Spectral Properties of Planar Quantum Waveguides with Combined Boundary Conditions Jan Kříž QMath9, Giens 13 September 2004 Collaboration with Jaroslav Dittrich (NPI AS CR, Řež near Prague) and David Krejčiřík (Instituto Superior Tecnico, Lisbon) • J. Dittrich, J. Kříž, Bound states in straight quantum waveguides with combined boundary conditions, J.Math.Phys. 43 (2002), 3892-3915. • J. Dittrich, J. Kříž, Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J.Phys.A: Math.Gen. 35 (2002), L269-L275. • D. Krejčiřík, J. Kříž, On the spectrum of curved quantum waveguides, submitted, available on mp_arc, number 03-265. Model of quantum waveguide free particle of an effective mass living in nontrivial planar region W of the tube-like shape Impenetrable walls: suitable boundary condition • Dirichlet b.c. (semiconductor structures) • Neumann b.c. (metallic structures, acoustic or electromagnetic waveguides) • Waveguides with combined Dirichlet and Neumann b.c. on different parts of boundary Mathematical point of view spectrum of -D acting in L2(W) (putting physical constants equaled to 1) Hamiltonian • Definition: one-to-one correspondence between the closed, symmetric, semibounded quadratic forms and semibounded self-adjoint operators • Quadratic form Q(y,f) := ( y,f)L2(W), Dom Q := {y W1,2(W) | yD= 0 a.e.} D W … Dirichlet b.c. Energy spectrum 1. Nontrivial combination of b.c. in straight strips Evans, Levitin, Vassiliev, J.Fluid.Mech. 261 (1994), 21-31. Energy spectrum 1. Nontrivial combination of b.c. in straight strips L = d /d Energy spectrum 1. Nontrivial combination of b.c. in straight strips ess = 2/(d 2),) --L]-1 N -L] L0 (0 , 1) : L (0 , L0] disc = , ess = 2/(d 2),) --L]-1 N -L] L > 0 : disc . Energy spectrum 1. Nontrivial combination of b.c. in straight strips Energy spectrum 1. Nontrivial combination of b.c. in straight strips Energy spectrum 1. Nontrivial combination of b.c. in straight strips L = 1/2 Energy spectrum 1. Nontrivial combination of b.c. in straight strips L = 2 Energy spectrum 1. Nontrivial combination of b.c. in straight strips L=0.2 7 Energy spectrum 1. Nontrivial combination of b.c. in straight strips limit case of thin waveguides Energy spectrum 1. Nontrivial combination of b.c. in straight strips limit case of thin waveguides • Configuration W := (0,d), D=((-,-d) {d}) ((d, ) {d}) , I:= (-d,d) N=( {0}) (I {d}) • Operators -DW QW(f,y) = (f, y )L2(W) , QW={yW1,2(W) | y D=0} Dom(-DW) ... Dom can be exactly determined -DI QI(f,y) = QI = W01,2(I) Dom(-DI) ={y ( f, y )L2(I) , Dom W2,2(I) | y(-d) = Energy spectrum 1. Nontrivial combination of b.c. in straight strips limit case of thin waveguides • Discrete eigenvalues li(d), i = 1,2,...,Nd, where --L]-1 Nd -L] ... eigenvalues of -DW mi , i N ... eigenvalues of -DI Theorem: N N , e >0, d0 : (d < d0 ) | li(d) - mi| < e, i = 1, ..., N. PROOF: Kuchment, Zeng, J.Math. Anal.Appl. 258,(2001),671-700 Lemma1: Rd: Dom QI Dom QW, Rd(f 2 2 d = f (x). R ( ) L2 ( I ) 2 f Dom QI : L2 ( I ) L2 ( ) R ( ) d 2 L2 ( ) )(x,y) Energy spectrum 1. Nontrivial combination of b.c. in straight strips limit case of thin waveguides Corollary 1: i = 1, ..., N, li(d) mi . PROOF: Min-max principle. WN(W) ... . linear span of N lowest eigenvalues of -DW Lemma 2: Td: WN(W) Dom QI , )(x) = y (x,y)2 I . for d small enough and y (T ) d 1. T 2. d 2 L (I ) 2 L2 ( I ) d 2 1 L2 ( ) d 1 2 L2 ( ) Td(y O( d ) WN(W): 1 O(d ) 2 L2 ( ) Energy spectrum 2. Simplest combination of b.c. in curved strips asymptotically straight strips Exner, Šeba, J.Math.Phys. 30 (1989), 2574-2580. Goldstone, Jaffe, Phys.Rev.B 45 (1992), 14100-14107. Energy spectrum 2. Simplest combination of b.c. in curved strips ess = 2 / ( d 2) , ) The existence of a discrete bound state essentially depends on the direction of the bending. ess = d 2 / 2 , ) disc , whenever the strip is curved. Energy spectrum 2. Simplest combination of b.c. in curved strips disc disc , if d is small enough disc = Curved strips - simplest combination of boundary conditions • Configuration space G : 2 ... curve n = (-G2’, G1’) ... field k = det (G’,G’’) Wo := (0,d) the width d L : 22 : {(s,u) W := L(Wo) along G k := max {0,k} a := k(s) ds C2 - infinite plane unit normal vector ... ... curvature straight strip of G(s) + u n(s)} ... curved strip ... bending angle Curved strips - simplest combination of boundary conditions • Assumptions: W is not self-intersecting k L(), d || < 1. k+|| L : Wo W ... C1 – diffeomorphism L-1 defines natural coordinates (s,u). Hilbert space L2(W) L2(Wo, (1-u k(s)) ds du) • Hamiltonian: unique s.a. operator H of quadratic form ____ Q(y,f) := (Wo (1-u k(s))-1 sy (1-u k(s)) uy uf )ds du _____ sf + Curved strips - simplest combination of boundary conditions • Essential spectrum: Theorem: lim|s| k(s) = 0 ess(H) = [/(4d2), ). 1. DN – bracketing 2. Generalized Weyl criterion (Deremjian,Durand,Iftimie, Commun. in Parital Differential Equations 23 (1998), no. 1&2, 141-169. PROOF: Curved strips - simplest combination of boundary conditions • Discrete spectrum: Theorem: (i) Assume k 0. If one of (a) k L1() and a 0, (b) k- 0 and d is small enough, is satisfied then inf (H) < /(4d2). (ii) If k- 0 then inf (H) /(4d2). PROOF: (i) variationally (ii) y Dom Q : Q(y, /(4d2) ||y||2 0. Corollary: Assume lim|s| k(s) = 0. Then (i) H has an isolated eigenvalue. (ii) disc(H) is empty. y) - Conclusions • Comparison with known results – Dirichlet b.c. bound state for curved strips – Neumann b.c. discrete spectrum is empty – Combined b.c. existence of bound states depends on combination of b.c. and curvature of a strip • Open problems – more complicated combinations of b.c. – higher dimensions – more general b.c. – nature of the essential spectrum
© Copyright 2025 Paperzz