Aje Taiwo Tutor GEG101 (Engineering Pure Mathematics) Thursday 8th March, 2012. Answer all Questions 1. Given that U n M for n 1,2,3..... where M is a (e) none constant (independent of n), we say that the sequence U n is …? 8. Which of the underlisted is not a finite set (a) set of state in Nigeria (b) set of 1 digit whole number (c) set of integers between -100 to 100 (d) set of points on a straight line (e) none 9. Find (a) not bounded below (b) not bounded above (c) bounded above (d) not bounded below and above (e) none of the above 2. If lim Sn S exists where Sn is infinite series, then: (a) the series is lower bound and convergent (b) the series is divergent (c) the series is bounded and convergent (d) the series is lower bound and convergent (e) none of the above 3. 4. 10. (d) sin 2 t (e) sin 2 t 5 Find the equation of the tangent to the curve at point 2,4 (b) y 4x 4 (c) y 1 4x 9 2 (d) y 4 x 9 2 Find the lim sin(n) (b) does not exist (d) 0 (e) none of the above (e) none of the above Find the possible nth term for the sequence whose first five terms are U n : 1 5 , 3 8 , 5 11, 7 14, 9 17 ......... (a) 1n 2n 1 3n 2 (b) 1n 3n 1 3n 2 (c) 1n 2n 1 3n 2 (d) 1n 2n 1 3n 2 (a) 4 y x 18 (b) 4 y x 18 (c) y 4x 4 (d) y 4 x 9 2 dy at the point x, y 1,1 if x2 3xy y 2 5 dx (a) 0 (b) 1 (c) -1 (d) -½ (e) -2 12. Find 13. If x4 y3 z 2 8 find The curve y x3 2x2 4 at the point (2, 4) can be (a)⅓ 14. Given that m1 and m2 are the slopes of the tangents to curve 1 and curve 2 respectively, then the acute angle of intersection can be found by the relation (a) tan m1 m2 1 m1m2 (b) tan m1 m2 1 m1m2 (c) tan m1 m2 1 m1m2 (d) tan m1 m2 1 m1m2 Mock checks readiness for the real exam Find the equation of the normal at the point 2,4 (e) y x 4 9 2 said to have (a) minimum turning point (b) no turning point (c) maximum turning point (d) turning point cannot be determined (e) none of the above 7. (c) cos2 t (a) y 4x 4 (e) none of the above 6. (b) sect 5 answer questions 10 and 11 11. 5. (a) cost Using the curve y x3 2x2 4 at the point x, y 2,4 Justify the limit of the series that is formed by the sequence of partial sums of 1,1,1,1,1,1,1... (a) diverges (b) converges monotonically (c) converges (d) diverges monotonically (e) none of the above (a) 1 (c) infinity dm cost sect if m and s ds 5 5 15. 1 (b) -3 dy at point x, y, x 2,2,2 dx (c) 2 (d) -½ (e) 3 The sequence 1000000, 1000000.2, 1000000.22, 1000000.222………… is (a) Monotonic increasing (b) Bounded and monotonic increasing (c) Bounded and monotonic increasing. T is also strictly increasing (d) Bounded (e) none Find the limit 2 p p 2 p 1 p3 p2 1 Join us for the Revision Classes. Aje Taiwo Tutor GEG101 (Engineering Pure Mathematics) (a) -1 16. (b) -½ (c) 3 1 n (a) 3 3 1n n3 n 3 n 1 (d) 3 3 1 n (b) 3 1n Find the limit 1 4 10n (a) 1 5 18. (e) ∞ (d) 1 The nth term of the sequence 6 13 , 0, 6 33 , 0, 6 53....... is given by 17. (c) 2 3 (e) none 23. 5 3 10 n (b) 3 2 (c) 4 3 (d) does not exist (e) none Which of these Is not an infinite sequence? (a) 3,6,9,12,......, 30 (b) 2,7,12 ,17 ,....... 20. 24. 5 5 2 (d) ln 2 (e) ln 2 18 18 3 x3 x 1 dx x4 x2 1 (a) ln x tan 1 x C x 1 (c) ln x tan 1 x C x Evaluate Simplify Justify the statement below: A sequence u1 , u 2 , u 3 ,... has a limit L if the successive terms gets “farther and farther” from where L is the limit of an infinite sequence (a) false (b) false but not always (c) true but not always (d) true (e) none of the above (c) 3 1 1 x 2 C 3 (d) If lim An A , lim Bn B , then 25. Solve 2 0 (d) lim An Bn lim An lim Bn A B 105 0.08 (e) none of the above (a) 2e 3 x 13 3 1 1 x 2 C 3 (d) None 105 (b) 0 .8 8 (d) 105 (c) 0.8 (e) 10 .5 cos 2 xdx 3 cos 2 x sin 2 x C 2 (b) 2e 3 x 3 sin 2 x cos 2 x C 13 2 (c) 2e 3 x 3 cos 2 x cos 2 x C 13 2 (d) 2e 3 x 13 26. Evaluate x 5 cos xdx 0 3 sin 2 x sin 2 x C 2 27. (a) 5 4 60 2 240 (b) 5 4 60 2 240 (c) 5 4 60 2 240 (e) None (d) 5 4 60 2 240 Solve sin xdy cos x 1 ydx x2 xC 2 (c) y A cos3x 2 C (e) None (a) ln y 2 Evaluate (b) sin 5 x cos 2 xdx 10 .5 (a) 8 3 x (d) ln x tan 1 x x C 3 1 1 x 2 C 3 (b) lim An Bn lim Bn lim An B A e 1 C x 2 3 1 1 x 2 C 3 Solve (b) ln x tan 1 x x 1 x dx (a) (c) lim An Bn A lim Bn B lim An 22. 5 2 (c) ln 2 18 3 (d) 1,4,7,9,12 ,...... 27 (a) lim An Bn lim Bn lim An B A 21. 3 5 (b) ln 2 2 18 (e) ln x tan 1 x x C (e) none of the above 19. 5 3 (a) ln 2 18 2 3 n (c) 1, 1 3 , 1 5 , 1 7 ,......... Thursday 8th March, 2012. 2 x 1 ln xdx (b) y 2 A tan 2 x 4 C (d) None (d) y A sin x 1 C 1 Mock checks readiness for the real exam 2 Join us for the Revision Classes. Aje Taiwo Tutor 28. GEG101 (Engineering Pure Mathematics) 2 cos (a) Mix graph (c) Curvy graph dx Solve x 1 2 x C 2 (a) tan 1 2 tan x C 3 (b) 33. tan x C (d) None (c) tan 1 2 (e) 29. tan x C tan 3 3 Evaluate tan 2 2 x sec xdx 1 3 tan x C 3 (b) (c) 2 tan x C 1 2 (d) tan x C (e) 3 tan x C Solve (a) sin4 x 2dx 1 cos4 x 2 C 4 1 (b) cos3 x 5 C 3 1 (c) cos2 x 5 C 2 1 (e) cos4 x 2 C 4 31. 35. (a) sec x C 2 30. 34. 1 1 Thursday 8th March, 2012. 1 (d) cos4 x 2 C 4 36. Two set A and B are equal if (a) They contain the same number of elements (b) They have equal number of and the same nature of elements (c) No element of A could be found in B (d) No member of B could be found in A but those of B are in A 37. (b) Digraph (d) Multi graph The sink in fig. 2 is (a) E7 (b) E1 (c) E4 (d) E3 The source in fig. 2 is (a) E7 (b) E1 (c) E4 (d) E3 The Adj Matrix is 0 1 0 (a) 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 (b) 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 (c) 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 (d) 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 The order of the graph is (a) 7 (b) 12 (c) 19 (d) 5 Which of the following expression is not a possible partition of set S x, f ( x) 9 x 25 (a) 1,2,3,5 (b) 7 x 7 (c) All positive integers between 0 and 25 (d) All numbers - ∞ to + ∞ 38. Use for Questions 32 to 36 In expressing a logic function in product of sum form we consider the point where the function is (a) zero (b) one (c) undetermined (d) complemented variable only Use for questions 39-41 Given the relation z x, y 5x y 2 9,14,19,31,45,61,79 39. The set of order pairs of Z is (a) 1,2, 2,2, 3,2, 3,4, 4,5, 5,6, 6,7 (b) 0,0 (c) 1,3, 2,3, 4,5, 8,9, 1,2, 4,5, 7,8, 6,3 Fig 2 32. (d) 7,8, 5,6, 3,6, 3,6, 2,3, 1,9, 0,4, 5,7 Fig 2 is a: Mock checks readiness for the real exam 3 Join us for the Revision Classes. Aje Taiwo Tutor 40. GEG101 (Engineering Pure Mathematics) 111 The domain of Z is (a) 1,2,3,4,5,6 (b) 2,5,8,9,6,3 (c) 1,4,6,8,4,9 (d) 3,4,5,6,9 47. 41. The range is 42. If X, Y and Z are logic variables such that the (a) 2,3,4,9(b) 2,4,5,6 Thursday 8th March, 2012. 0 If X Y 0 then which of these is not true: (a) some elements of X can be found in Y (b) All elements of X are found in Y (c) X is an element of Y (d) X and Y are disjoint sets (c) 0 (d) 1,3,5,7,9 48. In fig Q48, the output Y equals: F x yz expression is a valid Boolean expression then which of these is not true of F (a) xy xz (b) x y x z (c) x y z (d) x y z 0; if X Y 0 Y 1; otherwise 43. The expression describes an (a) AND operation (b) Exclusive -OR (c) NOT operation (d) OR operation 44. If Y ab c bc a reduces to (a) a b c (b) ab c (c) ab c 45. (d) a b 49. Which of these is a function: (a) y x 3 (c) y sin x 46. (a) abcd (c) a b c d 4,15,25,65,1 (c) 3,23,64,2 (d) 2,26,11,3 (d) x y 3 2 If X 3,4,5 and Y 2,6 , then which is not a binary relation (a) 3,14,6 (b) x y 2 yx 3 1 (b) 0 (d) ab cd ac bd 2 Given the truth table abc f 000 0 001 11 f could be expressed as 010 0 (a) b c a c (b) bc 011 1 100 1 101 0 (c) abc abc abc 110 1 50. (b) Any Class of objects in which at least two sets of binary operation are possible is called: (a) a Ring (b) a Path (c) a Close (d) an Exit (d) a b c Mock checks readiness for the real exam 4 Join us for the Revision Classes.
© Copyright 2026 Paperzz