
For the general case, we replace the first part in (10) with k La log+ kAk < ε.
Then in page 80, line 2, we can further estimate
Z
Z
+
k
··· ≤
log k∧ Bk ≤ k
log+ kBk.
La
La
Using lemma 4 with k = 1, we can change line 4 to
Z
Z
Z
+
λ̂k (B, x) dµ(x) ≤ k
log kAk + k
La
La
Then we finish the proof in the same way as before.
Date: July 15, 2003.
1
La
kB − Ak.
2
A. ARBIETO, J. BOCHI
References
[1] A. Arbieto and J. Bochi. Lp -generic cocycles have one-point Lyapunov spectrum. Stochastics and Dynamics, 3 (2003) no. 1, 73–81.
Alexander Arbieto ([email protected])
Jairo Bochi ([email protected])
IMPA, Estrada D. Castorina 110, Jardim Botânico, 22460-320 Rio de Janeiro, Brazil
© Copyright 2026 Paperzz