N.H. Bingham and Rüdiger Kiesel Risk-Neutral Valuation Pricing and Hedging of Financial Derivatives W) Springer Contents 1. Derivative Background 1.1 Financial Markets and Instruments 1.1.1 Derivative Instruments 1.1.2 Underlying securities 1.1.3 Markets 1.1.4 Types of Traders 1.1.5 Modelling Assumptions 1.2 Arbitrage 1.3 Arbitrage Relationships 1.3.1 Fundamental Determinants of Option Values 1.3.2 The Put-Call Parity 1.3.3 Arbitrage Bounds 1.4 Single-Period Market Models Exercises 1 2 2 4 5 6 7 8 11 11 13 16 20 30 2. Probability Background 2.1 Measure 2.2 Integral 2.3 Probability 2.4 Equivalent Measures and Radon-Nikodym Derivatives 2.5 Conditional Expectations 2.6 Properties of Conditional Expectation 2.7 Modes of Convergence 2.8 Convolution and Characteristic Functions 2.9 The Central Limit Theorem Exercises 33 34 38 41 47 48 51 53 56 60 63 3. Stochastic Processes in Discrete Time 3.1 Information and Filtrations 3.2 Discrete-Parameter Stochastic Processes 3.3 Discrete-Parameter Martingales 3.3.1 Definition and Simple Properties 3.3.2 Martingale Convergence 3.3.3 Doob Decomposition 67 67 68 70 70 72 73 xii Contents 3.4 Martingale Transforms 3.5 Stopping Times and Optional Stopping 3.6 The Snell Envelope Exercises 73 75 78 80 4. Mathematical Finance in Discrete Time 4.1 The Model 4.2 Existence of Equivalent Martingale Measures 4.2.1 The No-Arbitrage Condition 4.2.2 Risk-Neutral Pricing 4.3 Complete Markets 4.4 Risk-Neutral Valuation 4.5 The Cox-Ross-Rubinstein Model 4.5.1 Model Structure 4.5.2 Risk-Neutral Pricing 4.5.3 Hedging 4.5.4 Comparison With the General Arbitrage Bounds 4.6 Binomial Approximations 4.6.1 Model Structure 4.6.2 The Black-Scholes Option Pricing Formula 4.6.3 Further Limiting Models 4.7 Multifactor Models 4.7.1 Extended Binomial Model 4.7.2 Multinomial Models 4.8 Further Contingent Claim Valuation in Discrete Time 4.8.1 American Options 4.8.2 Barrier Options 4.8.3 Lookback Options 4.8.4 A Three-Period Example Exercises 83 83 87 87 93 96 100 103 103 105 108 110 Ill 112 113 118 121 121 122 123 123 126 127 128 130 5. S t o c h a s t i c P r o c e s s e s in Continuous Time 5.1 Filtrations; Finite-Dimensional Distributions 5.2 Classes of Processes 5.3 Brownian Motion 5.4 Quadratic Variation of Brownian Motion 5.5 Stochastic Integrals; Ito Calculus 5.6 Itö's Lemma 5.6.1 Geometric Brownian Motion 5.7 Stochastic Differential Equations 5.8 Stochastic Calculus for Black-Scholes Models 5.9 Weak Convergence of Stochastic Processes 5.9.1 The Spaces Cd and Dd 5.9.2 Definition and Motivation 5.9.3 Basic Theorems of Weak Convergence 133 133 134 138 141 144 149 152 154 157 161 161 162 164 Contents 5.9.4 Exercises xiii Weak Convergence Results for Stochastic Integrals. . . . 165 167 6. Mathematical Finance in Continuous Time 6.1 Continuous-time Financial Market Models 6.1.1 The Financial Market Model 6.1.2 Equivalent Martingale Measures 6.1.3 Risk-neutral Pricing 6.1.4 Changes of Numeraire 6.2 The Generalised Black-Scholes Model 6.2.1 The Model 6.2.2 Pricing and Hedging Contingent Claims 6.2.3 The Greeks 6.2.4 Volatility 6.3 Further contingent claim valuation 6.3.1 American Options 6.3.2 Asian Options 6.3.3 Barrier Options 6.3.4 Lookback Options 6.3.5 Binary Options 6.4 Discrete- vs. Continuous-Time Models 6.4.1 Convergence Reconsidered 6.4.2 Finite Market Approximations 6.4.3 Examples of Finite Market Approximations 6.5 Further Applications 6.5.1 Futures Markets 6.5.2 Currency Markets Exercises 171 171 171 174 177 180 184 184 192 195 197 199 199 202 204 207 210 211 211 212 214 221 221 224 226 7. Incomplete Markets 7.1 Pricing in Incomplete Markets 7.1.1 A General Option Pricing Formula 7.1.2 The Esscher Measure 7.2 Hedging in Incomplete Markets 7.2.1 Variance Minimising Hedging 7.2.2 Risk-Minimising Hedging 7.3 Stochastic Volatility Models 229 229 229 232 235 235 239 241 8. Interest R a t e T h e o r y 8.1 The Bond Market 8.1.1 The Term Structure of Interest Rates 8.1.2 Mathematical Modelling 8.1.3 Bond Pricing, 8.2 Short Rate Models 8.2.1 The Term Structure Equation 245 246 246 247 252 254 255 xiv Contents 8.2.2 Martingale Modelling 8.2.3 Parameter Estimation 8.3 Heath-Jarrow-Morton Methodology 8.3.1 The Heath-Jarrow-Morton Model Class 8.3.2 Forward Risk-Neutral Martingale Measures 8.3.3 Completeness 8.4 Pricing and Hedging Contingent Claims 8.4.1 Short Rate Models 8.4.2 Gaussian HJM Framework 8.4.3 Swaps 8.4.4 Caps Exercises 256 260 262 262 265 267 268 268 269 271 272 274 A. Hubert Space 277 B. Projections and Conditional Expectations 279 C. The S e p a r a t i n g Hyperplane T h e o r e m 281 Bibliography 283 Index 293
© Copyright 2025 Paperzz