2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) 2: Three Different Fourier Transforms Fourier Transforms: 2 – 1 / 13 Fourier Transforms 2: Three Different Fourier Transforms Three different Fourier Transforms: • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] Forward Transform CTFT DSP and Digital Filters (2016-8746) X(jΩ) = R∞ x(t)e −∞ −jΩt Inverse Transform dt x(t) = 1 2π R∞ jΩt X(jΩ)e dΩ −∞ Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] Forward Transform CTFT DTFT DSP and Digital Filters (2016-8746) R∞ dt X(jΩ) = −∞ x(t)e P∞ jω X(e ) = −∞ x[n]e−jωn −jΩt Inverse Transform x(t) = x[n] = 1 2π 1 2π R∞ jΩt X(jΩ)e dΩ −∞ Rπ jω jωn X(e )e dω −π Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] Forward Transform CTFT DTFT R∞ dt X(jΩ) = −∞ x(t)e P∞ jω X(e ) = −∞ x[n]e−jωn −jΩt Inverse Transform x(t) = x[n] = 1 2π 1 2π R∞ jΩt X(jΩ)e dΩ −∞ Rπ jω jωn X(e )e dω −π We use Ω for “real” and ω = ΩT for “normalized” angular frequency. f Nyquist frequency is at ΩNyq = 2π 2s = Tπ and ωNyq = π . DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] Forward Transform CTFT DTFT DFT R∞ dt X(jΩ) = −∞ x(t)e P∞ jω X(e ) = −∞ x[n]e−jωn PN −1 kn X[k] = 0 x[n]e−j2π N −jΩt Inverse Transform x(t) = x[n] = x[n] = 1 2π 1 2π 1 N R∞ jΩt X(jΩ)e dΩ −∞ Rπ jω jωn X(e )e dω −π PN −1 j2π kn N X[k]e 0 We use Ω for “real” and ω = ΩT for “normalized” angular frequency. f Nyquist frequency is at ΩNyq = 2π 2s = Tπ and ωNyq = π . DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Fourier Transforms 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Three different Fourier Transforms: • CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ) • DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω ) • DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k] Forward Transform CTFT DTFT DFT R∞ dt X(jΩ) = −∞ x(t)e P∞ jω X(e ) = −∞ x[n]e−jωn PN −1 kn X[k] = 0 x[n]e−j2π N −jΩt Inverse Transform x(t) = x[n] = x[n] = 1 2π 1 2π 1 N R∞ jΩt X(jΩ)e dΩ −∞ Rπ jω jωn X(e )e dω −π PN −1 j2π kn N X[k]e 0 We use Ω for “real” and ω = ΩT for “normalized” angular frequency. f Nyquist frequency is at ΩNyq = 2π 2s = Tπ and ωNyq = π . For “power signals” (energy ∝ time interval), CTFT & DTFT are unbounded. Fix this by normalizing: RA 1 X(jΩ) = limA→∞ 2A −A x(t)e−jΩt dt PA 1 jω X(e ) = limA→∞ 2A −A x[n]e−jωn DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 2 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e DSP and Digital Filters (2016-8746) −∞ Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒ X(ejω ) converges uniformly DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒X(ejω ) converges uniformly P∞ DSP and Digital Filters (2016-8746) −∞ |x[n]| < ∞ ⇒ supω X(ejω ) − XK (ejω ) −−−−→ 0 K→∞ Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒X(ejω ) converges uniformly P∞ −∞ |x[n]| < ∞ ⇒ supω X(ejω ) − XK (ejω ) −−−−→ 0 K→∞ Weaker convergence: x[n] finite energy ⇒ X(ejω ) converges in mean square DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒X(ejω ) converges uniformly P∞ −∞ |x[n]| < ∞ ⇒ supω X(ejω ) − XK (ejω ) −−−−→ 0 K→∞ Weaker convergence: x[n] finite energy ⇒ X(ejω ) converges in mean square P∞ −∞ DSP and Digital Filters (2016-8746) 2 |x[n]| < ∞ ⇒ 1 2π Rπ X(ejω ) − XK (ejω )2 dω −−−−→ 0 −π K→∞ Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒X(ejω ) converges uniformly P∞ −∞ |x[n]| < ∞ ⇒ supω X(ejω ) − XK (ejω ) −−−−→ 0 K→∞ Weaker convergence: x[n] finite energy ⇒ X(ejω ) converges in mean square P∞ −∞ 2 |x[n]| < ∞ ⇒ 1 2π Rπ X(ejω ) − XK (ejω )2 dω −−−−→ 0 −π K→∞ 0.5πn Example: x[n] = sin πn K=5 1 K=20 1 0.6 0.6 0.6 0.4 0.2 0.2 0 0 -0.2 0 DSP and Digital Filters (2016-8746) 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 K 0.4 jω 0.8 jω 0.8 K K jω 1 0.8 -0.2 0 K=50 0.4 0.2 0 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 -0.2 0 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 Fourier Transforms: 2 – 3 / 13 Convergence of DTFT 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn does not converge for all x[n]. PK jω −jωn Consider the finite sum: XK (e ) = −K x[n]e −∞ Strong Convergence: x[n] absolutely summable ⇒X(ejω ) converges uniformly P∞ −∞ |x[n]| < ∞ ⇒ supω X(ejω ) − XK (ejω ) −−−−→ 0 K→∞ Weaker convergence: x[n] finite energy ⇒ X(ejω ) converges in mean square P∞ −∞ 2 |x[n]| < ∞ ⇒ 1 2π Rπ X(ejω ) − XK (ejω )2 dω −−−−→ 0 −π K→∞ 0.5πn Example: x[n] = sin πn K=5 1 K=20 1 0.6 0.6 0.6 0.4 0.2 0.2 0 0 -0.2 0 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 K 0.4 jω 0.8 jω 0.8 K K jω 1 0.8 -0.2 0 K=50 0.4 0.2 0 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 -0.2 0 0.1 0.2 0.3 0.4 ω/2π (rad/sample) 0.5 Gibbs phenomenon: Converges at each ω as K → ∞ but peak error does not get smaller. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 3 / 13 DTFT Properties 2: Three Different Fourier Transforms DTFT: X(ejω ) = • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) P∞ −∞ x[n]e−jωn Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. DSP and Digital Filters (2016-8746) −∞ Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P xδ (t) = x[n]δ(t − nT ) DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P xδ (t) = x[n]δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P P∞ xδ (t) = x[n]δ(t − nT )= x(t) × −∞ δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P P∞ xδ (t) = x[n]δ(t − nT )= x(t) × −∞ δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. P∞ jω −jωn Proof: X(e ) = −∞ x[n]e DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P P∞ xδ (t) = x[n]δ(t − nT )= x(t) × −∞ δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. P∞ jω −jωn Proof: X(e ) = −∞ x[n]eR P∞ ∞ −jω Tt δ(t − nT )e x[n] dt n=−∞ −∞ DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P P∞ xδ (t) = x[n]δ(t − nT )= x(t) × −∞ δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. P∞ jω −jωn Proof: X(e ) = −∞ x[n]eR P∞ ∞ −jω Tt δ(t − nT )e x[n] dt n=−∞ −∞ (i) R ∞ P∞ t = −∞ n=−∞ x[n]δ(t − nT )e−jω T dt (i) OK if DSP and Digital Filters (2016-8746) P∞ −∞ |x[n]| < ∞. Fourier Transforms: 2 – 4 / 13 DTFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: X(ejω ) = P∞ x[n]e−jωn • DTFT is periodic in ω : X(ej(ω+2mπ) ) = X(ejω ) for integer m. −∞ evaluated at the point ejω : • DTFT is the z -Transform P∞ X(z) = −∞ x[n]z −n DTFT converges iff the ROC includes |z| = 1. • DTFT is the same as the CTFT of a signal comprising impulses at the sample times (Dirac δ functions) of appropriate heights: P P∞ xδ (t) = x[n]δ(t − nT )= x(t) × −∞ δ(t − nT ) Equivalent to multiplying a continuous x(t) by an impulse train. P∞ jω −jωn Proof: X(e ) = −∞ x[n]eR P∞ ∞ −jω Tt δ(t − nT )e x[n] dt n=−∞ −∞ (i) R ∞ P∞ t = −∞ n=−∞ x[n]δ(t − nT )e−jω T dt (ii) R ∞ = −∞ xδ (t)e−jΩt dt P∞ (i) OK if (ii) use ω = ΩT . −∞ |x[n]| < ∞. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 4 / 13 DFT Properties 2: Three Different Fourier Transforms DFT: X[k] = • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) PN −1 0 kn x[n]e−j2π N Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = PN −1 0 kn x[n]e−j2π N Case 1: x[n] = 0 for n ∈ / [0, N − 1] DSP and Digital Filters (2016-8746) DFT is the same as DTFT at ωk = 2π N k. Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DSP and Digital Filters (2016-8746) DFT is the same as DTFT at ωk = 2π N k. Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DSP and Digital Filters (2016-8746) DFT is the same as DTFT at ωk = 2π N k. −1 The {ωk } are uniformly spaced from ω = 0 to ω = 2π NN . Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DSP and Digital Filters (2016-8746) DFT is the same as DTFT at ωk = 2π N k. −1 The {ωk } are uniformly spaced from ω = 0 to ω = 2π NN . DFT is the z -Transform evaluated at N equally spaced points around the unit circle beginning at z = 1. Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DFT is the same as DTFT at ωk = 2π N k. −1 The {ωk } are uniformly spaced from ω = 0 to ω = 2π NN . DFT is the z -Transform evaluated at N equally spaced points around the unit circle beginning at z = 1. Case 2: x[n] is periodic with period N DFT equals the normalized DTFT DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DFT is the same as DTFT at ωk = 2π N k. −1 The {ωk } are uniformly spaced from ω = 0 to ω = 2π NN . DFT is the z -Transform evaluated at N equally spaced points around the unit circle beginning at z = 1. Case 2: x[n] is periodic with period N DFT equals the normalized DTFT X[k] = limK→∞ DSP and Digital Filters (2016-8746) N 2K+1 × XK (ejωk ) Fourier Transforms: 2 – 5 / 13 DFT Properties 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DFT: X[k] = jω DTFT: X(e PN −1 0 )= kn x[n]e−j2π N P∞ −jωn x[n]e −∞ Case 1: x[n] = 0 for n ∈ / [0, N − 1] DFT is the same as DTFT at ωk = 2π N k. −1 The {ωk } are uniformly spaced from ω = 0 to ω = 2π NN . DFT is the z -Transform evaluated at N equally spaced points around the unit circle beginning at z = 1. Case 2: x[n] is periodic with period N DFT equals the normalized DTFT N X[k] = limK→∞ 2K+1 × XK (ejωk ) PK jω −jωn where XK (e ) = −K x[n]e DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 5 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): DSP and Digital Filters (2016-8746) One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Fourier Transforms: 2 – 6 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Symmetric: x[n] = x[−n] DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 6 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Symmetric: x[n] = x[−n] X(ejω ) = X(e−jω ) DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 6 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Symmetric: x[n] = x[−n] X(ejω ) = X(e−jω ) X[k] = X[(−k)mod N ] = X[N − k] for k > 0 DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 6 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Symmetric: x[n] = x[−n] X(ejω ) = X(e−jω ) X[k] = X[(−k)mod N ] = X[N − k] for k > 0 Conjugate Symmetric: x[n] = x∗ [−n] DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 6 / 13 Symmetries 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines If x[n] has a special property then X(ejω )and X[k] will have corresponding properties as shown in the table (and vice versa): One domain Other domain Discrete Symmetric Antisymmetric Real Imaginary Real + Symmetric Real + Antisymmetric Periodic Symmetric Antisymmetric Conjugate Symmetric Conjugate Antisymmetric Real + Symmetric Imaginary + Antisymmetric Symmetric: x[n] = x[−n] X(ejω ) = X(e−jω ) X[k] = X[(−k)mod N ] = X[N − k] for k > 0 Conjugate Symmetric: x[n] = x∗ [−n] Conjugate Antisymmetric: x[n] = −x∗ [−n] DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 6 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms Fourier transforms preserve “energy” • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DSP and Digital Filters (2016-8746) R 2 |x(t)| dt = 1 2π R |X(jΩ)|2 dΩ Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DTFT DSP and Digital Filters (2016-8746) 2 R 1 |x(t)| dt = 2π |X(jΩ)|2 dΩ Rπ P∞ 2 1 jω 2 −∞ |x[n]| = 2π −π X(e ) dω R Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DTFT DFT DSP and Digital Filters (2016-8746) 2 R 1 |x(t)| dt = 2π |X(jΩ)|2 dΩ Rπ P∞ 2 1 jω 2 −∞ |x[n]| = 2π −π X(e ) dω PN −1 PN −1 2 2 1 |x[n]| = |X[k]| 0 0 N R Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DTFT DFT 2 R 1 |x(t)| dt = 2π |X(jΩ)|2 dΩ Rπ P∞ 2 1 jω 2 −∞ |x[n]| = 2π −π X(e ) dω PN −1 PN −1 2 2 1 |x[n]| = |X[k]| 0 0 N R More generally, they actually preserve complex inner products: DSP and Digital Filters (2016-8746) PN −1 0 x[n]y [n] = ∗ 1 N PN −1 0 X[k]Y ∗ [k] Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DTFT DFT 2 R 1 |x(t)| dt = 2π |X(jΩ)|2 dΩ Rπ P∞ 2 1 jω 2 −∞ |x[n]| = 2π −π X(e ) dω PN −1 PN −1 2 2 1 |x[n]| = |X[k]| 0 0 N R More generally, they actually preserve complex inner products: PN −1 0 x[n]y [n] = ∗ 1 N PN −1 0 X[k]Y ∗ [k] Unitary matrix viewpoint for DFT: If we regard x and X as vectors, then X = Fx where F is kn a symmetric matrix defined by fk+1,n+1 = e−j2π N . DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 7 / 13 Parseval’s Theorem 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Fourier transforms preserve “energy” CTFT DTFT DFT 2 R 1 |x(t)| dt = 2π |X(jΩ)|2 dΩ Rπ P∞ 2 1 jω 2 −∞ |x[n]| = 2π −π X(e ) dω PN −1 PN −1 2 2 1 |x[n]| = |X[k]| 0 0 N R More generally, they actually preserve complex inner products: PN −1 0 x[n]y [n] = ∗ 1 N PN −1 0 X[k]Y ∗ [k] Unitary matrix viewpoint for DFT: If we regard x and X as vectors, then X = Fx where F is kn a symmetric matrix defined by fk+1,n+1 = e−j2π N . 1 H The inverse DFT matrix is F−1 = N F equivalently, G = √1 F is a unitary matrix with GH G = I. N DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 7 / 13 Convolution 2: Three Different Fourier Transforms DTFT: Convolution → Product • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product x[n] = g[n] ∗ h[n]= DSP and Digital Filters (2016-8746) P∞ k=−∞ g[k]h[n − k] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product x[n] = g[n] ⊛N h[n]= DSP and Digital Filters (2016-8746) PN −1 k=0 g[k]h[(n − k)modN ] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] DSP and Digital Filters (2016-8746) k=0 g[k]h[(n − k)modN ] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] g[n] : DSP and Digital Filters (2016-8746) k=0 g[k]h[(n − k)modN ] h[n] : Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] g[n] : DSP and Digital Filters (2016-8746) h[n] : k=0 g[k]h[(n − k)modN ] g[n] ∗ h[n] : Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] g[n] : DSP and Digital Filters (2016-8746) h[n] : k=0 g[k]h[(n − k)modN ] g[n] ∗ h[n] : g[n] ⊛3 h[n] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] k=0 g[k]h[(n − k)modN ] DTFT: Product→ Circular Convolution ÷2π y[n] = g[n]h[n] g[n] : DSP and Digital Filters (2016-8746) h[n] : g[n] ∗ h[n] : g[n] ⊛3 h[n] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] k=0 g[k]h[(n − k)modN ] DTFT: Product→ Circular Convolution ÷2π 1 2π y[n] = g[n]h[n] 1 ⇒ Y (ejω ) = 2π G(ejω ) ⊛π H(ejω ) = Rπ G(ejθ )H(ej(ω−θ) )dθ −π g[n] : DSP and Digital Filters (2016-8746) h[n] : g[n] ∗ h[n] : g[n] ⊛3 h[n] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] k=0 g[k]h[(n − k)modN ] DTFT: Product→ Circular Convolution ÷2π 1 2π y[n] = g[n]h[n] 1 ⇒ Y (ejω ) = 2π G(ejω ) ⊛π H(ejω ) = Rπ G(ejθ )H(ej(ω−θ) )dθ −π DFT: Product→ Circular Convolution ÷N y[n] = g[n]h[n] g[n] : DSP and Digital Filters (2016-8746) h[n] : g[n] ∗ h[n] : g[n] ⊛3 h[n] Fourier Transforms: 2 – 8 / 13 Convolution 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DTFT: Convolution → Product P x[n] = g[n] ∗ h[n]= ∞ k=−∞ g[k]h[n − k] ⇒ X(ejω ) = G(ejω )H(ejω ) DFT: Circular convolution→ Product PN −1 x[n] = g[n] ⊛N h[n]= ⇒ X[k] = G[k]H[k] k=0 g[k]h[(n − k)modN ] DTFT: Product→ Circular Convolution ÷2π 1 2π y[n] = g[n]h[n] 1 ⇒ Y (ejω ) = 2π G(ejω ) ⊛π H(ejω ) = Rπ G(ejθ )H(ej(ω−θ) )dθ −π DFT: Product→ Circular Convolution ÷N y[n] = g[n]h[n] ⇒ Y [k] = N1 G[k] ⊛N H[k] g[n] : DSP and Digital Filters (2016-8746) h[n] : g[n] ∗ h[n] : g[n] ⊛3 h[n] Fourier Transforms: 2 – 8 / 13 Sampling Process Time Analog DSP and Digital Filters (2016-8746) Time Frequency CTFT −→ Fourier Transforms: 2 – 9 / 13 Sampling Process Time Time CTFT −→ Analog Low Pass Filter Frequency * DSP and Digital Filters (2016-8746) → CTFT −→ Fourier Transforms: 2 – 9 / 13 Sampling Process Time Time Frequency CTFT −→ Analog Low Pass Filter * → −→ Sample × → −→ DSP and Digital Filters (2016-8746) CTFT DTFT Fourier Transforms: 2 – 9 / 13 Sampling Process Time Time Frequency CTFT −→ Analog Low Pass Filter * → −→ Sample × → −→ Window × → −→ DSP and Digital Filters (2016-8746) CTFT DTFT DTFT Fourier Transforms: 2 – 9 / 13 Sampling Process Time Time Frequency CTFT −→ Analog Low Pass Filter * → −→ Sample × → −→ Window × → −→ DFT DSP and Digital Filters (2016-8746) CTFT DTFT DTFT DFT −→ Fourier Transforms: 2 – 9 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. DSP and Digital Filters (2016-8746) Time x[n] Windowed Signal Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Windowed Signal With zeropadding DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Frequency |X[k]| Windowed Signal With zeropadding DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Frequency |X[k]| Windowed Signal With zeropadding DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Frequency |X[k]| Windowed Signal With zeropadding • Zero-padding causes the DFT to evaluate the DTFT at more values of ωk . Denser frequency samples. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Frequency |X[k]| Windowed Signal With zeropadding • Zero-padding causes the DFT to evaluate the DTFT at more values of ωk . Denser frequency samples. • Width of the peaks remains constant: determined by the length and shape of the window. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Zero-Padding 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines Zero padding means added extra zeros onto the end of x[n] before performing the DFT. Time x[n] Frequency |X[k]| Windowed Signal With zeropadding • Zero-padding causes the DFT to evaluate the DTFT at more values of ωk . Denser frequency samples. • Width of the peaks remains constant: determined by the length and • shape of the window. Smoother graph but increased frequency resolution is an illusion. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 10 / 13 Phase Unwrapping 2: Three Different Fourier Transforms Phase of a DTFT is only defined to within an integer multiple of 2π . • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines DSP and Digital Filters (2016-8746) x[n] |X[k]| Fourier Transforms: 2 – 11 / 13 Phase Unwrapping 2: Three Different Fourier Transforms Phase of a DTFT is only defined to within an integer multiple of 2π . • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines x[n] |X[k]| ∠X[k] DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 11 / 13 Phase Unwrapping 2: Three Different Fourier Transforms Phase of a DTFT is only defined to within an integer multiple of 2π . • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines x[n] |X[k]| ∠X[k] Phase unwrapping adds multiples of 2π onto each ∠X[k] to make the phase as continuous as possible. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 11 / 13 Phase Unwrapping 2: Three Different Fourier Transforms Phase of a DTFT is only defined to within an integer multiple of 2π . • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines x[n] |X[k]| ∠X[k] ∠X[k] unwrapped Phase unwrapping adds multiples of 2π onto each ∠X[k] to make the phase as continuous as possible. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 11 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT DSP and Digital Filters (2016-8746) ◦ DTFT = CTFT of continuous signal × impulse train Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT DSP and Digital Filters (2016-8746) ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT DSP and Digital Filters (2016-8746) ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution • DFT: Product ↔ Circular Convolution DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution • DFT: Product ↔ Circular Convolution • DFT: Zero Padding → Denser freq sampling but same resolution DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution • DFT: Product ↔ Circular Convolution • DFT: Zero Padding → Denser freq sampling but same resolution • Phase is only defined to within a multiple of 2π . DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution • DFT: Product ↔ Circular Convolution • DFT: Zero Padding → Denser freq sampling but same resolution • Phase is only defined to within a multiple of 2π . • Whenever you integrate over frequency you need a scale factor 1 1 for CTFT and DTFT or N for DFT ◦ 2π ◦ e.g. Inverse transform, Parseval, frequency domain convolution DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 Summary 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines • Three types: CTFT, DTFT, DFT ◦ DTFT = CTFT of continuous signal × impulse train ◦ DFT = DTFT of periodic or finite support signal • DFT is a scaled unitary transform • DTFT: Convolution → Product; Product → Circular Convolution • DFT: Product ↔ Circular Convolution • DFT: Zero Padding → Denser freq sampling but same resolution • Phase is only defined to within a multiple of 2π . • Whenever you integrate over frequency you need a scale factor 1 1 for CTFT and DTFT or N for DFT ◦ 2π ◦ e.g. Inverse transform, Parseval, frequency domain convolution For further details see Mitra: 3 & 5. DSP and Digital Filters (2016-8746) Fourier Transforms: 2 – 12 / 13 MATLAB routines 2: Three Different Fourier Transforms • Fourier Transforms • Convergence of DTFT • DTFT Properties • DFT Properties • Symmetries • Parseval’s Theorem • Convolution • Sampling Process • Zero-Padding • Phase Unwrapping • Summary • MATLAB routines fft, ifft fftshift conv x[n]⊛y[n] unwrap DSP and Digital Filters (2016-8746) DFT with optional zero-padding swap the two halves of a vector convolution or polynomial multiplication (not circular) real(ifft(fft(x).*fft(y))) remove 2π jumps from phase spectrum Fourier Transforms: 2 – 13 / 13
© Copyright 2025 Paperzz