Symbolic Logic Inference rules MP MT H S. (p ::J q) (p ::J q) P -q (p ::J q) (q::J r) I ... q I ... -p ~ p q D.S. ------- I ... (p e q) lliJ (p ::J q) (r::J 5) (p V (p e q) I ... p I ... q I ... (P::J r) (p v q) (p v q) -p -q I ... q I ... D N. p :: --p ~ (p e q) A.d.Q.. p q I... (p v q) I... (p v q) P Comm. (p v q) :: (q v (p e e q) :: (q A5S0C. p) p) ((p v q) v r) :: (p v (q v r) ((p e q) e r) ': (p e (q e r) r) I .., (q v 5) D..!.!..IL De M. BE. p : (p v p) -(p v q) :: (-p e -q) -(peq):: (-pv-q) (p=q) :: ((p::Jq) e (q::J p)) Contrap, G.£ (p::J q) :: (-q::J -p) (p::J q) :: (-p v q) Exp, ((p e q)::J r) :: (p::J (q::J r)) CP, Dist. (pe(qvI')):: ((peq)v(per)) . (p V (q e r)) :: ((p v q) e (p v I')) [P q Q.lL -(x)¢x :. (3x)-¢x -(3x)¢x :. (x)·_¢x - (x) -¢x :: (3x)¢x - (Jx) -¢x :: (x)¢x I ... -p I ... (p::Jq) C.Q.N ill ti -(x) (¢x ::J \Vx) :: (3x) (¢x e -\Vx) -(::Jx)(¢x e \Vx) :: (x)(¢X::J -\VX) -(x)(¢X::J -\Vx) :: (3x)(¢x e \VX) -(Jx)(¢x e -~/X) :: (x)(¢x::J \Vx) (x)¢x (3x)¢x provided we flag a I ... ¢a I ... ¢a U,G, flag a I ' (3x)¢x [ ¢a I ... (x)¢x
© Copyright 2026 Paperzz