Introduction to Materials Science and Engineering Chapter 9: Phase Diagrams Textbook Chapter 11: Phase Diagrams Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy Introduction ISSUES TO ADDRESS... • When we combine two elements... what equilibrium state do we get? • In particular, if we specify... --a composition (e.g., wt%Cu – wt%Ni), and --a temperature (T) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get? Introduction ISSUES TO ADDRESS... Phase diagram is a graphical illustration of a thermodynamic equilibrium state of a material system which is defined by the composition, temperature, and pressure, namely, Gibbs free energy of a system, and illustrates, (a) The number of phases at equilibrium (b) The composition of each phases (c) The amount of each phases at equilibrium. Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy THE SOLUBILITY LIMIT Water-Sugar System Question: What is the solubility limit at 20C? Answer: 65wt% sugar. Solubility Limit 80 60 L 40 (liquid solution i.e., syrup) 20 0 Pure Water • Ex: Phase Diagram: Temperature (ºC) Max. concentration for which only a solution occurs. 100 20 40 L (liquid) + S (solid sugar) 6065 80 C o = Composition (wt% sugar) If Co < 65wt% sugar: sugar syrup If Co > 65wt% sugar: syrup + sugar. • Solubility limit increases with T: e.g., if T = 100C, solubility limit = 80wt% sugar. 100 Pure Sugar • Solubility Limit: Adapted from Fig. 9.1, Callister 6e. COMPONENTS AND PHASES • Components: The elements or compounds which are mixed initially (e.g., Al and Cu) • Phases: The physically and chemically identical material regions that result (e.g., a and b). AluminumCopper Alloy Adapted from Fig. 9.0, Callister 3e. EFFECT OF T & COMPOSITION (Co) • Changing T can change # of phases: path A to B. • Changing Co can change # of phases: path B to D. B(100,70) D(100,90) 1 phase • watersugar system Adapted from Fig. 9.1, Callister 6e. Temperature (ºC) 100 L 80 60 40 20 0 0 2 phases (liquid) L (liquid solution i.e., syrup) + S (solid sugar) A(20,700) 2 phases 20 40 60 70 80 100 Co=Composition (wt% sugar) Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy PHASE DIAGRAMS • Tell us about phases as function of T, Co, P. • For this course: Gibbs Phase Rule: P+F=C+2 --binary systems: just 2 components. --independent variables: T and Co (P = 1 atm is always used). T(C) • Phase Diagram for Cu-Ni system 1600 1500 2 phases: L (liquid) a (FCC solid solution) L (liquid) 1400 1300 a (FCC solid solution) 1200 1100 1000 0 20 40 60 80 3 phase fields: L L+a a Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991). 100 wt% Ni PHASE DIAGRAMS: # and types of phases • Rule 1: If we know T and Co, then we know: --the # and types of phases present. 1600 1500 L (liquid) B(1250,35) • Examples: T(ºC) 1400 1300 1200 Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991). 1100 1000 0 Cu-Ni phase diagram a (FCC solid solution) A(1100,60) 20 40 60 80 100 wt% Ni PHASE DIAGRAMS: composition of phases • Rule 2: If we know T and Co, then we know: --the composition of each phase. • Examples: Co = 35wt%Ni At TA: ? Only Liquid (L) CL = Co ( = 35wt% Ni) At TD: ? Only Solid (a) Ca = Co ( = 35wt% Ni) At TB: ? Both a and L CL = Cliquidus ( = 32wt% Ni here) Ca = Csolidus ( = 43wt% Ni here) Cu-Ni system T(ºC) TA 1300 TB 1200 TD 20 A L (liquid) tie line B D a (solid) 3032 35 4043 CLCo 50 Ca wt% Ni Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) PHASE DIAGRAMS: weight fractions of phases • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). • Examples: Co = 38wt%Ni At TA: Only Liquid (L) WL = 100wt%, Wa = 0 At TD: Only Solid (a) WL = 0, Wa = 100wt% At TB: Both a and L What would be WL and Wa? WL S 44 38 50wt % + R S 44 32 Wa 38 32 R 50wt % + R S 44 32 Cu-Ni system T(ºC) TA 1300 TB A L (liquid) R B S D 1200 TD 20 tie line 3032 a (solid) 50 38 4044 CL Co Ca wt% Ni PHASE DIAGRAMS: weight fractions of phases • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). • Examples: Cu-Ni system T(ºC) TA 1300 TB A L (liquid) WL S 44 35 75wt % + R S 44 32 Wa 35 32 R 25wt % + R S 44 32 S D TD 20 B R 1200 What would be WL and Wa? tie line 303235 CLCo a (solid) 4044 50 Ca wt% Ni PHASE DIAGRAMS: weight fractions of phases • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). • Examples: T(ºC) A TA B R S TB WL S 43 35 73wt % + R S 43 32 Wa R R+S = 27wt% tie line L (liquid) 1300 What would be WL and Wa? Cu-Ni system 1200 D TD 20 a (solid) 3032 35 4043 CLCo 50 Ca wt% Ni Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) THE LEVER RULE: A PROOF • Sum of weight fractions: WL + Wa 1 • Conservation of mass (Ni): Co WL CL + WaCa • Combine above equations: • A geometric interpretation: moment equilibrium: WLR WaS 1 Wa solving gives Lever Rule Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy EX: COOLING IN A Cu-Ni BINARY • Phase diagram: Cu-Ni system. T(ºC) L (liquid) L: 35wt%Ni Cu-Ni system • System is: --binary i.e., 2 components: Cu and Ni. --isomorphous i.e., complete solubility of one component in another; a phase field extends from 0 to 100wt% Ni. 1300 L: 35wt%Ni a: 46wt%Ni A 32 35 B C 46 43 D 24 L: 32wt%Ni 36 1200 a: 43wt%Ni E L: 24wt%Ni a: 36wt%Ni a (solid) • Consider Co = 35wt%Ni. 1100 20 What would be the microstructure? 30 35 Co 40 50 wt% Ni EX: COOLING IN A Cu-Ni BINARY T(ºC) L (liquid) 1300 L: 35wt%Ni a: 46wt%Ni L: 35wt%Ni Cu-Ni system A 32 35 B C 46 43 D 24 L: 32wt%Ni 36 1200 a: 43wt%Ni E L: 24wt%Ni a: 36wt%Ni a (solid) • Consider Co = 35wt%Ni. 1100 20 30 Adapted from Fig. 9.3, Callister 6e. 35 Co 40 50 wt% Ni If the alloy (65%Cu-35%Ni) is cooled from A to D at 10oC/sec, what would be the details inside the solid? T(ºC) TA 1300 TB 1200 TD 20 A L (liquid) tie line B D a (solid) 3032 35 4043 CLCo 50 Ca wt% Ni CORED VS EQUILIBRIUM PHASES • Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46wt%Ni. Last a to solidify has Ca = 35wt%Ni. • Fast rate of cooling: Cored structure • Slow rate of cooling: Equilibrium structure MECHANICAL PROPERTIES: Cu-Ni System • Effect of solid solution strengthening on: --Ductility (%EL,%AR) 60 400 300 ? TS for pure Ni TS for pure Cu 200 0 20 40 60 80 100 Cu Ni Composition, wt%Ni Elongation (%EL) Tensile Strength (MPa) --Tensile strength (TS) %EL for pure Cu 50 40 30 ? %EL for pure Ni 20 0 20 40 60 80 100 Cu Ni Composition, wt%Ni MECHANICAL PROPERTIES: Cu-Ni System • Effect of solid solution strengthening on: --Tensile strength (TS) --Ductility (%EL,%AR) --Peak as a function of Co --Min. as a function of Co Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy BINARY-EUTECTIC SYSTEMS Ex.: Cu-Ag system Gibbs Phase Rule: P+F=C+2 3 single phase regions (L, a, b) Limited solubility: a: mostly Cu b: mostly Ag T(ºC) 120 0 L (liquid) 1000 TE: no liquid below TE T E 800 CE: minimum melting Temp. composition 600 a L+a 8.0 71.9 91.2 a+b 400 200 0 L+ b b 779ºC 20 40 60 C E 80 100 C o, wt% Ag EX: Pb-Sn EUTECTIC SYSTEM (1) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... --the phases present: a+b --the compositions of the phases: T(ºC) 300 L (liquid) a 200 L+a 18.3 150 183ºC 61.9 97.8 a+b 100 0 L+b b 20 40 Co 60 80 100 Co, wt% Sn EX: Pb-Sn EUTECTIC SYSTEM (2) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... --the phases present: a + b --the compositions of the phases: Ca = ? Cb = ? --the relative amounts of each phase: Wa = ? wt% Wb = ? wt% T(ºC) 300 L (liquid) a 200 L+a 18.3 150 100 183ºC 61.9 R 0 11 20 L+b b 97.8 S a+b 40 Co 60 80 99100 Co, wt% Sn EX: Pb-Sn EUTECTIC SYSTEM (2) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... T(ºC) --the phases present: a + b --the compositions of 300 the phases: L (liquid) Ca = 11wt%Sn L+a a Cb = 99wt%Sn L+b b 200 183ºC 18.3 --the relative amounts 61.9 97.8 150 of each phase: R S 100 0 11 20 a+b 40 Co 60 80 99100 Co, wt% Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-I • Co < 2wt%Sn • Result: ? T(ºC) 400 L: Cowt%Sn L 300 200 TE 100 a L+a (Pb-Sn System) a+b 0 10 20 30 Co Co, wt% 2 (room T solubility limit) Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-I • Co < 2wt%Sn • Result: --polycrystal of a grains. T(ºC) 400 L: Cowt%Sn L a L 300 200 TE 100 a L+a a: Cowt%Sn a+b 0 10 20 30 Co Co, wt% 2 (room T solubility limit) Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-II • 2wt%Sn < Co < 18.3wt%Sn • Result:? L: Cowt%Sn T(ºC) 400 L L a 300 L+a a 200 TE a b 100 0 a: C owt%Sn a+b 10 20 Pb-Sn system 30 Co Co, wt% 2 (sol. limit at Troom) 18.3 (sol. limit at TE) Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-II • 2wt%Sn < Co < 18.3wt%Sn • Result: --a polycrystal with fine b crystals. L: Cowt%Sn T(ºC) 400 L L a 300 L+a a 200 TE a b 100 0 a: C owt%Sn a+b 10 20 Pb-Sn system 30 Co Co, wt% 2 (sol. limit at Troom) 18.3 (sol. limit at TE) Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-III • Co = CE • Result: ? T(ºC) 300 L Pb-Sn system 200 TE a L+a 20 18.3 L+b b 183ºC a+b 100 0 0 L: Cowt%Sn 40 b: 97.8wt%Sn a: 18.3wt%Sn 60 CE 61.9 80 100 97.8 Co, wt% Sn MICROSTRUCTURES IN EUTECTIC SYSTEMS-III • Co = C E • Result: Eutectic microstructure --alternating layers of a and b crystals. T(ºC) 300 L Pb-Sn system 200 TE a L+a 20 18.3 L+b b 183ºC a+b 100 0 0 L: Cowt%Sn 40 b: 97.8wt%Sn a: 18.3wt%Sn 60 CE 61.9 80 100 97.8 Co, wt% Sn Formation of Eutectic Lamellar Structure MICROSTRUCTURES IN EUTECTIC SYSTEMS-IV • 18.3wt%Sn < Co < 61.9wt%Sn • Result: a crystals and an eutectic microstructure Just above TE: L: Cowt%Sn T(ºC) L a L 300 L+a 200 TE R R a 100 0 0 L+b S b S Just below TE: a+b 20 18.3 40 Co 60 61.9 Ca = 18.3wt%Sn CL = 61.9wt%Sn Wa = S =50wt% R+S WL = (1-Wa) =50wt% 80 100 97.8 Co, wt% Sn Ca = 18.3wt%Sn Cb = 97.8wt%Sn Wa = S =73wt% R+S Wb = 27wt% MICROSTRUCTURES IN EUTECTIC SYSTEMS-IV • 18.3wt%Sn < Co < 61.9wt%Sn • Result: a crystals and an eutectic microstructure a L L: Cowt%Sn T(ºC) L a L 300 L+a 200 TE R R a 100 0 0 L+b S S 40 Co 60 61.9 Ca = 18.3wt%Sn CL = 61.9wt%Sn Wa = S =50wt% R+S WL = (1-Wa) =50wt% Just below TE : a+b 20 18.3 b Just above TE : 80 primary a eutectic a eutectic b 100 97.8 Co, wt% Sn Ca = 18.3wt%Sn Cb = 97.8wt%Sn Wa = S =73wt% R+S Wb = 27wt% HYPOEUTECTIC & HYPEREUTECTIC T(ºC) L 300 200 TE a L+a L+b a+b 100 Co Co 0 0 hypoeutectic hypereutectic 20 40 o =50wt%Sn 60 61.9 eutectic: C o =61.9wt%Sn a a a a 100 97.8 Co, wt% Sn hypereutectic: (illustration only) b b a a 80 eutectic 18.3 hypoeutectic: C (Pb-Sn System) b b b b 160 m m 175 m m eutectic micro-constituent b OTHER EXAMPLES OTHER EXAMPLES Content 1. 2. 3. 4. 5. 6. Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy IRON-CARBON (Fe-C) PHASE DIAGRAM T(ºC) -Eutectic (A): L + g + Fe3C 1600 d 1200 -Eutectoid (B): g + a + Fe 3C L 1400 g +L g A 1148ºC ( austenite) L+Fe 3 C S R 1000 Fe 3 C (cementite) Two important points g +Fe 3 C 800 B a 727ºC = T eutectoid R S a +Fe 3 C 600 400 0 (Fe) 1 0.77 2 3 4 4.30 5 6 6.7 C o , wt% C IRON-CARBON (Fe-C) PHASE DIAGRAM T(ºC) -Eutectic (A): L + g + Fe3C -Eutectoid (B): 1600 d L 1400 1200 g + a + Fe 3C g +L g 1148ºC ( austenite) 800 B a g +Fe 3 C 727ºC = T eutectoid R S a +Fe 3 C 600 120 m m Result: Pearlite = alternating layers of a and Fe3C phases. 400 0 (Fe) L+Fe 3 C S R g g g g 1000 A Fe 3 C (cementite) Two important points 1 0.77 2 3 4 4.30 5 6 6.7 C o , wt% C Fe 3 C (cementite-hard) a (ferrite-soft) Formation of Pearlite Lamellar Structure HYPOEUTECTOID STEEL T(ºC) 1600 d L 1400 ( austenite) 1000 800 g +Fe 3 C r s 727ºC aR S 6 00 a +Fe 3 C Co 0.77 4 00 0 L+Fe 3 C 1148ºC Fe 3 C (cementite) 1200 g +L g 1 2 3 4 5 6 6.7 C o , wt% C HYPOEUTECTOID STEEL T(ºC) 1600 d L g g g g g g g g 1200 g +L g ( austenite) 1000 a g g a g ag 800 g +Fe 3 C r s 727ºC aRS a a a pearlite Co 0.77 w a = s/(r+ s) 600 w g = (1- w a ) 400 0 w pearlite = w g w a = S/( R+ S) w Fe3C = (1- w a ) L+Fe 3 C 1148ºC Fe 3 C (cementite) 1400 a +Fe 3 C 1 2 3 4 5 6 6.7 C o , wt% C 100 m m HYPEREUTECTOID STEEL T(ºC) 1600 d L g+L g 1200 (austenite) L+Fe3C 1148ºC 1000 g+Fe3C 600 400 0 R 0.77 a s r 800 S 1 Co a+Fe3C 2 3 4 5 (Fe-C System) Fe3C (cementite) 1400 6 6.7 Co, wt% C Adapted from Figs. 9.21 and 9.29,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-inChief), ASM International, Materials Park, OH, 1990.) HYPEREUTECTOID STEEL T(ºC) 1600 d L g+L g 1200 (austenite) L+Fe3C 1148ºC 1000 g+Fe3C a wFe3C =r/(r+s)600 wg =(1-w Fe3C) 400 0 pearlite R wpearlite = wg wa =S/(R+S) wFe3C =(1-w a ) s r 800 0.77 g g g g g g g g Fe 3C g g g g S 1 Co a+Fe3C 2 3 4 5 (Fe-C System) Fe3C (cementite) 1400 6 6.7 Co, wt% C 60mm Hypereutectoid steel SUMMARY • Phase diagrams are useful tools to determine: --the number and types of phases, --the wt% of each phase, --and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually --increases the tensile strength (TS) --decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures.
© Copyright 2026 Paperzz