On the solution of 2 2 x dy m. Julius M. Basilla Sophia University Cornacchia ’ s Algorithm( 1908) for solving x 2 dy 2 4 p. 1. Initialization Step: r1 t , t 2 d mod 4 p r0 4 p 2. Euclidean Step: While r1 m, 2 r2 r0 mod r1 r0 r1 r1 r2 4 p r12 3. If s 2 , then (r1 , s ) is a solution. d Otherwise, there is no solution. The same algorithm can be used to solve x 2 dy 2 m for any integers, d , m 1 1 d m. Specifical ly, we claim that applying Cornacchia ' s for all t , t 2 d mod m exhausts all the primitive solutions of (1). 1. Every primitive solution of (1) is contained in some lattice Lt : m,0, t ,1 Z , t 2 d mod m. 2. Applying Cornacchia ’ s algorithm with r0 m, r1 t , obtains a solution x0 , y0 of (1) contained in Lt , if Lt has a solution. 3. If Lt contains a primitive solution x0 , y0 of (1), then x0 , y0 x0 , y0 . In passing, we also claim that for d 1, Cornacchia ’ s algorithm always yield a solution, namely rk , rk 1 , where r 2 k 1 mr . 2 k Lemma 1. If x0 , y0 is a primitive solution of (1), then x0 , y0 is contained in Lt m,0 , t ,1 Z , for some t , t 2 d mod m . Proof : Clearly gcd y0 , m 1. Thus there exist t satisfying ty0 x0 mod m By the choice of t , it follows x0 , y0 l m,0 y0 t ,1for some integer and 0 t 2 d mod m . l Lemma 2. Let u u1 , u2 , v v1 , v2 be generators of a lattice such that 0 u 2 , 0 v2 , v1 u1 , u1v1 0. Then the vector w w1 , w2 with the least w2 0, and w1 v1 is given by w u qv , Moreover, v , w Z u q 1 . v1 u, v Z. w u qv v No lattice point u u1 -v1 v1 Lemma 3 Let r0 , r1 be positive integers. ri qi ri 1 ri 2 , For 0 i n 1, define ri qi r i 1 P1 0; P0 1; Pi 1 qi Pi Pi 1 Q1 1; Q0 0; Qi 1 qi Qi Qi 1 Then, for 0 i n, we have r0 Pi ri Pi 1ri 1 (2) ri 1 1 Pi r1 Qi r0 (3) i Propositio n 4 Let r0 m and r1 t , where t 2 d mod m . Construct the finite sequences ri , Pi as in Lemma 3. The diophantin e equation (1) has a solution in Lt if and only if dPk21 m, when rk21 m rk2 . Proof : ()It follows directly from (3) that rk2 dPk21 0mod m . Thus, dPk21 rk2 m rk2 mod m . By uniqueness , we have dPk21 m rk2 . Hence, rk , Pk 1 is a solution in Lt . r4 , P3 r3 , P2 r2 , P1 t,1 m,0 m t r2 r2 r1 t m d (x0,y0) rk , Pk 1 rk 1 , Pk 2 rk 3 , Pk 2 -rk-2 -rk-1 -rk rk m rk-1 Proposition 5 Let t 2 1mod m , 0 t m . Set r0 m and r1 t and 2 construct the finite sequence {ri }, ri qi ri 1 ri 2 , for 0 i n 1, where r0 r1 rn 1 rn 1 0. If rk21 m rk2 then m rk2 rk21. Proof : Construct the finite sequence Pi as in Lemma 3. m r0 Pn rn Pn1rn1 Pn rn1 qn1rn rn1 qn1 2 m Pn qn1Pn1 Pn2 2Pn1 1 rn 1 Pn1r1 Qn1r0 n 1 1 Pn 1t mod m . n 1 t 1 Pn1 mod m. n It follows that, n 2k Pn r0 m Inductively, we can show Pn i ri . In particular, m r0 Pk rk Pk 1rk 1 rk2 rk21. Pn 1 r1 t Lemma 6 If d 1, then dPk2 m. Propositio n 7 Let d 1 and t 2 d mod m . If x, y , y 0 is a solution of (1) such that x, y in Lt , then x, y 1k 1 rk , Pk 1 . Pk m d rk , Pk 1 rk 1 , Pk 2 rk 3 , Pk 2 -rk-2 -rk-1 -rk rk m rk-1 Propositio n 8. Let t 2 1mod m . If x, y , y 0 is a solution of x 2 y 2 m such that x, y in Lt , then x, y 1k 1 rk , rk 1 or x, y 1k rk 1, rk . This proves that applying Cornacchia ' s algorithm on all the square root t modulo m of d , yields all the primitive solution of x 2 dy 2 m.
© Copyright 2024 Paperzz