Regularised Inversion and Model Predictive Uncertainty Analysis PEST … Input files Model Output files writes model input files Input files PEST Model Output files reads model output files writes model input files Input files PEST Batch or Script File Output files reads model output files PEST Input files Input files Model Model calibration conditions predictive conditions Output files Output files PEST Input files Input files Model Model calibration conditions predictive conditions Output files Output files Maximise or minimise key prediction while keeping model calibrated value Field or laboratory measurements and model output:- Model output calibration dataset q2 q1 q3 etc distance or time prediction value Field or laboratory measurements and model output:- Model output calibration dataset q2 q1 q3 etc distance or time Lower predictive limit value Field or laboratory measurements and model output:- Model output calibration dataset q2 q1 q3 etc distance or time Upper predictive limit value Field or laboratory measurements and model output:- Model output calibration dataset q2 q1 q3 etc distance or time Confidence interval for prediction value Field or laboratory measurements and model output:- Model output calibration dataset q2 q1 q3 etc distance or time Predictive uncertainty interval Traditional Parameter Estimation • Principal of parsimony • Employ no more parameters than can be estimated • Calibration complexity dictated by calibration dataset. Regularised inversion… Advantages of Regularised Inversion • The inversion process is able to put the heterogeneity exactly where it is needed • Maximum information content is extracted from the data • Predictive error variance is thus minimised • Parameterisation complexity determined by prediction • Because complexity is retained in the system, we have the ability to realistic assess predictive uncertainty because we do not exclude the detail on which a prediction can depend. Two Principal Types of Regularisatoin • “Tikhonov” – constrained minimisation • Subspace methods – principal component analysis SVD-Assist Advantages • Highly stable numerically. • Highly efficient in model run requirements. • Can adapt to noise content of data. Hydraulic conductivity Specific Yield 771 18 16 14 12 Feet 10 Measured 8 Modelled 6 4 2 0 -2 1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 Points Water levels 942 20 10 0 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 -10 Feet Measured Modelled -20 -30 -40 -50 Points Water levels 4609 20 15 10 Feet Measured Modelled 5 0 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 -5 Points Water levels 3752 25 20 Feet 15 Measured 10 Modelled 5 0 1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 -5 Points Water levels devilswb Points -1800000 -1600000 -1400000 Feet -1200000 -1000000 Measured Modelled -800000 -600000 -400000 -200000 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 0 Snake River Inflow crystal Points -5.00E+07 -4.50E+07 -4.00E+07 -3.50E+07 Feet -3.00E+07 Measured -2.50E+07 Modelled -2.00E+07 -1.50E+07 -1.00E+07 -5.00E+06 1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 0.00E+00 Snake River Inflow Local Domain and Air Photo Source area Recovery Well MTBE concentrations for an elevation of:- –35 ft-msl to –40 ft-msl 0 ft 200 ft 400 ft 600 ft 800 ft Pilot Points and Observations Source area Recovery Well • Pilot points – 58 per layer, L1-L7, for HHK, VHK, POR (crosses). • Water level observations (circles); MTBE observations (stars) • Calibrated ‘mean’ particle. Example Section Profile -40 -60 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 Profile across plume at IRM transect 190 200 Typical Concentration Profile 20.0 Figure 4 Elevation (feet MSL) 0.0 -20.0 -40.0 -60.0 -80.0 0 2,000 4,000 6,000 MTBE Concentration (ppb) 8,000 Observed MTBE Modelled MTBE -35 to -40 ft msl 0 ft 200 ft 400 ft 600 ft 800 ft 0 ft 200 ft 400 ft 600 ft 800 ft 20.0 Elevation (feet MSL) 0.0 -20.0 -40.0 -60.0 -80.0 1 10 100 1,000 MTBE Concentration (ppb) 10,000 20.0 Elevation (feet MSL) 0.0 -20.0 -40.0 -60.0 -80.0 1 100 10,000 MTBE Concentration (ppb) 1,000,000 20.0 Elevation (feet MSL) 0.0 -20.0 -40.0 -60.0 -80.0 1 10 100 1,000 MTBE Concentration (ppb) 10,000 20.0 Elevation (feet MSL) 0.0 -20.0 -40.0 -60.0 -80.0 1 10 100 1,000 10,000 MTBE Concentration (ppb) Profile - data Source Area FLOW 20.00 10.00 0.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00 -70.00 -80.00 -90.00 3000.00 2500.00 2000.00 1500.00 1000.00 500.00 0.00 -500.00 Profile – data and modelled concentrations Source Area FLOW 20.00 10.00 0.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00 -70.00 -80.00 -90.00 3000.00 2500.00 2000.00 1500.00 1000.00 500.00 0.00 -500.00 Simulated and Observed MTBE at the Recovery Well 5100 Observed 4600 Simulated 4100 MTBE (ppm) 3600 3100 2600 2100 1600 1100 600 100 0 20 40 60 80 100 Time Since System Start-up (Days) 120 140 Calibrated Horizontal and Vertical Hydraulic Conductivities Ground Water Flow The cost of uniqueness ….. Model grid Dimensions of model domain 500m by 800m Boundary Q = 50 m3/day H = 0.0 Particle release point Reality Reality True time = 3256.24 days True exit point = easting of 206.78 12 head observations Reality Exit time = 3256 Exit point = 206 Calibration to 12 observations (no noise) Exit time = 7122 [true=3256] Exit point = 241 [true=206] Reality 12 obs This model (with its three parameters)… Calibration to 12 observations Zone-based calibration Exit time = 6364 [true=3256] Exit point = 244 [true=206] … does not even acknowledge the detail upon which a critical prediction will depend, whereas this model …. Calibration to 12 observations (no noise) Exit time = 7122 [true=3256] Exit point = 241 [true=206] Reality 12 obs Another important point… … does . The former model will grossly under-estimate predictive variance. Calculation of Model Predictive Error Variance….. Parameter space Increasing number of parameter combinations Estimable parameter combinations Increasing number of parameter combinations Unestimable parameter combinations Error variance calculable from measurement error C(h) Increasing number of parameter combinations Error variance supplied by hydrogeologists C(p) Error variance calculable from measurement error C(h) Error variance supplied by hydrogeologists C(p) model prediction Therefore total “possible model error” depends on both C(h) and C(p) σ2 = yt(I-R)tC(p)(I-R)y + ytGC(h)Gy Error variance calculable from measurement error C(h) Error variance supplied by hydrogeologists C(p) model prediction Where do we draw the line on what we try to estimate? Error variance calculable from measurement error C(h) Error variance supplied by hydrogeologists C(p) model prediction Predictive error variance vs dimensions of calibrated parameter space Predictive error variance Total “Measurement” term “Null space” term Number of singular values Optimising Data Acquistion….. Schematic block diagram illustrating model layers and boundary conditions The prediction Pumping from layer 3 - 2050 Measurements Observation wells Layer 1 Layer 2 Layer 3 Water levels Parameters Parameters included in analysis Hydraulic conductivity – layer 1 Hydraulic conductivity – layer 2 Hydraulic conductivity – layer 3 VCONT – layer 2 VCONT – layer 3 Specific yield – layer 1 Specific yield – layer 2 Primary storage capacity – layer 2 Primary storage capacity – layer 3 Riverbed conductance Recharge Pre-calibration contribution to predictive error variance 400 350 300 250 200 150 100 CR Recharge VCONT2 VCONT1 Sc3 Sc2 Sy3 Sy2 Sy1 K3 K2 0 K1 50 Predictive error variance vs dimensions of calibrated parameter space Varance of predictive error (ft^2) 1200 1000 800 Minimum = 418 ft2 at 160 singular values 600 400 200 0 1 10 Number of singular values 100 Contribution to pre- and post-calibration predictive variance by selected parameter types 400 300 200 Pre-cal 100 Post-cal 0 K3 VCONT1 VCONT2 Optimization of data acquisition:How can I deepen the minimum in the predictive variance curve? σ2 = yt(I-R)tC(p)(I-R)y + ytGC(h)Gy Reduction in predictive variance if VCONT2 characterization at each point is reduced from 0.74 to 0.37 (maximum reduction = 112.7ft2) Locations of proposed layer 2-3 differential head measurements (reduction in predictive error variance = 230 ft2) 400 350 300 250 200 150 100 50 0 NT 2 VC O NT 1 VC O K3 Pre-cal Post-cal Geophysics Extra_wells Predictive error variance vs dimensions of calibrated parameter space Varance of predictive error (ft^2) 1200 Previous minimum = 418 ft2 at 160 singular values 1000 800 600 400 New minimum = 188 ft2 at 190 singular values 200 0 10 100 Number of singular values Error variance of an existing model….. IBOUND array Riverbed K parameters Log of K (K ranges from 1e-4 to 500) All lateral Inflow Zones (red cells are fixed head – except for zone 1) Management zones 19 5 6 9 8 10 3 11 7 16 12 2 13 15 4 14 Number of cells Head error variance
© Copyright 2026 Paperzz