Estimation of states of some recursively defined systems. Estimator S6 V. L. GIRKO Department of Probability and Statistics, Michigan State University East Lansing, Michigan 48824 Consider the problem of estimation of states of systems with discrete time described by the equations ~xi+1 = ~xi + Ai ~xi + ξ~i ; ~yi = Ci ~xi + ~ηi ; i = 1, 2, ... (11.1) where ~xi are the n-dimensional vectors of state; ~yi are p-dimensional vectors of observed variables; Ai are square n × n matrices; Ci are matrices of dimension p × n; ξ~i and ~ηi are error vectors of dimensions n and p, respectively, which satisfy the inequality ( ξ~i , ~ηi ∈ G, G = ) ¶ k µ° °2 X °~ ° 2 ξ~i , ~ηi : °ξi ° + k~ηi k ≤ 1 . i=1 In this section we generalize the estimator S3 for such an equation. Consider the following problem of estimating the state ~xk : find matrices K̂i of dimension n × p and a vector ~l of dimension n which minimize the expression ° °2 k ° ° X ° ° ~ max °~xk+1 − Ki ~yi − l° . ° ° ξ~i ,~ ηi ∈G (11.2) i=1 Let Ln×p be the set of real matrices of dimension n × p and let Ln be the set of real vectors ~l of dimension n. Theorem 11.1. Under the above formulated assumptions ° °2 ( k ) k ° ° X X ¡ ¢ ° ° T min max °~xk+1 − Ki ~yi − ~l° = λ1 Zi+1 Zi+1 + Ki∗ Ki∗T , ° Ki ∈Ln×p ;~l∈Ln ξ~i ,~ ηi ∈G ° i=1 (11.3) i=1 where the matrices Zi satisfy the recursive equations Zi+1 (I + Ai ) = Zi + Ki∗ Ci ; p = 1, ..., k; Zk+1 = I; ~l∗ = Z1 ~x1 ; the matrices Ki∗ ; i = 1, ..., k satisfy the system of equations S6 s X pl [Kp∗T + Cp Sp ]~ ϕl ϕ ~ Tl = 0; p = 1, ..., k l=1 1 (11.4) where pl > 0, l = 1, ..., s; s X pl = 1, j=0 ϕ ~ k , k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λ1 of the matrix k X £ ¤ T Zi+1 Zi+1 + Ki∗ Ki∗T , i=1 the matrices Sp satisfying the system of equations T ; p = 1, · · · , k; S1 = 0, Sp+1 = Sp + Ap Sp − Zp+1 (11.5) one of the solutions of equation (10.4) is Kp∗T = −Cp Sp , p = 1, ..., k. Proof. It is obvious that ° °2 ° °2 k k k ° ° ° ° X X X ° ° ° ° Ki ~yi − ~l° = °~xk+1 − Ki Ci ~xi − Ki ~ηi −~l° . °~xk+1 − ° ° ° ° i=1 i=1 i=1 Consider the system of recursive equations Zp+1 = Zp − Zp+1 Ap + Kp Cp ; p = 1, ..., k with the initial condition Zk+1 = I. Then, using (10.1) after obvious transformations we have ~xk+1 − k X Ki Ci ~xi = ~xk+1 − i=1 k X (Zi+1 − Zi )~xi − i=1 = ~xk+1 − k X = Z1 ~x1 + Zi+1 Ai ~xi i=1 Zi+1 (~xi+1 − Ai ~xi − ξ~i ) − i=1 k X k X k X Zi+1 Ai ~xi + i=1 Zi+1 ξ~i . i=1 Therefore ° °2 ° °2 k k k ° ° ° ° X X X ° ° ° ° Ki ~yi − ~l° = °Z1 ~x1 + Zi+1 ξ~i + Ki ~ηi −~l° . °~xk+1 − ° ° ° ° i=1 i=1 2 i=1 k X i=1 Zi ~xi Using the proof of Theorem 5.1 we get ° °2 ( k ) k ° ° X X ¡ ¢ ° ° T min max °~xk+1 − Ki ~yi − ~l° = min λ1 Zi+1 Zi+1 + Ki∗ Ki∗T , Ki ∈Ln×p ; ~ K ∈L ° ° i n×p ξi ,~ ηi ∈G i=1 ~ l∈Ln i=1 ~l∗ = Z1 ~x1 , and the unknown matrices Ki∗ satisfy the equation s X ϕ ~ Tq pq q=1 k X T (Z̃i+1 Zi+1 + Θi Ki∗T )~ ϕq = 0, (11.6) i=1 where ϕ ~ k , k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λ1 of the matrix k X £ ¤ T Zi+1 Zi+1 + Ki∗ Ki∗T , i=1 Θi are arbitrary matrices which have the same dimension as matrices Ki , and the matrices Z̃i+1 satisfy the equations Z̃i+1 = Z̃i − Z̃i+1 Ai + Θi Ci ; Z̃k+1 = 0; i = 1, ..., k. Obviously k X T Z̃i+1 Zi+1 = i=1 k ³ X T Z̃i+1 Zi+1 + Z̃i+1 Si+1 − Z̃i Si ´ i=1 = k ³ X ´ ¡ ¢ T T Z̃i+1 Zi+1 + Z̃i+1 Si + Ai Si − Zi+1 − Z̃i Si i=1 k h³ ´ i X = Z̃i − Z̃i+1 Ai + Θi Ci Si + Z̃i+1 Ai Si − Z̃i Si i=1 = k X Θi Ci Si . i=1 Using this equality and the auxiliary systems of equations (11.5) we obtain that (11.6) equals s X q=1 ϕ ~ Tq pq k X ¡ ¢ Θi Ki∗T + Ci Si ϕ ~ q = 0. i=1 From this equation we obtain all assertions of Theorem 11.1. 3 Consider the case when ξ~i and ~ηi are error vectors of dimensions m and n, respectively, which satisfy the inequality ( ) ¶ k µ ° °2 ³ ´ ³ ´ X °~ ° 2 ~ ~η ∈ G, G = ~ ~η : ξ, ξ, °ξi ° + k~ηi k ≤ 1 i=1 T for some fixed k (where we have put ξ~ = (ξ1 , · · · , ξk ) , and similarly ~η ). Consider the following problem of estimating the state ~xk : to find matrices K̂i of dimension m × n and a vector ~l of dimension m which minimize the expression °2 ° k ° ° ´ X ° ° ~ ~ Ki ~yi − l° . ϕ K1 , · · · , Kk ; l = max °~xk+1 − ° ~ η )∈G ° (ξ,~ i=1 ³ The vector ˆ k+1 = ~x k X ˆ K̂i ~yi + ~l i=1 is called linear minimax estimator of ~xk+1 . Repeating the proof of Theorem 10.1 we get Theorem 11.2. Under the above formulated assumptions ° °2 ) ( k k ° ° X X¡ ¢ ° ° T , min max °~xk+1 − + Ki∗ Ki∗T Ki ~yi − ~l° = λmax Zi+1 Zi+1 ° ° m×n m ~ ~ Ki ∈R ;l∈R (ξ,~ η )∈G i=1 i=1 where the matrices Zi satisfy the recursive equations Zi+1 (I + Ai ) = Zi + K̂i Ci ; i = 1, ..., k; Zk+1 = I. ˆ Moreover, ~l = Z1 x1 and the matrices K̂i ; i = 1, ..., k satisfy the system of equations s X h i pl K̂iT + Ci Si ϕ ~lϕ ~ Tl = 0; i = 1, ..., k , (11.7) l=1 where pl > 0; l = 1, ..., s, s X pl = 1, j=1 ϕ ~ k , k = 1, ..., s are orthonormal eigenvectors which correspond to the maximal s-multiple eigenvalue λmax of the matrix k h i X T Zi+1 Zi+1 + K̂i K̂iT i=1 4 and the matrices Si satisfying the system of equations T Si+1 = Si + Ai Si − Zi+1 ; p = 1, ..., k; S1 = 0, one of the solutions of equation (11.7) is K̂iT = −Ci Si , i = 1, ..., k. REFERENCES 1. V.L. Girko, S.I. Lyascko and A.G. Nakonechny. On Minimax Regulator for Evolution Equations in Hilbert Space Under Conditions of Uncertainty. Cybernetics, N.1, 1987, 67–68 p. 2. V.L. Girko. Spectral Equations S2 for Minimax Estimations of Solutions of Some Linear Systems*. Third International Workshop on Model Oriented Data Analysis (Moda-3) St. Petersburg, Petrodvorets, Russia 25–30 May 1992 p.11. 3. V.L. Girko. Spectral Equations S1 and S2 for Minimax Estimations of Solutions of some Linear Systems Linear Minimax Estimation - Theory and Practice 3–4 August 1992, Oldenburg. 4. V.L. Girko. Spectral Equation for Minimax Estimator of Parameters of Linear Systems*. Calculating and Applied Mathematics, N.63, 1987, 114–115 p. Translation in J. Soviet Math. 66 2221–2222 (1993). 5. V.L. Girko and N. Christopeit. Minimax Estimators for Linear Models with Nonrandom Disturbances. Random Operators and Stochastic Equations 3, N.4, 1995, 361–377 p. 6. V.L. Girko. Spectral Theory of Minimax Estimation, Acta Applicandae Mathematicae 43, 1996, 59–69 p. 7. V.L. Girko. Theory of Linear Algebraic Equations with Random Coefficients, (monograph), Allerton Press, Inc. New York 1996, 320 p. 5
© Copyright 2025 Paperzz