Spatial Random Processes
Introduction
Literature
-
R. van der Hofstad: Random graphs and complex nerworks.
www.win.tue.nl/~hofstad/NotesRGCN2009.pdf
B.Bollobas: Random graphs
For probability background โ R.Durrett, probability theory and examples (2005)
Main subject
We will look at the Erdos-Renyi random graph (1960)
๐
Consider n vertices, let each one of the ( ) possible edges appear independently with
2
possibility ๐ โ [0,1]
Such a graph is referred to as ๐บ(๐, ๐).
Question: What is the size of the largest component? Denote it as ๐ถ๐๐๐ฅ of ๐บ(๐, ๐).
๐
๐
We define: ๐ = , ๐ > 0
Exercise: Prove that ๐ธ[๐๐๐๐๐๐(๐ฃ)] =
๐โ1
๐
๐
We will see that:
๐โโ
If ๐ < 1, than โ๐ถ๐ > 0 ๐ . ๐ก. โ๐ > 0. ๐[(๐ถ๐ โ ๐) log ๐ โค |๐ถ๐๐๐ฅ | โค (๐ถ๐ + ๐) log ๐] โ
๐โโ
If ๐ > 1, then โ๐ถโฒ๐ > 0 ๐ . ๐ก. โ๐ > 0 ๐[(๐ โฒ๐ โ ๐)๐] โค |๐ถ๐๐๐ฅ | โค (๐ถ โฒ๐ + ๐)๐] โ
1
1
Fix vertex v. Do breadth first exploration of component ๐ถ(๐ฃ) of ๐บ(๐, ๐) containing v vertices.
Can be either N (neutral), A(Active) or I(Inactive).
At time ๐ก = 0, ๐ฃ โ ๐ด and all other vertices are in N.
At time ๐ก โฅ 1, if ๐ด = ๐, terminate.
Otherwise, choose ๐ค โ ๐ด.
Put all N neighbors of ๐ in ๐ด. Put ๐ in ๐ผ.
Note: Algorithm terminates after |๐ถ(๐ฃ)| steps.
Suppose at time ๐ก,
|๐| = ๐ โ ๐ vertices are left and |๐ด| โฅ 1.
The number of vertices that go from N to A in stem ๐ก has the distribution:
๐
๐
๐ต๐๐(๐ โ ๐, ๐) = ๐ต๐๐ (๐ โ ๐, ) โ ๐ต๐๐(๐, )
๐
๐
๐
Recall that ๐~๐ต(๐, ๐), ๐ โ [0,1] โ ๐[๐ = ๐] = ( ) ๐๐ (1 โ ๐)๐โ๐ , 0 โค ๐ โค ๐
๐
Expect similarity with a branching process!
Branching Process
t=0
t=1
๐
๐ต๐๐(๐, )
๐
๐
๐ต๐๐(๐, )
๐
t=2
๐๐๐(๐)
๐~๐๐๐(๐), ๐ โ (0, โ)๐๐ ๐[๐ = ๐] =
๐๐ ----โ๐
๐
, ๐โโค
๐!
๐โโ ๐๐
๐ โ๐ ,
๐!
๐
Exercise: If ๐~๐ต๐๐(๐, ๐), then ๐[๐ = ๐] โ
๐โโค
We will see that:
If ๐ < 1, then branching process (๐๐๐ (๐)) dies out almost surely.
If ๐ > 1, then it lives forever with probability >0.
Further Questions
2
-
๐ = 1 โ |๐ถ๐๐๐ฅ | โ ๐3
-
If ๐ = 1 + ๐ฟ๐ , ๐ฟ๐ โ 0
Other properties of ๐บ(๐, ๐)
Add geometry to the graph
Fix a large graph ๐บ๐
Retain (delete) every edge independently with probability ๐.
If ๐บ๐ = ๐๐ (the full graph), we get ๐บ(๐, 1 โ ๐)
Consider a random walk on ๐บ๐ , study the components ๐บ๐ \ {๐๐ก1 , โฆ , ๐๐ก๐ }, ๐ก๐ โฅ 0
Study random graphs s.t. ๐[๐๐๐๐๐๐(๐ฃ) โฅ ๐] โ ๐ โ๐ , ๐ > 0
-
๐โโ
Branching Processes
Time ๐ = 0, 1, โฆ
๐1,1
t=0
๐2,1
๐2,๐1,1
t=1
t=2
In generation ๐ โฅ 0, individual ๐ gives birth to ๐๐+1,๐ children, then dies.
Formally, we define {๐๐,๐ |๐ โฅ 1, ๐ โฅ 1} as independent, identically distributed (iid) random
variables with values in โค > 0
Define ๐๐ , (๐ โฅ 0) recursively by
๐0 = 1
โฎ
๐๐=โ๐๐ โ1 ๐
๐=1
๐,๐
๐0 = to the total number of individuals in generation 1.
Notation ๐ = ๐1,1 (since all distribute identically)
๐๐ = ๐[๐ = ๐] =probability that individual has ๐ children.
๐ = ๐ [โ{๐๐ = 0}] = ๐[๐๐๐๐๐๐ ๐ ๐๐๐๐ ๐๐ข๐ก]
๐โฅ1
For ๐ โ [0,1]
๐บ๐ฅ (๐ ) = ๐ธ[๐ ๐ฅ ]
โoffspring generation functionโ
Theorem 1.1:
- If ๐ธ[๐ฅ] < 1, ๐กโ๐๐ ๐ = 1
- If ๐ธ[๐ฅ] > 1, ๐กโ๐๐ ๐ < 1
- If ๐ธ[๐ฅ] = 1, ๐๐๐ ๐[๐ = 1] < 1, ๐กโ๐๐ ๐ = 1
Moreover, ๐ is the smallest solution in [0,1] of ๐ = ๐บ๐ฅ (๐)
Exercise 1.1: Prove ๐ธ[๐๐ ] = ๐๐ , where ๐ = ๐ธ[๐]
Exercise 1.2: For ๐ < 1, prove ๐ธ[๐] =
--------End of lesson 1
1
1โ๐
where ๐ = โโ
๐=0 ๐๐
Reminder
-
{๐ฅ๐,๐ }๐,๐โฅ1 ๐๐๐, โค โฅ 0 โ ๐ฃ๐๐๐ข๐๐
๐๐โ1
- ๐0 = 1, ๐๐ = โ๐=1
๐๐,๐
- ๐ = ๐1,1
- ๐๐ = ๐[๐ = ๐], ๐ = ๐๐ โค โฅ 0
- ๐ = ๐[โ๐โฅ0{๐๐ = 0}]
- ๐บ๐ฅ (๐ ) = ๐ธ[๐ ๐ฅ ], ๐ โ [0,1]
Theorem 1.1 (survival vs. extinction):
if ๐ธ[๐] < 1 then ๐ = 1,
If ๐ธ[๐] > 1 then ๐ < 1,
If ๐ธ[๐] = 1 and ๐[๐ = 1] < 1 then ๐ = 1
๐ is the smallest solution in [0,1] of ๐ = ๐บ๐ฅ (๐)
Example:
๐~๐๐๐(๐), ๐ > 0
โ
๐
๐บ๐ฅ (๐ ) = โโ
๐=0 ๐ ๐๐ = โ๐=0
๐ ๐ ๐๐ โ๐
๐
๐!
= ๐ ๐(๐ โ1)
Proof: First prove that ๐ = ๐บ๐ฅ (๐)
Set ๐๐ = ๐ [
๐๐ = 0 ]
โ
๐๐๐๐๐๐๐ ๐๐๐ ๐๐ ๐
By ๐ additivity, ๐๐ โ ๐ as ๐ โ โ.
Let ๐บ๐ (๐ ) = ๐ธ[๐ ๐๐ ], ๐ โ [0,1]
(โ means that ๐๐ โค ๐๐+1 , ๐๐ โ ๐)
Note that is we set ๐บ๐ (0) = ๐๐
๐
๐บ๐ (0) = โโ
๐=1 0 ๐[๐๐ = ๐] = ๐๐ + 0 + 0 + โฏ + 0 = ๐๐ .
๐๐
๐บ๐ (๐ ) = โโ
๐=0 ๐ธ[๐ 1{๐๐ =๐} ] , where 1๐ด (๐ค) = {
TODO: Draw the full drawing
๐ก=1
๐ก=๐
1 ๐๐ ๐ค โ ๐ด
0 ๐๐ ๐ค โ ฮฉ\๐ด
(๐1 )
(1)
๐๐ = ๐๐ + โฏ + ๐๐
(๐)
where ๐๐ Is the number of generation n-individuals descending from
(๐) (๐)
generation 1-individual ๐ and ๐๐ = ๐๐โ1
(๐)
(๐๐ )
๐โฅ0
๐
๐
๐๐โ1 ]
๐๐โ1 ]
are independent of ๐1 hence ๐บ๐ (๐ ) = โโ
๐๐ = โโ
๐๐ =
๐=0 ๐ธ[๐
๐=0 ๐ธ[๐
๐
โโ
๐=0 ๐บ๐โ1 (๐ ) ๐๐ = ๐บ๐ฅ (๐บ๐โ1 (๐ )).
= ๐บ1 (๐บ๐โ1 (๐ ))
๐ = 0: ๐๐ = ๐บ1 (๐๐โ1 ), ๐ โ โ
๐ โ ๐บ1 (๐)
By the dominated convergence theorem.
๐บ1 (๐๐โ1 ) = ๐ธ[(๐๐โ1 )๐1 ]
๐โโ
(๐๐โ1 ) ๐ง1 โ
๐ ๐1
Let ๐ โ [0,1], ๐ = ๐บ๐ฅ (๐)
Now we need to show that ๐ โค ๐, or equivalently, ๐๐ โค ๐ โ๐.
Indeed: ๐0 = 0 โค ๐ โ [0,1], if ๐๐โ1 โค ๐, then ๐๐ = ๐บ๐ฅ (๐๐โ1 ) โค ๐บ๐ฅ (๐)
๐๐ฆ ๐๐ ๐ ๐ข๐๐๐ก๐๐๐
=
๐.
Case ๐[๐ โ {0,1}] = 1
๐[๐ = 0] = ๐ > 0
๐โโ
๐๐ = 1 โ ๐[๐๐ > 0] = 1 โ (1 โ ๐)๐ โ
1.
Now assume ๐[๐ฅ โค 1] < 1.
๐บ๐ฅโฒ (๐ ) = ๐ธ[๐๐ ๐โ1 ] > 0
๐บ๐ฅโฒโฒ (๐ ) = ๐ธ[๐(๐ โ 1)๐ ๐โ2 ] > 0, ๐ โ (0,1).
(Ex: Prove this by using the mean value theorem and the dominant convergence theorem.)
๐บ๐ฅ (1) = 1
TODO: Draw the graph of the function ๐บ๐ฅ (๐ )
Either ๐ = ๐บ๐ฅ (๐ ) has one or two solutions in [0,1].
One solution โ ๐บ๐ฅโฒ (1) โค 1
๐บ๐ฅโฒ (1) = ๐ธ[๐]
Exercise 1.4:
Compute ๐
If ๐0 = 1 โ ๐, ๐2 = ๐, ๐ โ [0,1]
โBinary branchingโ.
Exercise 1.5: Prove ๐[๐๐ > 0] โค ๐๐ , ๐ = ๐ธ[๐].
Hint: use the Chebishev inequality and the previous exercise.
Dominated Convergence Theorem
๐โโ
Let (๐๐ )๐โฅ1 be a sequence of random variables, ๐๐ โ ๐ a.s.
Assume that โ a random variable ๐ โฅ 0 almost surely ๐ธ[๐] < โ such that |๐๐ | โค ๐ โ๐ almost
๐โโ
surely, Then ๐ธ[๐๐ ] โ
๐ธ[๐].
Exercise 1.6:
Use the Dominated Convergence Theorem to fill in the details of the proof of theorem 1.1.
Change of Notation (random walk perspective)
TODO: Draw the drawing
๐ก=0
๐ก =n
Redenote ๐๐,๐ as they appear in breadth-first search exploration of the tree.
๐. ๐. (๐1,1 , ๐2,1 , โฆ , ๐2,2 , ๐3,1 , โฆ ) =: (๐1 , ๐2 , ๐3 , โฆ )
Define the random variables ๐๐ , ๐ผ๐ , ๐ โฅ 0 such that ๐๐ = ๐(๐๐ ,๐ผ๐)
Observation: (๐๐ , ๐ผ๐ ) depend only on (๐1 , โฆ , ๐๐โ1 )
Lemma 1.7:
(๐๐ )๐โฅ1 are iid with the same distribution as ๐.
Proof: Let ๐1 , โฆ , ๐๐ โ โค โฅ 0
๐[๐1 = ๐ฅ1, โฆ , ๐๐ = ๐ฅ๐ ] = โ โ ๐ [(๐1 = ๐ฅ1 , โฆ , ๐๐โ1 = ๐ฅ๐โ1 , ๐๐ = ๐, ๐ผ๐ = ๐ ) ๐๐,๐ = ๐ฅ๐ ]
๐โฅ1 ๐โฅ1
๐โ1 โ
๐ด
๐โ1
๐ด depends only on ๐ ({๐๐,๐ }๐=1,๐=1 {๐๐,๐ }๐=1 )
โ๐ โ๐ ๐[๐ด]๐[๐ = ๐ฅ๐ ] = ๐[๐1 = ๐ฅ1 , โฆ , ๐๐โ1 = ๐ฅ๐โ1 ]๐[๐ = ๐ฅ๐ ]
๐[๐ = ๐ฅ๐ ]
๐๐๐๐ข๐๐ก๐๐๐
=
๐[๐ = ๐ฅ1 ] โ โฆ โ
Independence of ๐๐,๐
Notation (ctd): (๐๐ )๐โฅ0 equals to the number of active individuals at stage ๐.
๐0 = 1
๐๐ = ๐๐โ1 + (๐๐ โ 1), ๐ โฅ 1 = (๐1 , โฆ , ๐๐ ) โ (๐ โ 1) = number of active individuals.
๐ = (โ๐โฅ0 ๐๐ ) = inf{๐ โฅ 0 โถ ๐๐ = 0}
๐0 = 1
๐1 = 1 + (2 โ 1)
๐2 = 2 + (2 โ 1)
๐3 = 3 + (0 โ 1)
๐4 = 2 + (0 โ 1) = 1
๐ 5 = 1 + (0 โ 1) = 0
------- end of lesson 2
In the proof of theorem 1.1 we showed: ๐บ๐ (๐ ) = ๐ธ[๐๐๐ ] = ๐บ๐ (๐บ๐โ1 (๐ )), ๐ โ [0,1]
Exercise 1.7: Set ๐บ๐ (๐ ) = ๐ธ[๐ ๐ ], ๐ โ [0,1]
Prove that ๐บ๐ (๐ ) = ๐ โ ๐บ๐ (๐บ๐ (๐ )), where ๐บ๐ (๐ ) = ๐ธ[๐ ๐ ]
Exercise 1.8: Prove the following :
If ๐ = ๐ธ[๐] = 1, then ๐ธ[๐] = โ
(hint: Prove first that ๐ธ[๐] = 1 + ๐ธ[๐])
Exercize 1.9: Recall ๐ธ[๐๐ ] = ๐๐
-
๐
Prove that (๐๐ = ๐๐๐ )
๐โฅ0
is a martingale (w.r.t. natural filtration). Show that:
lim ๐๐ = ๐โ exists and 0 โค ๐๐ โค โ almost surely.
๐โโ
-
For ๐ > 1and ๐ธ[๐ 2 ] < โ show that (๐๐ )๐โฅ0 is bounded in ๐ฟ2 . Use theorem 1.1 and
onvergence theorem (๐ฟ2 ) to prove that ๐[๐โ = 0] = ๐ = ๐[๐ < โ]. Deduce that
{๐โ = 0} = {๐ < โ} almost surely.
(โ ๐๐ ~(๐โ โ ๐๐ )๐๐ {๐=โ} )
Theorem 1.10: (Extinction with large total progeny)
๐ โ๐ผ๐
If ๐ = ๐ธ[๐] > 1, then ๐[๐ โค ๐ < โ] โค 1โ๐ ๐ผ where ๐ผ = sup(๐ก โ log ๐ธ[๐ ๐ก๐ ]) > 0
๐
Remark: In ๐บ (๐, ๐) , ๐ > 1, we will see that โ๐ > 0 ๐ . ๐ก. there are no components of size
1
between ๐ log ๐ and ๐ โ ๐, with high probability as ๐ โ โ.
Lemma 1.11: (Cramer/Chernoff bound):
Let {๐๐ }โ
๐=1 be iid.
1. For any ๐ โ (๐ธ[๐1 ], โ), ๐[โ๐๐=1 ๐๐ โฅ ๐๐] โค ๐ โ๐๐ผ(๐)
2. For any ๐ โ (โโ, ๐ธ[๐1 ]), ๐[โ๐๐=1 ๐๐ โค ๐๐] โค ๐ โ๐๐ผ(๐)
Where ๐ผ(๐) = sup(๐ก๐ โ log ๐ธ[๐ ๐ก๐1 ]) in (1)
tโฅ0
and ๐ผ(๐) = sup(๐ก๐ โ log ๐ธ[๐ ๐ก๐1 ]) in (2)
tโค0
Proof of Lemma 1.11:
๐
๐
๐
๐ [โ ๐๐ โฅ ๐๐] = ๐ [exp (โ๐ก๐๐ + ๐ก โ ๐๐ ) โฅ 1] = ๐ธ[1๐ด ] โค ๐ธ 1๐ด โ exp (โ๐ก๐๐ + ๐ก โ ๐๐ )
โ
๐=1
๐=1
๐=1
โ๐กโฅ0
[
]
โฅ1
๐
๐
โค ๐ธ exp (โ๐ก๐๐ + ๐ก โ ๐๐ ) = ๐
โ
๐=1
[
]
โฅ0
๐ก๐๐ ])
= exp(โ๐(๐ก๐ โ log ๐ธ[๐
)
Now optimize over ๐ก โฅ 0 โ(1).
โ๐ก๐๐
๐ธ [โ ๐
๐
๐ก๐๐
]=๐
โ๐ก๐๐
๐=1
โ ๐ธ[๐ ๐ก๐๐ ]
๐=1
(2) is left as an exercise!
Proof of theorem 1.10:
โ
โ
โ
๐[๐ โค ๐ < โ] = โ ๐ [ ๐
โ= ๐ ] โค โ ๐[๐1 + โฏ + ๐๐ = ๐ โ 1] = โ ๐[๐1 + โฏ + ๐๐ โค ๐]
๐=๐
โ{๐๐ =0}
๐=๐
๐=๐
๐๐ = (๐1 + โฏ + ๐๐ ) โ (๐ โ 1)
๐๐๐๐๐ 1.11,(2),๐=1
๐[๐ โค ๐ < โ]
โค
โ
โ ๐ โ๐๐ผ(1)
๐=๐
Define โ ๐(๐ก) = ๐ก โ log ๐ธ[๐ ๐ก๐ ] , ๐ก โค 0
๐(0) = 0 โ log 1 = 0
1
๐ โฒ (๐ก) | = 1 โ
โ ๐ธ[๐๐ 0๐ ] = 1 โ ๐ธ[๐] < 0
0๐ ]
๐ธ[๐
๐ก=0
Since the derivative is negative, there is some negative value where ๐(๐ก) approaches from
above.
So โ๐ก < 0: ๐(๐ก) > 0 โ ๐ผ(1) > 0
Duality Principle
Assume ๐ โ (0,1)
(๐ = ๐[๐ < โ])
Condition the branching process to die out. (only consider the probability ๐[๐ด|๐ < โ] =
๐[๐ดโฉ{๐<โ}]
๐[๐<โ]
(A event)
Question: How does this change the branching process?
Definition 1.12: (Conjugate Distribution)
Let ๐๐ฅ = ๐[๐ = ๐ฅ], ๐ฅ โ โคโฅ0 and assume ๐0 > 0 (โ ๐ > 0).
Then the conjugate distribution (๐๐ฅโฒ )๐ฅโโคโฅ0 associated to ๐ is defined as ๐๐ฅโฒ = ๐ ๐ฅโ1 ๐๐ฅ , ๐ฅ โ โคโฅ0
Lemma 1.13:
โ ๐๐ฅโฒ = 1
๐ฅโฅ0
Proof:
โ ๐๐ฅโฒ = โ ๐ ๐ฅโ1 ๐๐ฅ =
๐ฅโฅ0
๐ฅโฅ0
1
1
1
โ ๐ ๐ฅ ๐๐ฅ = ๐บ๐ (๐) = โ ๐ = 1
๐
๐
๐
๐ฅโฅ0
Denote the branching process with offspring distribution ๐โฒ (๐โฒ branching process) by
โฒ
{๐๐,๐
}๐โฅ1,๐โฅ1
Lemma 1.14 (๐ > 0) ๐[๐ โฒ < โ] = 1
Proof: Let ๐ โ [0,1], assume that ๐บ๐ โฒ (๐ ) = ๐ . Want to show โ ๐ = 1, use theorem 1.1.
โ
โ
1
๐บ๐ โฒ (๐ ) = โ ๐ ๐[๐ = ๐] = โ ๐ ๐ (๐ ๐โ1 ๐๐ ) = ๐บ๐ (๐ ๐) = ๐
๐
๐
โฒ
๐=0
๐=0
So
๐ ๐โฅ๐
๐บ๐ (๐ ๐) = ๐ ๐ โ
โ
------ End of lesson 3
๐ ๐ โฅ ๐ โ ๐ = 1
Duality Principle
Assume that ๐๐[๐ < โ] โ (0,1)
Given ๐๐ฅ = ๐[๐ = ๐ฅ], ๐ฅ โฅ 0, ๐0 > 0
Define conjugate distribution ๐โฒ by ๐๐ฅโฒ = ๐ ๐ฅโ1 ๐๐ฅ , ๐ฅ โ โคโฅ0
โฒ
{๐๐,๐
}๐โฅ1,๐โฅ1 ๐โฒ - A branching process
(๐ โฒ , ๐๐โฒ , ๐1โฒ , ๐2โฒ โฆ ) then ๐[๐ โฒ < โ] = 1
Theorem 1.15: (duality princinple)
Let ๐ = (๐๐ฅ )๐ฅโโคโฅ0 be a distribution on โคโฅ0 with ๐0 > 0 and let ๐โฒ be its conjugate distribution.
Let (๐๐ )๐โฅ1 be a branching process.
Let (๐๐โฒ )๐โฅ1 be a branching process
Then ๐[(๐1 , โฆ , ๐ ๐ โฒ ) = (๐ฅ1 , โฆ , ๐ฅ๐ก )|๐ < โ] = ๐[(๐1โฒ , โฆ , ๐๐โฒ ) = (๐ฅ1 , โฆ , ๐ฅ๐ก )|๐ < โ]
For ๐ฅ1 , โฆ , ๐ฅ๐ โ โคโฅ0 .
In words, ๐-branching process conditioned to die out is distributed as a ๐โฒ branching process.
Proof: Denote ๐ป = (๐1 , โฆ , ๐๐ ), ๐ป โฒ = (๐1โฒ , โฆ , ๐๐โฒ โฒ ), โ = (๐ฅ1 , โฆ , ๐ฅ๐ก )
Recall:
๐๐ = (๐1 + โฏ + ๐๐ ) โ (๐ โ 1)
๐ = inf{๐ โฅ 1|๐๐ = 0}
๐ ๐ = (๐ฅ1 , โฆ , ๐ฅ๐ ) โ (๐ โ 1)
Assume that ๐๐ > 0 for 1 โค ๐ < ๐ก and ๐๐ก = 0.
Otherwise (1) otherwise the equation is true trivially (0 = 0)
๐ก
๐ก
๐=1
๐=1
๐[๐ป = โ, ๐ < โ] ๐ต๐ฆ ๐๐๐๐๐ 1.7 1
1
๐[๐ป = โ|๐ < โ] =
=
โ ๐๐ฅ๐ = โ ๐๐ฅโฒ ๐ ๐1โ๐ฅ๐
๐[๐ < โ]
๐
๐
๐ก
=
1 ๐กโโ๐ก ๐ฅ
โ ๐ ๐=1 ๐ โ ๐๐ฅโฒ ๐
๐
โ
๐=1
๐[๐ป โฒ =โ]
โ๐ก๐=1 ๐ฅ๐
But ๐ก โ
= ๐ก โ (๐ ๐ก + (๐ก โ 1)) = ๐ก โ ๐ก + 1 = 1
โฒ
So it equals: ๐[๐ป = โ]
Which is what we needed to prove.
Exercise 1.16:
Let ๐ be ๐๐๐(๐) - distributed, ๐ > 0.
Recall from Lemma 1.11
๐ผ(๐) = sup(๐ก๐ โ log ๐ธ[๐ ๐ก๐ฅ ]) , ๐ > 0
(๐ก โฅ 0 if ๐ > ๐)
(๐ก โค 0 if ๐ < ๐)
Show that in both cases (๐ > ๐, ๐ < ๐)
๐
๐ผ(๐) = sup (๐ก๐ โ log ๐ธ[๐ ๐ก๐ฅ ]) = ๐ โ ๐ + ๐ log ( )
๐
tโRโ
Exercise 1.17 (coupling)
Let (๐๐ฅ )๐ฅโโค , (๐๐ฅ )๐ฅโโค be different probability distributions on โค.
We want a random variable (๐, ๐), โค2 valued, such that
๐[๐ = ๐ฅ] = ๐๐ฅ , ๐ฅ โ โคโฅ0
๐[๐ = ๐ฅ] = ๐๐ฅ , ๐ฅ โ โคโฅ0
๐[๐ โ ๐] as small as possible.
Prove that:
1
2
(๐๐ฅ โmin{๐๐ฅ ,๐๐ฅ })(๐๐ฅ โmin{๐๐ฅ ,๐๐ฅ })
๐๐๐ (๐,๐)
(i)
โ๐ฅโโค(๐๐ฅ โ min{๐๐ฅ , ๐๐ฅ }) = โ๐ฅโโค(๐๐ฅ โ min{๐๐ฅ , ๐๐ฅ }) = โ๐ฅโโค|๐๐ฅ โ ๐๐ฅ | = ๐๐๐ (๐, ๐)
(ii)
๐๐ฅ,๐ฆ = min{๐๐ฅ , ๐๐ฅ } if ๐ฅ = ๐ฆ, and
(iii)
otherwise. Is a
distribution on โค2
With ๐[(๐, ๐) = (๐ฅ, ๐ฆ)] = ๐๐ฅ,๐ฆ , (๐ฅ, ๐ฆ) โ โค2
get ๐[๐ โ ๐] = ๐๐๐ (๐, ๐) and this is the best.
if ๐[(๐, ๐) = (๐ฅ, ๐ฆ)] = ๐โฒ๐ฅ,๐ฆ , ๐[๐ = ๐ฅ] = ๐๐ฅ , ๐[๐ = ๐ฅ] = ๐๐ฅ โ ๐[๐ โ ๐] โฅ
๐๐๐ (๐, ๐)
Possible for any random variable (๐ โฒ , ๐โฒ) with values in โค2 , with ๐[๐ โฒ = ๐ฅ] =
๐๐ฅ , ๐[๐ โฒ = ๐ฅ] = ๐๐ฅ โ ๐[๐ โฒ โ ๐ โฒ ] > ๐๐๐ (๐, ๐)
Poisson branching processes
Notation: Use superscript โ*โ for Poisson branching processes.
(๐๐โ , ๐๐โ , ๐ โ , โฆ )
Recall:
๐๐ โ๐
๐ ,
๐!
-
๐[๐ โ = ๐] =
-
๐ธ[๐ โ ] = ๐
๐บ๐ โ (๐ ) = ๐ ๐(๐ โ1) , ๐ โฅ 0
๐ โ โคโฅ0
Definition 2.1: Call 0 < ๐ < 1 < ๐ a conjugate pair if ๐๐ โ๐ = ๐๐ โ๐
Note:
๐: ๐ฅ โ ๐ฅ๐ โ๐ฅ is strictly increasing on [0,1]
It is strictly decreasing on [1, โ]
๐(0) = 0, ๐(โ) = 0
TODO: Draw functionโฆ
So for any ๐ > 1, there is a unique conjugate ๐ โ [0,1) and vice-versa.
Theorem 2.2: (Poisson duality principle):
Let ๐ < 1 < ๐ be a conjugate pair
The ๐๐๐(๐) - a branching process conditioned on extinction is distributed as ๐๐๐(๐) - a
branching process.
Proof: By theorem 1.15, The conditioned process is a branching process with offspring
distribution ๐๐ฅโฒ = ๐๐๐ฅโ1
๐๐ฅ โ๐
๐ ,
๐ฅ!
๐ฅ > 0 where ๐๐ = extinction probability for ๐๐๐(๐)- branching
process. ๐๐ โ (0,1)
i.e.
(๐๐๐ )๐ฅ โ๐ 1
๐๐ฅโฒ =
๐ ( )
๐ฅ!
๐๐
By theorem 1.1:
๐๐ = ๐บ๐ โ (๐๐ ) = ๐ ๐(๐๐ โ1)
So ๐๐ฅโฒ =
(๐๐๐ )๐ฅ
๐ฅ!
๐ โ๐ โ
1
๐
๐(๐๐ โ1)
=
(๐๐๐ )๐ฅ
๐ฅ!
๐ โ๐๐๐ , ๐ฅ โฅ 0
Hence, ๐โฒ = ๐๐๐(๐๐๐ )
?
๐๐๐ ๐ โ๐๐๐ = ๐๐ โ๐
Have to prove ๐๐๐ = ๐
๐๐๐ ๐ โ๐๐๐ = ๐๐ ๐(๐๐ โ1) ๐ โ๐๐๐ = ๐๐ โ๐
So, ๐๐๐ โ ๐ (since ๐ > ๐ (theorem 1.1) โ ๐ธ[๐ โ ] > 1 โ ๐๐ > 1)
And (๐๐๐ )๐ โ(๐๐๐ ) = ๐๐ โ๐
Since ๐ฅ๐ โ๐ฅ โ on [0,1], โ on [1, โ]
There is at most 1 ๐ฅ diferent from ๐ such that ๐ฅ๐ โ๐ฅ = ๐๐ โ๐ = ๐
Hence, ๐๐๐ = ๐ โ
Theorem (Cayleyโs formula):
The number of labeled trees on ๐ vertices is equal to ๐๐โ2
TODO: Draw a tree
Theorem 3.15: In reference
---- End of lesson 4
โ
โ
๐ = โ ๐๐โ = inf{๐ โฅ 0: (๐1 + โฏ + ๐๐ ) โ (๐ โ 1) = 0}
๐=1
Theorem 2.3 (Total Progeny of Poisson Branching Process):
For ๐๐๐(๐) - branching process. ๐ > 0
(๐๐ )๐โ1 โ๐๐
๐[๐ โ = ๐] =
๐
,
๐!
๐โฅ1
Proof: By Induction on ๐.
โ
Check for ๐ = 1: ๐[๐ โ = 1] = ๐[๐1,1
= 0] = ๐ โ๐ which fully agrees with the formula.
๐ โฅ 2, assume the result holds for all ๐โฒ < ๐.
๐โ1
โ
๐[๐ = ๐] = โ ๐[๐ โ = ๐, ๐1,1
= ๐]
โ
๐=1
If we observe the children that โsprungโ from all children of the first one, the sum of all vertices
is their sum + 1 (for the root) equals the sum of all vertices in the graph.
โ
๐ โ is distributed as 1 + ๐ (1) + โฏ + ๐ (๐1,1 ) , where {๐ (2) }๐โฅ1 are iid with the same distribution as
๐โ
๐โ1
โ
๐[๐ = ๐] = โ ๐[๐ (1) + โฏ + ๐ (๐) = ๐ โ 1, ๐1,1
= ๐]
โ
๐=1
But these random variables are independent (by our assumption)
๐โ1
=โ
โ
๐[๐ (1) = ๐1 , โฆ , ๐ (๐) = ๐๐ , ๐1,1
= ๐] =
โ
๐=1 (๐1 ,โฆ,๐๐ )
๐๐ โฅ1,
โ๐ ๐๐ =๐โ1
๐โ1
โ
โ
โ
๐[๐ (1) = ๐1 ] โ โฆ โ ๐[๐ (๐) = ๐๐ ] โ ๐[๐1,1
= ๐]
๐=1 (๐1 ,โฆ,๐๐ )
๐๐ โฅ1,
โ๐ ๐๐ =๐โ1
Now we can use our induction hypothesis!
Each of the ๐๐ โs is smaller than ๐.
๐โ1
โ
๐
โ
๐โ1โ๐ โ๐(๐โ1)
๐
๐
โ โ(
๐=1 (๐1 ,โฆ,๐๐ )
๐๐ โฅ1,
โ๐ ๐๐ =๐โ1
So, so far we have shown that:
๐=1
(๐๐ )๐๐โ1 ๐๐ โ๐
)โ ๐
๐๐ !
๐!
๐โ1
โ
๐โ1 โ๐๐
๐[๐ = ๐] = ๐
๐
1
โ
๐!
๐=1
โ
๐
โ
โ(
(๐1 ,โฆ,๐๐ ) ๐=1
๐๐ โฅ1
โ๐ ๐๐ =๐โ1
(๐๐ )๐๐ โ1
) = ๐๐โ1 ๐ โ๐๐ โ ๐๐
๐๐ !
=:๐๐
Lemma 2.4: Let ๐ฟ๐ be the number of labeled trees on ๐ vertices.
Then, ๐ฟ๐ = ๐๐โ2 = (๐ โ 1)! ๐๐
๐๐โ2
With the lemma 2.4, we get ๐[๐ โ = ๐] = ๐๐โ1 ๐ โ๐๐ โ (๐โ1)! =
(๐๐)๐โ1
๐!
๐ โ๐๐ โ (theorem 2.3).
How do we prove lemma 2.4? We use lemma 2.5.
Lemma 2.5 (Cayleyโs Formula):
๐ฟ๐ = ๐๐โ2
Example:
๐=5
TODO: Draw graph
Proof that lemma 2.5 โ Lemma 2.4:
For ๐ โฅ 1, ๐1 , โฆ , ๐๐ , ๐๐ โฅ 1,
โ๐ ๐๐ = ๐ โ 1, define ๐ก(๐1 ,โฆ,๐๐) =number of labeled trees of ๐ vertices such that ๐ฃ1 has ๐
neighbors, (tree\{๐ฃ1 }) โ has components with ๐1 , โฆ , ๐๐ vertices.
To choose such a tree:
1. Split {๐ฃ2 , โฆ , ๐ฃ๐ } into sets of size ๐1 , โฆ , ๐๐
2. Choose ๐ labeled trees of size ๐1 , โฆ , ๐๐
3. Choose a vertex in each of the ๐ trees, and connect it to ๐ฃ1
๐
๐ก(๐1 ,โฆ,๐๐)
(๐๐ )๐๐โ1
๐โ1
๐ โ2
๐ โ2
=(
) โ (๐1 1 โ โฆ โ ๐๐ ๐ ) โ (๐1 โ โฆ โ ๐๐ ) = (๐ โ 1)! โ (
)
๐1 , โฆ , ๐๐
๐๐ !
๐=1
Hence,
๐โ1
๐ฟ๐ = โ
๐โ1
โ
๐๐ โฅ1
๐=1
โ๐ ๐๐ =๐โ1
(๐๐๐๐๐๐๐๐๐!)
Now weโre done!
โ ๐ฟ๐ = (๐ โ 1)! โ ๐๐
๐ก(๐1 ,โฆ,๐๐) = โ
๐=1
1
๐!
โ
๐๐ โฅ1
โ๐ ๐๐ =๐โ1
๐๐๐๐๐๐๐!
๐ก(๐1 ,โฆ,๐๐)
Lemma 2.5 (๐ฟ๐ = ๐๐โ2 , ๐ โฅ 1):
Definition: A rooted tree is a tree with one distinguished vertex called โthe rootโ and the edges
are all oriented, and oriented away from the root.
Example:
TODO: Draw an oriented tree
Itโs not possible that a vertex will have 2 incoming edges. So a vertex has 1 incoming degree.
For labeled vertices ๐ฃ1 , โฆ , ๐ฃ๐ , ๐ธ = {โฉ๐ฃ๐ , ๐ฃ๐ โช, ๐ โ ๐}
๐ ๐ = |{(๐1 , โฆ , ๐๐ ) โ ๐ธ ๐โ1 |({๐ฃ1 , โฆ , ๐ฃ๐ }, {๐1 , โฆ , ๐๐โ1 }) โ ๐๐ ๐ ๐๐๐๐ก๐๐ ๐ก๐๐๐}|
Example:
TODO: Draw vertices example
To choose such a sequence as (was supposed to be drawn) above:
1. Choose a labeled tree on {๐ฃ1 , โฆ , ๐ฃ๐ }
2. Choose a root
3. Choose order in which to add the ๐ โ 1 edges.
Hence, ๐ ๐ = ๐ฟ๐ โ ๐ โ (๐ โ 1)! = ๐ฟ๐ โ ๐!
Alternatively, ๐ ๐ = ๐ ๐โฒ , where ๐๐โฒ is the number of rooted trees after you remove the last ๐
edges.
๐ ๐โฒ
= |{(๐1 , โฆ , ๐๐ ) โ ๐ธ ๐โ1 |({๐ฃ1 , โฆ , ๐ฃ๐ }, {๐1 , โฆ , ๐๐โ1โ๐ }) โ ๐๐ ๐ ๐๐๐๐ก๐๐ ๐๐๐๐๐ ๐ก ๐ค๐๐กโ ๐ + 1 ๐๐๐๐๐๐๐๐๐ก๐ โ๐ = 0, โฆ , ๐ โ 1}|
๐ ๐ โค ๐ ๐โฒ obviously (every sequence in a set of ๐ ๐ can generate a sequence in ๐ ๐โฒ )
But also ๐ ๐โฒ โค ๐ ๐ , since for ๐ = 1, every forest is a rooted tree.
Suppose edges ๐1 , โฆ , ๐๐โ1โ๐ have been added.
Number of choices for ๐๐โ๐ = (๐ข, ๐ฃ)
โ
๐
โ
โ
๐
๐ข ๐๐๐๐๐ก๐๐๐๐ฆ ๐ฃ ๐๐๐ฆ ๐๐๐๐ก ๐๐กโ๐๐ ๐กโ๐๐ ๐กโ๐ ๐๐๐ ๐๐ ๐ถ(๐ข)
Hence
๐โ1
๐๐ =
๐ ๐โฒ
= โ(๐๐) = ๐๐โ1 โ (๐ โ 1)! = ๐๐โ2 ๐! = ๐ฟ๐ (๐!)
๐=1
--- end of lesson 5
Theorem 2.3: For ๐๐๐(๐) = ๐ต. ๐.
๐[๐ โ = ๐] =
(๐ > 0),
(๐๐ )๐โ1 โ๐๐
๐
,
๐!
๐โฅ1
Proof of Lemma 2.4:
(Correction):
๐ โฅ 1,
๐1 , โฆ , ๐๐ ,
๐๐ โฅ 1,
โ ๐๐ = ๐ โ 1
๐
TODO: Draw correction drawing
๐ก(๐1 , โฆ , ๐๐ ) = number of labeled trees on ๐ vertices {๐ฃ1 , โฆ , ๐ฃ๐ }, where ๐ฃ1 belongs to labeled
edges 1, โฆ , ๐.
And ๐ฃ1 has ๐๐ descendants attached to edge ๐, ๐ โ {1, โฆ , ๐}
Reminder of what we did last time:
๐โ1
(
)
โ๐1 , โฆ , ๐๐
๐ก(๐1 , โฆ , ๐๐ ) =
๐๐ ๐ค๐๐ฆ๐ ๐ก๐
๐๐๐๐ก๐๐ก๐๐๐ {๐ฃ2 ,โฆ,๐ฃ๐ }
๐๐๐ก๐ ๐๐๐๐ข๐๐ ๐๐
๐ ๐๐ง๐ ๐1 ,โฆ,๐๐
๐1 โ2
๐ โ2
=
๐
× โฆ × ๐๐ ๐
โ1
๐๐ ๐โ๐๐๐๐๐ ๐๐
๐๐๐๐๐๐๐ ๐ ๐ข๐๐ก๐๐๐๐
×
(๐1 × โฆ × ๐๐ )
โ
๐๐ ๐โ๐๐๐๐๐ ๐๐
๐๐๐๐โ๐๐๐๐ ๐๐ ๐ฃ1
๐
Remark: (๐ , โฆ , ๐ ) - is the number of ways to partition ๐ objects into ๐ labeled bins of sizes
1
๐
๐1 , โฆ , ๐๐
And the number of labeled trees on ๐ vertices equals
๐โ1
โ
๐=1
1
๐!
โ
๐ก(๐1 ,โฆ,๐๐) โ
(๐1 ,โฆ,๐๐ )
โ๐๐โฅ1,โ๐ ๐โ1
# ๐๐ ๐ก๐๐๐๐ ๐ค๐๐กโ deg(๐ฃ1 )=๐
Corollary 2.6 (differentiability of the extinction probability):
Let ๐(๐) = ๐๐ [๐ โ < โ], ๐ > 1
And let 0 < ๐ < 1 be the conjugate of ๐ (cf. definition 2.1)
So ๐๐ โ๐ = ๐๐ โ๐
Then
โ๐โฒ (๐) =
๐(๐)(๐ โ ๐)
<โ
๐(1 โ ๐)
Proof: Assume ๐ > 1 + ๐, ๐ > 0
By theorem 2.3:
โ
๐(๐) = โ
๐=1
(๐๐)๐โ1 โ๐๐
๐
๐!
By using the mean-value theorem, and the dominant convergence theorem, we can check that
we can differentiate term-by-term.
So:
โ
๐
โฒ (๐)
=โ
๐=1
(๐๐)๐โ1 โ๐๐ (๐ โ 1)๐๐โ2 ๐๐โ1 โ๐๐
๐๐
โ
๐
=
๐!
๐!
๐๐ฆ ๐กโ๐๐๐๐๐
1.15 (๐๐ข๐๐๐๐ก๐ฆ)
1
1
1
1
๐ธ๐ [๐ 1{๐ โ <โ} ] (1 โ ) + ๐(๐) = ๐ธ๐ [๐ โ |๐ โ < โ] โ ๐(๐) (1 โ ) + ๐(๐)
=
๐
๐
๐
๐
1
1
๐(๐) ๐๐ฆ ๐ธ๐ฅ.1.3(?) ๐(๐) (1 โ ๐) ๐(๐) ๐(๐)(๐ โ 1) + ๐(๐)(1 โ ๐)
โ
๐ธ๐ [๐ ] โ ๐(๐) (1 โ ) +
=
+
=
๐
๐
1โ๐
๐
๐(1 โ ๐)
๐(๐)(๐ โ ๐)
=
โ
๐(1 โ ๐)
โ
Recall exercise 1.17:
๐, ๐ be different distributions on โค, then there exists a distribution ๐ on โค2 such that if
(๐)
(๐)
(๐)
(๐, ๐) = ๐, then ๐ = ๐, ๐ = ๐ and ๐[๐ โ ๐] = ๐ ๐๐ (๐, ๐) = 1 โ โ๐ฅโโค min{๐๐ฅ , ๐๐ฅ }
Exercise 2.7: Let (๐๐ )๐๐=1 be iid ๐ฅ๐ ~๐ต๐(๐), i.e. ๐[๐๐ = 1] = ๐, ๐[๐๐ = 0] = 1 โ ๐, ๐ โ [0,1],
then show that โ๐๐=1 ๐ฅ๐ ~๐ต๐๐(๐, ๐)
Exercise 2.8: Let (๐๐ )๐๐=1 be independent, ๐ฅ๐ ~๐๐๐ (๐๐ ), ๐๐ > 0
Show that โ๐๐=1 ๐๐ ~๐๐๐(โ๐๐=1 ๐๐ )
Theorem 2.9: (coupling of Binomial and Poisson random variables)
For ๐ > 0, there exists a โค2 values random variable (๐, ๐) such that:
๐
-
๐~๐ต๐๐ (๐, ๐)
-
๐~๐๐๐(๐)
-
๐[๐ โ ๐] โค
๐2
๐
Proof: By Ex.1.17, there are iid random variables {(๐ผ๐ , ๐ฝ๐ )}๐๐=1 such that:
๐
-
๐ผ๐ ~๐ต๐ (๐)
-
๐ฝ๐ ~๐๐๐ (๐)
-
๐[๐ผ๐ = ๐ฝ๐ ] = โ๐ฅโโคโฅ0 min{๐[๐ผ1 = ๐ฅ], ๐[๐ฝ1 = ๐ฅ]} =
๐
๐
๐ ๐ ๐ 1โ๐ฅโค๐ โ๐ฅ
๐ ๐ ๐
min {1 โ , ๐ โ๐ } + min { , ๐ โ๐ } = 1 โ + ๐ โ๐
๐
๐ ๐
๐ ๐
Define:
๐
๐
(๐, ๐) = โ(๐ผ๐ , ๐ฝ๐ )
๐=1
๐
By exercise 2.7, ๐~๐ต๐๐ (๐, ๐)
By exercise 2.8: ๐~๐๐๐(๐)
Finally:
๐
๐ ๐ ๐
๐
๐[๐ โ ๐] โค โ ๐[๐ผ๐ โ ๐ฝ๐ ] = ๐ โ ( โ ๐ โ๐ ) โค ๐ โ
๐ ๐
๐
๐=1
๐
๐
Exercise 2.10: Let (๐๐ )๐โฅ1 , ๐๐ ~๐ต๐๐ (๐, ) , ๐~๐๐๐(๐), ๐ โฅ 0.
(๐)
๐โโ
Prove that ๐๐ โ ๐, meaning: For any ๐ด โ โค, ๐[๐๐ โ ๐ด] โ
๐[๐ โ ๐ด]
Theorem 2.11 (Poisson and Binomial branching processes):
๐
๐
Let ๐ and ๐ โ be the total progenies of a ๐ต๐๐ (๐, ) - branching process ๐ and of a ๐๐๐(๐) branching process ๐ โ, ๐ > 0. Then for ๐ โฅ 1 ๐[๐ โฅ ๐] = ๐[๐ โ โฅ ๐] + ๐(๐, ๐)
Where |๐(๐, ๐)| โค
2๐2 ๐โ1
โ๐ =1 ๐[๐ โ
๐
> ๐ ] โค
2๐2 ๐
๐
Proof: By theorem 2.9, we can define the branching processes:
(๐1 , ๐2 , โฆ ) (Bin)
(๐1โ , ๐2โ , โฆ ) (Poi)
(random walk perspective)
Such that ๐[๐๐ โ ๐๐โ ] โค
๐2
,
๐
๐โฅ1
๐ โฅ 1:
{๐ โฅ ๐พ} depends only on {๐1 , โฆ , ๐๐โ1 } - A key observation!
Now:
๐โ1
๐[๐ โฅ ๐, ๐ < ๐] โค โ ๐[๐๐ = ๐๐โ ๐๐๐ 1 โค ๐ โค ๐ โ 1, ๐๐ โ ๐๐ โ ๐ โฅ ๐ โฅ ๐ ]
โ
๐ =1
We can deduce from ๐ โฅ ๐ โฅ ๐ that ๐ โ โฅ ๐ !
๐โ1
โค โ ๐[๐๐ โ ๐๐ โ , ๐ โ โฅ ๐ ]
๐ =1
But these two events are independent
๐โ1
= โ ๐[๐๐ โ
๐ =1
Similarly:
๐โ1
๐๐ โ ]๐[๐ โ
๐2
โฅ ๐ ] โค โ ๐[๐ โ โฅ ๐ ]
๐
๐ =1
๐โ1
๐[๐ โฅ ๐, ๐ < ๐] โค โ ๐[๐๐ = ๐๐โ , ๐๐๐ ๐ โค ๐ โ 1, ๐๐ โ ๐๐โ , ๐ โ โฅ ๐ โฅ ๐ ] โค
โ
๐ =1
๐โ1
โโ
๐[๐๐ โ ๐๐ โ ] ๐[๐ โ โฅ ๐ ]
๐ =1
โค
๐2
๐
We are interested in: |๐[๐ โฅ ๐] โ ๐[๐ โ โฅ ๐]| โค
|๐[๐ โฅ ๐, ๐ โ โฅ ๐] + ๐[๐ โฅ ๐, ๐ โ < ๐] โ ๐[๐ โ โฅ ๐, ๐ โฅ ๐] โ ๐[๐ โ โฅ ๐, ๐ < ๐]| โค
๐โ1
2๐2
โ ๐[๐ โ โฅ ๐ ] โ
๐
๐ =1
--- end of lesson 6
Exercise 1.17 ๐, ๐ different distributions on โค
(๐๐ฅ โ min{๐๐ฅ , ๐๐ฅ })(๐๐ฆ โ min{๐๐ฆ , ๐๐ฆ })
๐๐ ๐ฅ = ๐ฆ
๐๐ฅ,๐ฆ = {
๐ ๐๐ (๐, ๐)
min{๐๐ฅ , ๐๐ฅ } ๐๐ ๐ฅ = ๐ฆ
(๐ฅ, ๐ฆ) โ โค2
1
1
๐๐๐ (๐, ๐) = โ|๐๐ฅ โ ๐๐ฅ | = ( โ (๐๐ฅ โ ๐๐ฅ ) + โ (๐๐ฅ โ ๐๐ฅ )) =
2
2
๐ฅโโค
๐ฅ:๐๐ฅ โฅ๐๐ฅ
๐ฅ:๐๐ฅ <๐๐ฅ
1
(โ ๐๐ฅ โ โ ๐๐ฅ โ โ ๐๐ฅ + โ ๐๐ฅ โ โ ๐๐ฅ ) =
2
๐ฅโโค
๐ฅ:๐๐ฅ <๐๐ฅ
๐ฅ:๐๐ฅ โฅ๐๐ฅ
๐ฅ:๐๐ฅ <๐๐ฅ
๐ฅ:๐๐ฅ <๐๐ฅ
1
(1 โ โ ๐๐ฅ โ โ ๐๐ฅ + โ ๐๐ฅ โ โ ๐๐ฅ โ โ ๐๐ฅ ) =
2
๐ฅ:๐๐ฅ <๐๐ฅ
๐ฅ:๐๐ฅ โฅ๐๐ฅ
๐ฅโโค
๐ฅ:๐๐ฅ โค๐๐ฅ
๐ฅ:๐๐ฅ <๐๐ฅ
1
(2 โ 2 โ min{๐๐ฅ โ ๐๐ฅ }) = 1 โ โ min{๐๐ฅ , ๐๐ฅ }
2
๐ฅโโค
๐ฅโโค
๐ is a distribution on โค2 :
โ โ ๐๐ฅ,๐ฆ = โ ๐๐ง,๐ง + โ โ ๐๐ฅ,๐ฆ = โ min{๐๐ง , ๐๐ง } + โ(๐๐ฅ โ min{๐๐ฅ , ๐๐ฅ }) = 1
๐ฅ
๐ฆ
๐งโโค
๐[๐ = ๐ฅ] = โ ๐๐ฅ,๐ฆ
๐ฆโโค
๐ฅโโค ๐ฆโ ๐ฅ
๐งโโค
๐ฅโโค
(๐, ๐)~๐
(๐๐ฅ โ min{๐๐ฅ , ๐๐ฅ })๐๐๐ (๐, ๐)
= min{๐๐ฅ , ๐๐ฅ } +
= ๐๐ฅ
๐๐๐ (๐, ๐)
Similarly, ๐[๐ = ๐ฅ] = ๐๐ฅ
๐[๐ โ ๐] = 1 โ ๐[๐ = ๐] = 1 โ โ ๐๐ฅ,๐ฅ = 1 โ โ min{๐๐ฅ , ๐๐ฅ } = ๐๐๐ (๐, ๐)
๐ฅโโค
๐ฅโโค
Cannot do better!
Assume (๐ โฒ , ๐ โฒ ): ๐ โฒ ~๐, ๐ โฒ ~๐
๐[๐ โฒ = ๐ โฒ ] = โ ๐[๐ โฒ = ๐ โฒ = ๐ฅ]
๐ฅโโค
But ๐[๐ โฒ = ๐ โฒ = ๐ฅ] โค ๐[๐ โฒ = ๐ฅ] = ๐๐ฅ
And also ๐[๐ โฒ = ๐ โฒ = ๐ฅ] โค ๐[๐ โฒ = ๐ฅ] = ๐๐ฅ
And both are smaller or equal to min{๐๐ฅ , ๐๐ฅ } โ
๐[๐ โฒ โ ๐ โฒ ] = 1 โ ๐[๐ โฒ = ๐ โฒ ] โฅ 1 โ โ min{๐๐ฅ , ๐๐ฅ } = ๐๐๐ (๐, ๐)
๐ฅโโค
3. The Eedos-Renyi random graph
Definition 3.1: E.R. random graphs, ๐บ(๐, ๐) for ๐ โฅ 1, ๐ โ [0,1].
Let (๐ผ{๐,๐} )1โค๐<๐โค๐ be iid random variables with distribution ๐ต๐(๐).
Then ๐บ(๐, ๐) = ([๐], ๐ธ)
Where [๐] = {1, โฆ , ๐}, ๐ธ = {{๐, ๐} โค [๐]: ๐ โ ๐, ๐ผ{๐,๐} = 1}
Exercise 3.2:
Let ๐ โ number of triangles in ๐บ(๐, ๐)
๐
๐ธ[๐] = ( ) ๐3
3
1
Let ๐ = ๐๐ผ , ๐ผ > 0
Show that:
-
๐โโ
For ๐ผ > 1, ๐[๐ > 0] โ
๐โโ
For ๐ผ < 1, ๐[๐ > 0] โ
๐ผ = 1?
What about ๐พ๐ , ๐ โฅ 4?
(hint, prove that
๐ฃ๐๐(๐) ๐โโ
โ 0
๐ธ[๐]2
0 (can be proven using a chebishev inequality)
1 (should use a second moment method! โ the variant of ๐)
and use chebishev).
Notation:
- For ๐ข, ๐ฃ โ [๐], "๐ข โ ๐ฃโ means โThere is a nearest-neighbor path from ๐ข to ๐ฃ in
๐บ(๐, ๐)โ
- For ๐ฃ โ [๐], ๐ถ(๐ฃ) = {๐ค โ [๐]: ๐ฃ โ ๐ค}
Consider the following exploration algorithm for ๐ถ(1) set ๐ด0 = {1}, ๐1 = [๐]\{1}
-
For ๐ก > 0, if ๐ด๐กโ1 = โ
, then ๐ด๐ก = โ
, ๐๐ก = โ
(terminate)
If ๐ด๐กโ1 โ โ
, let ๐ค๐กโ1 be the smallest vertex in ๐ด๐กโ1 and define:
๐ฃ๐ก = {๐ค โ ๐๐กโ1 |{๐ค๐กโ1 , ๐ค} โ ๐ธ}
๐ด๐ก โ (๐ด๐กโ1 \{๐ค๐กโ1 }) โช ๐๐ก
๐๐ก โ ๐๐กโ1 \๐๐ก
Example:
Draw graphical example.
Note that:
- |๐ด0 | = 1, |๐ด๐ก | = |๐ด๐กโ1 | + |๐๐ก | โ 1 for ๐ก โฅ 1
- |๐๐ก | = ๐ โ |๐ด๐ก | โ ๐ก, ๐ก โฅ 0
- |๐ถ(1)| = inf{๐ก โฅ 1 | |๐ด๐ก | = 0}
Lemma 3.3: For ๐ฅ1 , โฆ , ๐ฅ๐ โ โคโฅ0 , let:
- ๐ 0 = 1, ๐ ๐ก = ๐ ๐กโ1 + ๐ฅ๐ก โ 1 for ๐ก โฅ 1
- ๐๐ก = ๐ โ ๐ ๐ก โ ๐ก
If ๐ 1 , ๐ 2 , โฆ , ๐ ๐ โฅ 1, ๐0 , ๐1 , โฆ , ๐๐โ1 โฅ 0
Then
๐
๐[|๐1 | = ๐ฅ1 , โฆ , |๐๐ | = ๐ฅ๐ ] = โ(๐(๐๐กโ1 , ๐, ๐ฅ๐ก ))
๐
Where ๐(๐, ๐, ๐) = ( ) ๐๐ (1 โ ๐)๐โ๐
๐
๐ก=1
Proof: By picture.
TODO: Draw picture proof.
๐[|๐1 | = ๐ฅ1 , โฆ , |๐๐ | = ๐ฅ๐ ] =
โ โ ๐ [|๐1 | = ๐ฅ1 , โฆ , |๐๐โ1 | = ๐ฅ๐โ1 , ๐ด๐โ1 = ๐ด, ๐๐โ1 = ๐, โ ๐ผ{๐,๐ค} = ๐ฅ๐ ]
๐ดโ[๐] ๐โ[๐]
๐ดโ โ
๐คโ๐
๐ is the smallest vertex in ๐ด.
{|๐1 } = ๐ฅ1 , โฆ , ๐๐กโ1 = ๐} โ ๐(๐ผ๐ : ๐ ๐๐๐ก ๐๐ ๐๐๐๐ ๐๐๐๐ ๐ ๐ก๐ ๐)
{ โ ๐ผ{๐,๐ค} = ๐ฅ๐ } โ ๐(๐ผ๐ : ๐ ๐๐๐๐ ๐๐๐๐ {๐} ๐ก๐ ๐)
๐คโ๐
So these two events must be independent!
So:
๐[|๐1 | = ๐ฅ1 , โฆ , |๐๐ | = ๐ฅ๐ ] = โ โ ๐[|๐1 | = ๐ฅ1 , โฆ , ๐๐โ1 = ๐] โ ๐(๐๐โ1 , ๐, ๐ฅ๐ )
If the probability of ๐[|๐1 | = ๐ฅ1 , โฆ , ๐๐โ1 = ๐] is positive then necessarily |๐| = |๐๐โ1 | = ๐๐โ1
โ ๐[|๐1 | = ๐ฅ1 , โฆ , |๐๐ | = ๐ฅ๐ ] = ๐[๐1 = ๐ฅ! , โฆ , |๐๐โ1 | = ๐ฅ๐โ1 ] × ๐(๐๐โ1 , ๐, ๐ฅ๐ )
So now we can use induction to complete the proof.
--- end of lesson
Definition: 3.4:
๐
๐กโ1
Let (๐ผ๐ก,๐ )๐ก,๐โฅ1 be iid ๐ต๐(๐). Define ๐0 = ๐ โ 1, for ๐ก โฅ 1 : โ๐=1
๐ผ๐ก,๐ , ๐๐ก = ๐๐ก โ ๐๐ก , ๐๐ก =
(๐1 + โฏ + ๐๐ก ) โ (๐ก โ 1)
๐๐ก ~|๐๐ก |,
๐๐ก ~|๐๐ก |,
๐๐ก ~|๐ด๐ก |
Lemma 3.5 For ๐ฅ๐ , ๐ ๐ , ๐๐ as in lemma 3.3,
๐
โ ๐(๐๐กโ1 , ๐, ๐ฅ๐ก ) ,
๐[๐1 = ๐ฅ1 , โฆ , ๐๐ = ๐ฅ๐ ] = {
๐๐ ๐1 , โฆ , ๐๐กโ1 โฅ 0
๐ก=0
0,
๐๐กโ๐๐๐ค๐๐ ๐
Proof: {๐1 = ๐ฅ1 , โฆ , ๐๐ = ๐ฅ๐ } โ {๐1 = ๐1 , โฆ , ๐๐โ1 = ๐๐โ1 }
So if ๐๐ < 0, then ๐[โฆ ] = 0. Otherwise:
๐[๐1 = ๐ฅ1 , โฆ , ๐๐โ1 = ๐ฅ๐โ1 , ๐๐ = ๐ฅ๐ ] = ๐[๐1 = ๐ฅ1 , โฆ , ๐๐โ1 = ๐ฅ๐โ1 ] โ ๐(๐๐โ1 , ๐, ๐ฅ๐ )
๐๐ฆ ๐๐๐
๐๐โ1
Because ๐๐ = โ๐=1
๐ผ๐,๐
We can continue by induction. And that finishes the proof. โ
Corollary 3.6: For ๐ โฅ 1, and any ๐: โค๐โฅ0 โ โ
๐ธ[๐(|๐1 |, โฆ , |๐๐ |)1{|๐ด1 |>0,โฆ,|๐ด๐โ1 |>0} ] = ๐ธ[๐(๐1 , โฆ , ๐๐ )1{๐1 >0,โฆ,๐๐โ1 >0} ]
Proof: Combine Lemma 3.3 and Lemma 3.5. โ
Theorem 3.7: Let ๐ โ and ๐ + be the total progenies of a ๐ต๐๐(๐ โ ๐, ๐) and ๐ต๐๐(๐, ๐) branching
processes.
Where 1 โค ๐ โค ๐ and ๐ โ [0,1] then ๐[๐ โ โฅ ๐] โค ๐[|๐ถ(1)| โฅ ๐] โค ๐[๐ + โฅ ๐].
+/โ
Proof: For (๐ผ๐ก,๐ ) as in Definition 3.4, define ๐๐ก
+/โ
Then (๐๐ก ) are iid~๐ต๐๐(๐/๐ โ ๐, ๐).
๐กโฅ1
+/โ
+/โ
+/โ
๐๐ก : = (๐1 + โฏ + ๐๐ก ) โ (๐ก โ 1),
(๐)
+/โ
Then ๐ +/โ = inf {๐ก โฅ 1|๐๐ก = 0}
๐/๐โ๐
= โ๐=1
๐ก โฅ 1,
๐ผ๐ก,๐ , ๐ก โฅ 1.
+/โ
๐0
=1
๐[|๐ถ(1)| โฅ ๐] = ๐[|๐ด1 | > 0, โฆ , |๐ด๐โ1 | > 0] = ๐[๐1 > 0, โฆ , ๐๐โ1 > 0] โค
+
๐[๐1+ > 0, โฆ , ๐๐โ1
> 0] = ๐[๐ + โฅ ๐]
(by cor 3.6 if ๐ โก 1) ๐๐ก โค ๐๐ก+ , ๐ก โค ๐ โ 1
On the other hand, ๐[|๐ถ(1)| โค ๐] = ๐[โ๐๐ก=1{|๐๐ก | = 0, |๐ด๐กโ1 | = 1, |๐ด๐กโ2 | > 0, โฆ , |๐ด1 | > 0}]
(exploration stops at ๐ก)
๐
= โ ๐[๐๐ก = 0, ๐๐กโ1 = 1, ๐๐กโ2 > 0, โฆ , ๐1 > 0]
๐ก=1
(by Cor 3.6)
= ๐[๐ โค ๐] where ๐ = inf{๐ก โฅ 1|๐๐ก = 0}
Claim: If {๐ โค ๐} โ {๐ โ โค ๐}
Indeed, if ๐ โค ๐ ๐๐ = ๐ โ 1 โ ๐1 โ โฏ โ ๐๐ = ๐ โ ๐ โ ๐๐ โฅ ๐ โ ๐
So ๐1 โฅ ๐2 โฅ โฏ โฅ ๐๐ โฅ ๐ โ ๐
Hence, ๐๐กโ โค ๐๐ก , ๐ก โค ๐
๐๐กโ โค ๐๐ก ,
๐ก โค ๐ โ ๐โ โค ๐
Which proves this claim. โ
Exercise 3.8:
Consider random variables ๐, ๐ such that ๐~๐ต๐๐(๐, ๐) and conditionally on ๐,
๐~๐ต๐๐(๐, ๐), ๐ โฅ 1, ๐, ๐ โ [0,1]
๐
I.e. ๐[๐ = ๐|๐ = ๐] = ( ) ๐ ๐ (1 โ ๐)๐โ๐
๐
(0 โค ๐ โค ๐ โค ๐)
Prove that ๐~๐ต๐๐(๐, ๐๐)
It would be probable to assume: |๐๐ก |~๐ต๐๐(๐ โ 1, (1 โ ๐)๐ก )
But this is not correctโฆ
Proposition 3.9:
For 0 โค ๐ก โค ๐, ๐๐ก ~๐ต๐๐(๐ โ 1, (1 โ ๐)๐ก )
Proof: By induction.
๐0 = ๐ โ 1. This is true.
Assume that ๐๐ก ~๐ต๐๐(๐ โ 1, (1 โ ๐)๐ก )
Need to check that conditionally on ๐๐ก , ๐๐ก+1 ~๐ต๐๐(๐๐ก , 1 โ ๐)
(By Ex 3.6) 0 โค ๐ โค ๐ โค ๐ โ 1
๐[๐๐ก+1 = ๐. ๐๐ก = ๐],
๐๐ก+1 = ๐๐ก โ ๐๐ก+1
= ๐[ ๐
โ
๐ก+1
= ๐ โ ๐, ๐๐ก = ๐]
๐๐๐๐๐๐๐๐๐๐๐๐
=
๐(๐, ๐, ๐ โ ๐)๐[๐๐ก = ๐] =
=โ๐
๐=1 ๐ผ๐ก+1,๐
๐(๐, (1 โ ๐), ๐)๐[๐๐ก = ๐] โ
๐
(
) ๐๐โ๐ (1 โ ๐)๐
๐โ๐
๐ผ๐ = ๐ โ 1 โ log ๐ ,
(see Ex. 1.16, ๐ผ(๐))
๐>0
๐
Lemma 3.8: For ๐ = ๐ , ๐ โ (0,1)
๐ โฅ 1,
๐[|๐ถ(1)| > ๐] โค ๐ โ๐ผ๐ ๐
Proof: Let ๐ > 0, ๐ = โ log ๐ > 0
๐[|๐ถ(1)| > ๐] = ๐[|๐ด1 | > 0, โฆ , |๐ด๐ | > 0]
๐ถ๐๐ 3.6
= โค ๐[๐1 > 0, โฆ , ๐๐ > 0] โค ๐[๐๐ > 0] =
๐ ๐
โ๐ + ๐ โ 1 โฅ ๐
๐๐๐ข๐๐ฃ๐๐๐๐๐ก ๐ก๐:
[
]
๐๐ + ๐ โ 1 = ๐1 + โฏ + ๐๐ = ๐ โ 1 โ ๐๐ ~๐ต๐๐(๐ โ 1,1 โ (1 โ ๐)๐ )
๐ ๐(๐๐ +๐โ1) โฅ๐ ๐๐
So ๐[|๐ถ(1)| > ๐] โค ๐[๐ ๐(๐๐ +๐โ1) โฅ ๐ ๐๐ ]
๐๐ฆ ๐๐๐๐๐๐ฃ
โค
๐ โ๐๐ ๐ธ[๐ ๐(๐๐ +๐โ1) ]
๐โ1
๐ธ[๐ ๐(๐๐ +๐โ1) ] = ((1 โ ๐) + ๐๐ ๐ )
(๐)
๐๐ + ๐ โ 1 = ๐1 + โฏ + ๐๐โ1 , ๐๐ iid ~๐ต๐(๐)
๐โ1
โ ๐ธ[๐
๐(๐๐ +๐โ1)
] = ๐ธ [๐
๐(โ๐โ1
๐=1 ๐๐ )
๐โ1
] = โ(๐ธ[๐ ๐๐๐ ]) = (๐ธ[๐ ๐๐1 ])
๐โ1
= ((1 โ ๐) + ๐๐ ๐ )
๐=1
So
๐[|๐ถ(1)| > ๐] โค ๐
โ๐๐
๐ ๐โ1
((1 โ ๐) + ๐๐ )
(1โ๐ฅ)โค๐ โ๐ฅ
โค
๐
exp(โ๐๐ + ๐(๐ โ 1)(๐ โ 1)) โค exp(โ๐๐ + ๐(๐ ๐ โ 1)๐)
๐ = 1 โ (1 โ ๐)๐ โค ๐๐ (โ)
(comment: Seems like ๐ก turned into ๐)
โ ๐[|๐ถ(1)| > ๐] โค exp(โ๐๐ + ๐(๐ ๐ โ 1)๐) โค exp(โ๐๐ + ๐๐(๐ ๐ โ 1)๐) =
๐
๐=
๐
๐
exp (โ๐(๐ โ ๐๐(๐ โ 1))) = exp (โ๐(๐ โ ๐(๐ ๐ โ 1)))
If we try to minimize the expression, we get that ๐ = โ log ๐
So letโs just set it in:
๐ โ๐๐ผ๐
Why is (*) true? Show that at zero they are equal, and the derivative of the right hand side is
always larger then the derivative of the left hand side.
--- end of lesson
Theorem 3.9 (Upper bound on the largest sub-critical component):
๐
1
Fix ๐ โ (0,1), ๐ = ๐ , ๐ > ๐ผ
๐
Then there is a ๐ฟ = ๐ฟ(๐, ๐) such that ๐[|๐ถ๐๐๐ฅ | > ๐ log ๐] < ๐โ๐ฟ
Proof:
๐[|๐ถ๐๐๐ฅ | > ๐ log ๐] = ๐ [ โ {|๐ถ(๐ฃ)| > ๐ log ๐}] โค โ ๐[|๐ถ(๐ฃ)| > ๐ log ๐] =
๐ฃโ[๐]
๐๐ฆ ๐ฟ๐๐๐๐ 3.8
๐๐[|๐ถ(1)| > ๐ log ๐]
โค
๐ฃโ[๐]
๐ โ ๐โ๐ผ๐๐ ,
๐ผ๐ ๐ > 1 = โ
Next, lower bound:
Lemma 3.10:
Let ๐โฅ๐ = โ๐๐ฃ=1 1{|๐ถ(๐ฃ)|โฅ๐}
๐โฅ๐ = ๐ธ[|๐ถ(1)|1{|๐ถ(1)|โฅ๐} ]
Then ๐ฃ๐๐(๐โฅ๐ ) โค ๐๐โฅ๐
2
2
Proof: ๐ฃ๐๐(๐โฅ๐ ) = ๐ธ [(โ๐๐ฃ=1 1{|๐ถ(๐ฃ)|โฅ๐} ) ] โ ๐ธ[โ๐๐ฃ=1 1{|๐ถ(๐ฃ)|โฅ๐} ] =
๐
๐
โ โ ๐[|๐ถ(๐)| โฅ ๐, |๐ถ(๐)| โฅ ๐] โ ๐[|๐ถ(๐)| โฅ ๐]๐[|๐ถ(๐)| โฅ ๐]
๐=1 ๐=1
Split according to ๐ โ ๐ and ๐ โ ๐
๐ connected to ๐ and ๐ not connected to ๐
๐
๐
๐[|๐ถ(๐)| โฅ ๐, |๐ถ(๐)| โฅ ๐, ๐ โ ๐] = โ โ ๐[|๐ถ(๐)| = ๐, ๐ โ ๐, |๐ถ(๐)| = ๐] =
๐=๐ ๐=๐
๐
โ ๐[|๐ถ(๐) = ๐|, ๐ โ ๐] โ ๐ [|๐ถ(๐)| = ๐] = โ ๐[|๐ถ(๐)| = ๐, ๐ โ ๐] โ ๐ [|๐ถ(๐)| โฅ ๐] โค
(๐โ๐)
๐,๐
๐
(๐โ๐)
๐=๐
๐
โ ๐[|๐ถ(๐)| = ๐, ๐ โ ๐] โ ๐ [|๐ถ(๐)| โฅ ๐] = โ ๐[|๐ถ(๐)| = ๐] โ ๐[|๐ถ(๐)| โฅ ๐]
(๐โ๐)
๐=๐
๐=๐
(we can strike these out since it only increases the probability of the event)
So letโs go back to the entire variance:
The term we just calculated cancels the second term! So we are only left with the case where
they are connected:
๐
๐
๐ฃ๐๐(๐โฅ๐ ) โค โ โ ๐[|๐ถ(๐)| โฅ ๐, ๐ถ(๐) โฅ ๐, ๐ โ ๐]
๐=1 ๐=1
๐โ๐โ
๐โ๐๐ ๐ ๐ ๐๐๐๐๐๐ฆ ๐
๐กโ๐ ๐ ๐๐๐ ๐๐ฃ๐๐๐ก
=
๐
โ โ ๐[|๐ถ(๐)| โฅ ๐] =
๐=1 ๐=1
๐
๐
โ ๐ธ 1{|๐ถ(๐)|โฅ๐} โ โ 1{๐โ๐ถ(๐)} = ๐๐โฅ๐
๐=1
๐=1
โ
[
]
=|๐ถ(๐)|
Theorem 3.11 (lower bound on largest subcritical component):
๐
Fix ๐ โ (0,1), ๐ = ๐
1
Then for every ๐ < ๐ผ there exists ๐ฟ = ๐ฟ(๐, ๐), and ๐ = ๐(๐, ๐) such that
๐
๐[|๐ถ๐๐๐ฅ | โค ๐ log ๐] โค ๐๐โ๐ฟ
Proof: Let ๐ = โ๐ log ๐โ, ๐ denotes a constant depending only on ๐, ๐ changing from place to
place.
Claim 1: For any 0 < ๐ผ < 1 โ ๐ผ๐ ๐
๐ธ[๐โฅ๐ ] โฅ ๐๐ผ , for ๐ โฅ ๐
Claim 2: ๐ฃ๐๐(๐โฅ๐ ) โค ๐๐๐1โ๐๐ผ๐
From these claims, it follows that we can prove this theorem.
Why?
๐[|๐ถ๐๐๐ฅ | โค ๐ log ๐] = ๐[๐โฅ๐ = 0] โค ๐[|๐๐โฅ0 โ ๐ธ[๐โฅ๐ ]| โฅ ๐ธ[๐โฅ๐ ]] =
๐๐ฆ ๐กโ๐
๐[|๐๐โฅ0 โ ๐ธ[๐โฅ๐
]|2
โฅ ๐ธ[๐โฅ๐
]2 ]
๐ฃ๐๐(๐โฅ๐ ) ๐๐๐๐๐๐ ๐๐๐1โ๐๐ผ๐
โค
โค
๐ธ[๐โฅ๐ ]2
๐2๐ผ
2
(For instance, if ๐ผ = 3 (1 โ ๐๐ผ๐ ) then itโs โค
๐ log ๐
๐
(1โ๐๐ผ๐ )
3
)
Letโs prove claim 1:
๐
Let ๐, ๐ โ be the total progenies of ๐ต๐๐ (๐ โ ๐, ๐) branching process, and ๐๐๐(๐๐ ) branching
process wher ๐๐ =
๐(๐โ๐)
๐
By theorem 3.7, ๐[|๐ถ(1)| โฅ ๐] โฅ ๐[๐ โฅ ๐]
๐๐ฆ
๐กโ๐๐๐๐๐ 2.11
โฅ
๐
1
๐(๐ โ ๐)
=
(
)
๐ ๐โ๐โ ๐
๐๐
โ
โ
๐[๐ โฅ ๐] โฅ ๐[๐ = ๐]
๐๐ฆ
๐กโ๐๐๐๐๐ 2.3
=
We can use sterlingโs formula:
(๐๐ ๐)๐โ1 โ๐ ๐
๐ ๐
๐!
๐[๐ โ โฅ ๐] โ
2๐2๐ ๐
๐
๐ ๐
๐! = ( ) โ โ2๐๐(1 + ๐(1))
๐
And then:
โฅ
๐๐๐
๐
โ๐๐ ๐ ๐
๐ (1 + ๐(1)) โฅ ๐
โ๐ผ๐๐ ๐(1+๐)
๐๐๐ ๐ ๐ข๐๐๐๐๐๐๐๐ก๐๐ฆ
๐๐๐๐๐ ๐
๐โ2๐๐๐๐
(๐ผ๐ = ๐ โ 1 โ log ๐)
=
๐ โ๐ผ๐ ๐(1+๐)
For ๐ โฅ 0: 1 โ ๐๐ผ๐ (1 + ๐) > ๐ผ
for ๐ โฅ ๐(๐, ๐, ๐)
>๐ผ
โ
๐ธ[๐โฅ๐ ] = ๐๐[|๐ถ(1)| โฅ ๐] โฅ ๐๐[๐ โฅ ๐] โ
๐๐
๐
โฅ ๐ (๐
โ๐ผ๐ ๐(1+๐)
โ
๐๐
)
๐
=๐
โ
1โ๐ผ๐ ๐(1+๐)
โ ๐ log ๐ โฅ
๐๐ผ for ๐ โฅ ๐.
(For ๐ chosen sufficiently small)
Now letโs prove claim 2:
Proof of claim 2:
|๐ถ(1)|
We can write |๐ถ(1)| = โ๐=1 1{|1|>๐} = โ๐๐=1 1{|1|>๐}
So:
๐
๐
๐โฅ๐ = โ ๐[|๐ถ(1)| โฅ 1, |๐ถ(1)| โฅ ๐] = ๐๐[|๐ถ(1)| โฅ ๐] + โ ๐[|๐ถ(1)| โฅ ๐]
๐=1
๐=๐+1
โ
๐๐ โ๐ผ๐ (๐โ1) + โ ๐ โ๐ผ๐ (๐โ1) โค ๐๐๐โ๐๐ผ๐ + ๐๐
โ โ๐ผ๐ ๐ โค ๐๐๐โ๐๐ผ๐
โค๐โ๐๐ผ๐
๐=๐+1
So by lemma 3.10 get claim 2. โ
Exercise 3.12 (second moment method):
Let ๐ be a random variable such that 0 โค ๐ธ[๐] < โ and 0 < ๐ธ[๐ 2 ] < โ
Let 0 โค ๐ < 1.
๐ธ[๐ฅ]2
Prove that: ๐[๐ > ๐๐ธ[๐]] โฅ (1 โ ๐)2 ๐ธ[๐ฅ 2 ]
In our proof, we used it with ๐ = 0.
Hint: Prove first that (1 โ ๐)๐ธ[๐] โค ๐ธ[๐ โ 1{๐>๐๐ธ[๐]} ]
๐๐ฆ
๐๐๐๐๐ 3.8
โค
© Copyright 2025 Paperzz