Interference Alignment via Message-Passing Interference Alignment via Message-Passing M. Guillaud Motivation Maxime GUILLAUD Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Huawei Technologies Mathematical and Algorithmic Sciences Laboratory, Paris Numerical Results Conclusion [email protected] http://research.mguillaud.net/ Optimisation Géométrique sur les Variétés Réunion GdR ISIS, Paris, 21 Nov. 2014 1/21 Outline Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing I Motivation of the Interference Alignment Problem I Message-passing and optimization GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I Numerical Results I Conclusion Conclusion 2/21 Interference Alignment via Message-Passing Communication Problem Motivation M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing I K transmitters (Tx), K receivers (Rx) GDL Tx 1 I Each equipped with an antenna array; each antenna sends/receives a complex scalar I Rx i is only interested in the message from the corresponding Tx i I Other transmitters create (unwanted) interference Rx 1 Min-Sum IA via Min-Sum Implementation challenges Distributedness Tx 2 Rx 2 Tx 3 Rx 3 Tx K Rx K Numerical Results Conclusion 3/21 Interference Alignment via Message-Passing Communication Problem Motivation M. Guillaud I I At each (discrete) time instant, Tx j sends a (N-dimensional) signal x j , Rx i receives y i (M-dimensional) The gains of the wireless propagation channel between Tx j and Rx i is Hij (M × N matrix) Motivation Tx 1 Rx 1 Communication Problem Interference Alignment Message-Passing Tx 2 Rx 2 Tx 3 Rx 3 GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion Tx K yi = K X Hij x j Rx K ∀i = 1 . . . K j=1 I Rx i wants to infer x i from y i (all Hij are assumed known at all nodes) 4/21 Interference Alignment via Message-Passing Communication Problem Motivation M. Guillaud I I At each (discrete) time instant, Tx j sends a (N-dimensional) signal x j , Rx i receives y i (M-dimensional) The gains of the wireless propagation channel between Tx j and Rx i is Hij (M × N matrix) Motivation Tx 1 Rx 1 Communication Problem Interference Alignment Message-Passing Tx 2 Rx 2 Tx 3 Rx 3 GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion Tx K yi = K X Hij x j Rx K ∀i = 1 . . . K j=1 I Rx i wants to infer x i from y i (all Hij are assumed known at all nodes) 4/21 Interference Alignment via Message-Passing Communication Problem Motivation M. Guillaud I I At each (discrete) time instant, Tx j sends a (N-dimensional) signal x j , Rx i receives y i (M-dimensional) The gains of the wireless propagation channel between Tx j and Rx i is Hij (M × N matrix) Motivation Tx 1 Rx 1 Communication Problem Interference Alignment Message-Passing Tx 2 Rx 2 Tx 3 Rx 3 GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion Tx K yi = K X Hij x j Rx K ∀i = 1 . . . K j=1 I Rx i wants to infer x i from y i (all Hij are assumed known at all nodes) 4/21 Interference Alignment via Message-Passing Inteference Alignment Simple, linear transmission scheme that mitigates interference: I Tx signals are restricted to a d-dimensional subspace of the N-dimensional space of the antenna array, spanned by a truncated unitary matrix Vj . s j is the data to transmit: M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL (Vj ∈ GN,d ) x j = Vj s j Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I At Rx i, signal is projected onto a d-dimensional subspace spanned by a truncated unitary matrix Ui (∈ GM,d ) s 0 i = U†i y i = K X Conclusion U†i Hij Vj s j j=1 I Choose the Ui , Vj such that U†i Hij Vj vanishes for i 6= j (interference) but not for i = j 5/21 Interference Alignment via Message-Passing Inteference Alignment Simple, linear transmission scheme that mitigates interference: I Tx signals are restricted to a d-dimensional subspace of the N-dimensional space of the antenna array, spanned by a truncated unitary matrix Vj . s j is the data to transmit: M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL (Vj ∈ GN,d ) x j = Vj s j Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I At Rx i, signal is projected onto a d-dimensional subspace spanned by a truncated unitary matrix Ui (∈ GM,d ) s 0 i = U†i y i = K X Conclusion U†i Hij Vj s j j=1 I Choose the Ui , Vj such that U†i Hij Vj vanishes for i 6= j (interference) but not for i = j 5/21 Interference Alignment via Message-Passing Inteference Alignment Simple, linear transmission scheme that mitigates interference: I Tx signals are restricted to a d-dimensional subspace of the N-dimensional space of the antenna array, spanned by a truncated unitary matrix Vj . s j is the data to transmit: M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL (Vj ∈ GN,d ) x j = Vj s j Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I At Rx i, signal is projected onto a d-dimensional subspace spanned by a truncated unitary matrix Ui (∈ GM,d ) s 0 i = U†i y i = K X Conclusion U†i Hij Vj s j j=1 I Choose the Ui , Vj such that U†i Hij Vj vanishes for i 6= j (interference) but not for i = j 5/21 Mathematical Formulation Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem I Given the M × N matrices {Hij }i,j∈{1,...K } and d < M, N I find {Ui }i∈{1,...K } in GM,d and {Vi }i∈{1,...K } in in GN,d I such that U†i Hij Vj = 0 ∀i 6= j. Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I Depending on the relative values of M, N, K and d, the problem can be trivial, difficult, or provably impossible to solve. I Example of non-trivial case: d = 2, M = N = 4, K = 3. Conclusion 6/21 Mathematical Formulation Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem I Given the M × N matrices {Hij }i,j∈{1,...K } and d < M, N I find {Ui }i∈{1,...K } in GM,d and {Vi }i∈{1,...K } in in GN,d I such that U†i Hij Vj = 0 ∀i 6= j. Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I Depending on the relative values of M, N, K and d, the problem can be trivial, difficult, or provably impossible to solve. I Example of non-trivial case: d = 2, M = N = 4, K = 3. Conclusion 6/21 Interference Alignment via Message-Passing Matrix Decomposition Formulation M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum U†1 .. | {z . U†K Kd×KM }| H11 .. . HK 1 ... .. . ... {z KM×KN H1K .. . HKK V1 .. }| {z ∗ .. = . 0 VK KN×Kd } 0 IA via Min-Sum Implementation challenges Distributedness . ∗ Numerical Results Conclusion 7/21 Interference Alignment via Message-Passing Available Solutions M. Guillaud Motivation Communication Problem State of the art: I I Interference Alignment No closed-form solution known for general dimensions 1 Iterative solutions exist but have some undesirable properties Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness We propose to use a message-passing (MP) algorithm: I distributed solution I use local data (Hij is known at Rx i and Tx j) Numerical Results Conclusion 1 K. Gomadam, V.R. Cadambe, S.A. Jafar, A Distributed Numerical Approach to Interference Alignment and Applications to Wireless Interference Networks, IEEE Trans. Inf. Theory, Jun 2011 8/21 Interference Alignment via Message-Passing Available Solutions M. Guillaud Motivation Communication Problem State of the art: I I Interference Alignment No closed-form solution known for general dimensions 1 Iterative solutions exist but have some undesirable properties Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness We propose to use a message-passing (MP) algorithm: I distributed solution I use local data (Hij is known at Rx i and Tx j) Numerical Results Conclusion 1 K. Gomadam, V.R. Cadambe, S.A. Jafar, A Distributed Numerical Approach to Interference Alignment and Applications to Wireless Interference Networks, IEEE Trans. Inf. Theory, Jun 2011 8/21 Generalized Distributive Law Interference Alignment via Message-Passing M. Guillaud I Efficiently compute functions involving many variables that can be decomposed (factorized) into terms involving subsets of the variables I Variable–Factor dependencies captured by a bipartite graph I General MP formulation for an arbitrary commutative semi-ring2 Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion 2 Aji and McEliece, The Generalized Distributive Law, IEEE Trans. Inf. Theory, vol. 46, no. 2, Mar. 2000. 9/21 Generalized Distributive Law Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing I Algorithm operates by “propagating” messages on the graph I If the graph has no cycle, computation is exact and terminates in finite number of steps GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I Otherwise, iterate and hope that it converges to something reasonable I BCJR decoder, Viterbi, FFT algorithms as special cases Conclusion 10/21 Min-Sum Algorithm3 Interference Alignment via Message-Passing M. Guillaud I GDL applied to (R, min, +) I Example: Motivation Communication Problem Interference Alignment C (x1 , x2 , x3 , x4 ) = Ca (x1 , x2 , x3 ) + Cb (x2 , x4 ) + Cc (x3 , x4 ) Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion I Min-Sum can solve efficiently min x1 ,x2 ,x3 ,x4 C (x1 , x2 , x3 , x4 ) 3 Yedidia, Message-passing algorithms for inference and optimization, Journ. of Stat. Phys. vol. 145, no. 4, Nov. 2011. 11/21 Min-Sum Algorithm3 Interference Alignment via Message-Passing M. Guillaud I GDL applied to (R, min, +) I Example: Motivation Communication Problem Interference Alignment C (x1 , x2 , x3 , x4 ) = Ca (x1 , x2 , x3 ) + Cb (x2 , x4 ) + Cc (x3 , x4 ) Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion I Min-Sum can solve efficiently min x1 ,x2 ,x3 ,x4 C (x1 , x2 , x3 , x4 ) 3 Yedidia, Message-passing algorithms for inference and optimization, Journ. of Stat. Phys. vol. 145, no. 4, Nov. 2011. 11/21 Min-Sum Algorithm3 Interference Alignment via Message-Passing M. Guillaud I GDL applied to (R, min, +) I Example: Motivation Communication Problem Interference Alignment C (x1 , x2 , x3 , x4 ) = Ca (x1 , x2 , x3 ) + Cb (x2 , x4 ) + Cc (x3 , x4 ) Message-Passing GDL Min-Sum l IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion I Min-Sum can solve efficiently min x1 ,x2 ,x3 ,x4 C (x1 , x2 , x3 , x4 ) 3 Yedidia, Message-passing algorithms for inference and optimization, Journ. of Stat. Phys. vol. 145, no. 4, Nov. 2011. 11/21 Min-Sum Algorithm3 Interference Alignment via Message-Passing M. Guillaud I GDL applied to (R, min, +) I Example: Motivation Communication Problem Interference Alignment C (x1 , x2 , x3 , x4 ) = Ca (x1 , x2 , x3 ) + Cb (x2 , x4 ) + Cc (x3 , x4 ) Message-Passing GDL Min-Sum l IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion I Min-Sum can solve efficiently min x1 ,x2 ,x3 ,x4 C (x1 , x2 , x3 , x4 ) 3 Yedidia, Message-passing algorithms for inference and optimization, Journ. of Stat. Phys. vol. 145, no. 4, Nov. 2011. 11/21 Interference Alignment via Message-Passing Min-Sum Implementation I factor-to-variable update M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum ma→i (xi ) = min [Ca (xi , xj , xk ) + mj→a (xj ) + mk→a (xk )] xj ,xk Implementation challenges Distributedness Numerical Results I variable-to-factor update mi→a (xi ) = Conclusion X mb→i (xi ) b∈N(i)\a (illustrations from [Yedidia 2011]) 12/21 Interference Alignment via Message-Passing Min-Sum Implementation I factor-to-variable update M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum ma→i (xi ) = min [Ca (xi , xj , xk ) + mj→a (xj ) + mk→a (xk )] xj ,xk Implementation challenges Distributedness Numerical Results I variable-to-factor update mi→a (xi ) = Conclusion X mb→i (xi ) b∈N(i)\a (illustrations from [Yedidia 2011]) 12/21 Interference Alignment via Message-Passing Back to Our Interference Problem... I Reformulate the IA equations U†i Hij Vj = 0 ∀i 6= j M. Guillaud ⇔ 2 X † Ui Hij Vj = 0 F i6=j Motivation Communication Problem Interference Alignment Message-Passing GDL m Min-Sum IA via Min-Sum Implementation challenges K X X i=1 j6=i Distributedness trace U†i Hij Vj V†j Hij Ui = 0 Numerical Results Conclusion 13/21 Interference Alignment via Message-Passing Back to Our Interference Problem... I Reformulate the IA equations U†i Hij Vj = 0 ∀i 6= j M. Guillaud 2 X † Ui Hij Vj = 0 ⇔ i6=j F Motivation Communication Problem Interference Alignment Message-Passing GDL m Min-Sum IA via Min-Sum Implementation challenges K X X i=1 j6=i K X X trace U†i Hij Vj V†j Hij Ui + j=1 i6=j Distributedness trace U†i Hij Vj V†j Hij Ui = 0 Numerical Results Conclusion 13/21 Interference Alignment via Message-Passing Back to Our Interference Problem... I Reformulate the IA equations U†i Hij Vj = 0 ∀i 6= j M. Guillaud 2 X † Ui Hij Vj = 0 ⇔ F i6=j Motivation Communication Problem Interference Alignment Message-Passing GDL m Min-Sum IA via Min-Sum Implementation challenges K X X i=1 K X X trace U†i Hij Vj V†j Hij Ui + j6=i | j=1 {z fi (Ui ,Vj6=i ) } Distributedness trace U†i Hij Vj V†j Hij Ui = 0 Conclusion i6=j | Numerical Results {z gj (Vj ,Ui6=j ) } 13/21 Interference Alignment via Message-Passing Back to Our Interference Problem... I Reformulate the IA equations U†i Hij Vj = 0 ∀i 6= j M. Guillaud 2 X † Ui Hij Vj = 0 ⇔ F i6=j Motivation Communication Problem Interference Alignment Message-Passing GDL m Min-Sum IA via Min-Sum Implementation challenges K X X i=1 K X X trace U†i Hij Vj V†j Hij Ui + j6=i j=1 {z | I } fi (Ui ,Vj6=i ) Distributedness trace U†i Hij Vj V†j Hij Ui = 0 Conclusion i6=j | Numerical Results {z gj (Vj ,Ui6=j ) } Solve via Min-Sum min Ui=1...K ∈ GM,d , Vj=1...K ∈ GN,d K K X X gj Vj , {Ui }i6=j fi Ui , {Vj }j6=i + i=1 j=1 13/21 Graphical representation of IA on the 3-user IC Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results Conclusion 14/21 Interference Alignment via Message-Passing Challenge #1: Continuity M. Guillaud I Consider one message mfi →Ui : h i X mfi →Ui (Ui ) = min fi (Ui , Vj6=i ) + mVj →fi (Vj ) Vj6=i j6=i Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness I This message is a function with argument in GM,d I Compute and pass mfi →Ui (Ui ) for each possible value of Ui ? I Parameterize the function! I We propose (for X ∈ GM,d ) ma→b (X) = trace X† Qa→b X Numerical Results Conclusion −→ ma→b is represented by a single matrix Qa→b 15/21 Interference Alignment via Message-Passing Challenge #1: Continuity M. Guillaud I Consider one message mfi →Ui : h i X mfi →Ui (Ui ) = min fi (Ui , Vj6=i ) + mVj →fi (Vj ) Vj6=i j6=i Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness I This message is a function with argument in GM,d I Compute and pass mfi →Ui (Ui ) for each possible value of Ui ? I Parameterize the function! I We propose (for X ∈ GM,d ) ma→b (X) = trace X† Qa→b X Numerical Results Conclusion −→ ma→b is represented by a single matrix Qa→b 15/21 Interference Alignment via Message-Passing Challenge #1: Continuity M. Guillaud I Consider one message mfi →Ui : h i X mfi →Ui (Ui ) = min fi (Ui , Vj6=i ) + mVj →fi (Vj ) Vj6=i j6=i Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness I This message is a function with argument in GM,d I Compute and pass mfi →Ui (Ui ) for each possible value of Ui ? I Parameterize the function! I We propose (for X ∈ GM,d ) ma→b (X) = trace X† Qa→b X Numerical Results Conclusion −→ ma→b is represented by a single matrix Qa→b 15/21 Interference Alignment via Message-Passing Challenge #1: Continuity M. Guillaud I Consider one message mfi →Ui : h i X mfi →Ui (Ui ) = min fi (Ui , Vj6=i ) + mVj →fi (Vj ) Vj6=i j6=i Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness I This message is a function with argument in GM,d I Compute and pass mfi →Ui (Ui ) for each possible value of Ui ? I Parameterize the function! I We propose (for X ∈ GM,d ) ma→b (X) = trace X† Qa→b X Numerical Results Conclusion −→ ma→b is represented by a single matrix Qa→b 15/21 Interference Alignment via Message-Passing Challenge #1: Continuity M. Guillaud I Consider one message mfi →Ui : h i X mfi →Ui (Ui ) = min fi (Ui , Vj6=i ) + mVj →fi (Vj ) Vj6=i j6=i Motivation Communication Problem Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum Implementation challenges Distributedness I This message is a function with argument in GM,d I Compute and pass mfi →Ui (Ui ) for each possible value of Ui ? I Parameterize the function! I We propose (for X ∈ GM,d ) ma→b (X) = trace X† Qa→b X Numerical Results Conclusion −→ ma→b is represented by a single matrix Qa→b 15/21 Interference Alignment via Message-Passing Challenge #2: The Importance of being Closed-Form M. Guillaud I Simple variable-to-functions message computation: X X mgj →Ui (Ui ) mUi →fi (Ui ) = j6=i ⇔ Motivation Communication Problem Interference Alignment Qgj →Ui . . . QUi →fi = j6=i Message-Passing GDL Min-Sum IA via Min-Sum I Function-to-variable messages are more tricky: X † † † mfi →Ui (Ui ) = I I Distributedness Numerical Results min trace Vj Hij Ui Ui Hij + QVj →fi Vj j6=i I Implementation challenges Vj Conclusion Each minimization is an eigenspace problem Resort to approximation to express mfi →Ui as trace X† Qfi →Ui X Approximation becomes exact in the vicinity of the solution 16/21 Interference Alignment via Message-Passing Challenge #2: The Importance of being Closed-Form M. Guillaud I Simple variable-to-functions message computation: X X mgj →Ui (Ui ) mUi →fi (Ui ) = j6=i ⇔ Motivation Communication Problem Interference Alignment Qgj →Ui . . . QUi →fi = j6=i Message-Passing GDL Min-Sum IA via Min-Sum I Function-to-variable messages are more tricky: X † † † mfi →Ui (Ui ) I I Distributedness Numerical Results min trace Vj Hij Ui Ui Hij + QVj →fi Vj = j6=i I Implementation challenges Vj Conclusion Each minimization is an eigenspace problem Resort to approximation to express mfi →Ui as trace X† Qfi →Ui X Approximation becomes exact in the vicinity of the solution 16/21 Interference Alignment via Message-Passing Challenge #2: The Importance of being Closed-Form M. Guillaud I Simple variable-to-functions message computation: X X mgj →Ui (Ui ) mUi →fi (Ui ) = j6=i ⇔ Motivation Communication Problem Interference Alignment Qgj →Ui . . . QUi →fi = j6=i Message-Passing GDL Min-Sum IA via Min-Sum I Function-to-variable messages are more tricky: X † † † mfi →Ui (Ui ) I I Distributedness Numerical Results min trace Vj Hij Ui Ui Hij + QVj →fi Vj = j6=i I Implementation challenges Vj Conclusion Each minimization is an eigenspace problem Resort to approximation to express mfi →Ui as trace X† Qfi →Ui X Approximation becomes exact in the vicinity of the solution 16/21 Interference Alignment via Message-Passing Challenge #2: The Importance of being Closed-Form M. Guillaud I Simple variable-to-functions message computation: X X mgj →Ui (Ui ) mUi →fi (Ui ) = j6=i ⇔ Motivation Communication Problem Interference Alignment Qgj →Ui . . . QUi →fi = j6=i Message-Passing GDL Min-Sum IA via Min-Sum I Function-to-variable messages are more tricky: X † † † mfi →Ui (Ui ) I I Distributedness Numerical Results min trace Vj Hij Ui Ui Hij + QVj →fi Vj = j6=i I Implementation challenges Vj Conclusion Each minimization is an eigenspace problem Resort to approximation to express mfi →Ui as trace X† Qfi →Ui X Approximation becomes exact in the vicinity of the solution 16/21 Some Observations on the Distributed Aspect Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem I Factors fi (Ui , Vj6=i ) and gj (Vj , Ui6=j ) rely on local data only (respectively available at Rx i and Tx j) Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum I Mapping of the graph nodes to the physical devices? Implementation challenges Distributedness Numerical Results Conclusion 17/21 Some Observations on the Distributed Aspect Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem I Factors fi (Ui , Vj6=i ) and gj (Vj , Ui6=j ) rely on local data only (respectively available at Rx i and Tx j) Interference Alignment Message-Passing GDL Min-Sum IA via Min-Sum I Mapping of the graph nodes to the physical devices? Implementation challenges Distributedness Numerical Results Tx 1 Rx 1 Tx 2 Rx 2 Tx 3 Rx 3 Tx K Rx K Conclusion ? ↔ 17/21 Interference Alignment via Message-Passing Numerical Results M. Guillaud Motivation Communication Problem Interference Alignment I Metric of interest: Residual interference power (leakage) Message-Passing GDL K K X X fi Ui , {Vj }j6=i + gj Vj , {Ui }i6=j i=1 j=1 Min-Sum IA via Min-Sum Implementation challenges Distributedness Numerical Results I Converges reliably to 0 despite lack of optimality proof for MP when the graph has cycles I Convergence speed compares favorably to existing centralized algorithms (ILM...) Conclusion 18/21 Interference Alignment via Message-Passing Numerical Results M. Guillaud 1 10 ILM MPIA Motivation Communication Problem Interference Alignment 0 10 Message-Passing GDL Min-Sum interference leakage -1 10 IA via Min-Sum Implementation challenges Distributedness -2 10 Numerical Results Conclusion -3 10 -4 10 -5 10 0 10 20 30 40 50 60 iterations 70 80 90 100 Leakage vs. iterations for one realization of Hij , K = 3, M = N = 4, d = 2. 19/21 Interference Alignment via Message-Passing Numerical Results M. Guillaud 700 Motivation Communication Problem Interference Alignment 600 ILM MPIA Message-Passing GDL 500 Min-Sum frequency IA via Min-Sum Implementation challenges 400 Distributedness Numerical Results 300 Conclusion 200 100 0 -15 10 -10 -5 10 10 0 10 leakage (log scale) Empirical distribution of leakage after 100 iterations over random realizations of Hij , K = 3, M = N = 4, d = 2. 20/21 Conclusion / Open Questions Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem Interference Alignment I Systematic method to distributedly solve the interference alignment problem Message-Passing GDL Min-Sum I . . . and possibly other simultaneous orthogonalization problems formulated on the Grassmann manifold IA via Min-Sum Implementation challenges Distributedness Numerical Results I Open issues I I I Conclusion Optimality proof is missing Effect of quantizing the “messages” Qa→b ? Optimize mapping of the graph nodes to the devices 21/21 Conclusion / Open Questions Interference Alignment via Message-Passing M. Guillaud Motivation Communication Problem Interference Alignment I Systematic method to distributedly solve the interference alignment problem Message-Passing GDL Min-Sum I . . . and possibly other simultaneous orthogonalization problems formulated on the Grassmann manifold IA via Min-Sum Implementation challenges Distributedness Numerical Results I Open issues I I I Conclusion Optimality proof is missing Effect of quantizing the “messages” Qa→b ? Optimize mapping of the graph nodes to the devices 21/21 Backup slides Interference Alignment via Message-Passing M. Guillaud Backup slides Backup Slides 22/21 Interference Alignment via Message-Passing About the approximation in mfi →Ui M. Guillaud Backup slides mfi →Ui (Ui ) = X j6=i ≈ X min trace V†j H†ij Ui U†i Hij + QVj →fi Vj Vj trace V0j † H†ij Ui U†i Hij + QVj →fi V0j j6=i where V0j = arg min trace V†j QVj →fi Vj Vj I Approximation becomes exact in the vicinity of the solution 23/21 Numerical Results: Benchmark Interference Alignment via Message-Passing M. Guillaud Benchmark: Iterative leakage minimization (ILM) algorithm from [Gomadam,Cadambe,Jafar 2011]. I Iterative I Assumes channel reciprocity I Over-the-air training phases I No formal proof of convergence Backup slides 24/21
© Copyright 2026 Paperzz