Counterexample for Mixed Partial Derivative For most textbook examples in multivariate calculus fxy(a, b) = fyx(a, b). The following counterexample shows a function where fx and fy are continuous everywhere and yet fxy(0, 0) ≠ fyx(0, 0) because they are not continuous functions at the origin. In fact, fxy(0, 0) = 1 and fyx(0, 0) = -1. Clairaut’s Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions fxy and fyx are both continuous on D, then fxy(a, b) = fyx(a, b). x 2 y2 xy if ( x, y) (0,0) f ( x , y) x 2 y 2 if ( x, y) (0,0) 0 f(x, y) is continuous r 2 (cos 2 sin 2 ) r 2 sin 4 Using polar coordinates, x r cos and y r sin , f(x, y) = f (r, ) r cos sin 2 4 r (cos 2 sin 2 ) 2 Therefore |f(xy)| ≤ r2/4 → 0 as r → 0, and f(x, y) is continuous at the origin. fx(x, y) and fy(x, y) are both continuous f x ( x , y) x 4 y 4x 2 y 3 y 5 r (cos 4 sin 4 cos 2 sin 3 sin 5 ) 6r 0 as r 0 (x 2 y 2 ) 2 h2 0 (h )(0) 2 0 f (0 h,0) f (0,0) 0 h 0 f x (0,0) lim lim lim 0 h 0 h 0 h 0 h h h f y ( x , y) x 5 4x 3 y 2 xy 4 r (cos 5 4 cos 3 sin 2 cos sin 4 ) 6r 0 as r 0 2 2 2 (x y ) f y (0,0) lim k 0 f (0,0 k ) f (0,0) lim k 0 k (0)(k ) 0 k2 0 0 0 k2 lim 0 k 0 k k fxy(x,y) and fyx(x,y) are not continuous at the origin f xy ( x, y) f yx ( x, y) x 6 9x 4 y 2 9x 2 y 4 y 6 cos 6 9 cos 4 sin 2 9 cos 2 sin 4 sin 6 cos 2(1 2 sin 2 2) 2 2 3 (x y ) If θ = 0 (x-axis), then fxy(x,y) = 1. If θ = π/2 (y-axis), then fxy(x,y) = -1. fxy(x, y) is dependent on θ only. k5 0 4 f (0,0 k ) f x (0,0) f xy (0,0) lim x lim k lim (1) 1 k 0 k 0 k 0 k k h5 0 4 f y (0 h,0) f y (0,0) h f yx (0,0) lim lim lim (1) 1 h 0 h 0 h 0 h h
© Copyright 2026 Paperzz