The perceptual representation of transparency, lightness, and gloss OxfordHandbooksOnline Theperceptualrepresentationoftransparency,lightness,andgloss BartonL.Anderson OxfordHandbookofPerceptualOrganization EditedbyJohanWagemans PrintPublicationDate: Jul2015 OnlinePublicationDate: Aug 2014 Subject: Psychology,Neuropsychology DOI: 10.1093/oxfordhb/9780199686858.013.030 AbstractandKeywords Thestructureinlightiscreatedbyitsinteractionwithsurfacesandmaterialsthatfillourenvironment.We experienceourenvironmentasa3Dlayoutofsurfacesandmaterialsthatpossessqualitiessuchascolor, lightness,opacity,gloss,andshape.Oneofthemostfundamentalproblemsinvisionscienceinvolves understandinghowthevisualsystemseparatesthesedifferentsourcesofimagestructureandgeneratesour experienceofthesedifferentsurfacesandmaterialattributes.Inthischapter,Idiscussthetheoreticalissuesthat ariseinattemptstocraftsolutionstotheseproblems,anddescribeabodyofempiricaldatathatbearsonthe relationshipbetweenthedimensionsofperceptualexperienceandthephysicalsourcesofvariabilitygeneratedby theworld. Keywords:light,color,lightness,opacity,gloss,shape,visionscience,structure,dimension,perception 1.Theoreticalpreliminaries Theadaptiveroleofvisionistoprovideinformationaboutthebehaviorallyrelevantpropertiesofourvisual environment.Ourevolutionarysuccessreliesonrecoveringsufficientinformationabouttheworldtofulfillour biologicalandreproductiveneedswhileavoidingenvironmentaldangers.Theattempttounderstandvisionasa collectionofadaptationstospecificcomputationalproblemshasshapedagrowingbodyofresearchthattreats visionasadecomposablecollectionof‘recovery’problems.Inthisview,perceptualoutputsareunderstoodas approximatelyidealsolutionstospecificrecoveryproblems,whichhavebeendubbedthe‘naturaltasks’ofvision (GeislerandRingach2009).Fromthisperspective,thescienceofunderstandingvisualprocessingproceedsby identifyinganorganism’snaturaltasks,evaluatingtheinformationavailabletoperformeachtask,developing modelsofhowtoperformataskoptimally,anddiscoveringthemechanismsthatimplementthesesolutions. Thefirstaspectofthismethodofapproach—theidentificationof‘naturaltasks’—isarguablythemostimportant becauseitdefinestheproblemthatneedstobesolved.Itisalsotheleastconstrained.Anyenvironmentalproperty canbehypothesizedtobesomethingthatcouldhaveadaptivevalueandthereforesomethingthatmightprovidea selectiveadvantagetoanyoneequippedtorecoverit.Presumably,however,onlysomeaspectsofour environmentwereinvolvedindirectlyshapingtheevolutionofoursenses.Thescientificchallengeisto differentiatepropertiesthatactuallyexertedselectivepressureinshapingthedesignofoursensesfromthosethat merelycamealongforthe‘evolutionaryride’(perceptual‘spandrels’).Butthereiscurrentlynoprincipledmeansof makingsuchdistinctions.Forexample,ageneralargumentcouldbe(andhasbeen)madethatthecomputationof surfacelightnesswouldbeusefulbecauseitprovidesinformationaboutanintrinsicpropertyoftheexternalworld, butitismuchhardertofashionaclearargumentabouthowtherecoveryofsurfacealbedoprovidesaspecific adaptivebenefit,orthatanysuchbenefitplayedaroleinnaturalselection. Thesecondaspectoftheadaptationistapproach—identifyingtheinformationavailableforacomputation—isin Page 1 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss principlemoreconstrained.Naturalscenesarerepletewithinformationthatcouldbeusedtosenseaparticular worldproperty.Oncearecoveryproblemhasbeenidentified,itispossibletoinventorythesourcesofinformation thatexistinthenaturalworldthatcanbeusedtosenseit.However,mostrecoveryproblemsinvision(suchas shape,depth,color,lightness,etc.)areconsideredinisolation,oftenininformationallyimpoverishedlaboratory settings.Thisapproachhasledtothenearlyuniversalacceptanceofabeliefinthepovertyofthestimulus:the presumptionthattheimagesdonotcontainsufficientinformationtorecovertheaspectsoftheworldthatwe experience.Thisviewistypicallydefendedbydemonstratingthatitisimpossibletoderiveauniquesolutionfora specificrecoveryproblembasedontheinformationavailableintheimages.Perceptionisconstruedastheoutputs ofacollectionofunder-constrainedproblemsofprobabilisticinference,whicharesolvedwiththeaidofadditional information,assumptions,orconstraints.Soconstrued,itisnaturaltoturntoprobabilitytheoryforguidanceinto howtosolvesuchinferenceproblemsideally,whichtypicallyentailstheapplicationofBayes’theorem(see Feldman’schapter,thisvolume). Thethirdaspectoftheadaptationistprogramisostensiblytheeasiest,andiswheretheorymeetsdata.Perceptsor perceptualperformanceofobserversiscomparedtothatoftheBayesianideal,constructedonasetofpriorsand likelihoods.WhendataandtheBayesianidealaredeemedsufficientlysimilar,theexplanatorycircleisconsidered closed:thefitbetweenmodelanddataisupheldasevidentialsupportforthespecificationofthenaturaltasks,the selectionofpriorsandlikelihoodsneededtoperformtheinference,andtheclaimthatperceptioninstantiatesa formofBayesianinference.Allthatremainsisthediscoveryofthemechanismsthatinstantiatesuchcomputations. Theprecedingdescribeswhatmaycurrentlybeconsideredone(ifnotthe)dominantviewonhowtoapproachthe studyandmodelingofvisualprocesses.Myownviewdepartsinanumberofsignificantwaysfromthisapproach, whichshapesbothmyselectionofproblemsandthetheoreticalapproachtakentoaccountfordata.Oneofthe maingoalsofthischapteristoprovideanoverviewofhowmyapproachhasshapedworkinthreeareasof surfaceandmaterialperception:transparency,lightness,andgloss.Thegistofmyapproachmaybearticulated asfollows.First,Iassumethattheattempttoidentifythe‘naturaltasks’ofvision—i.e.,thecomputational‘problems’ thatvisualsystemsputativelyevolvedtosolve—isatbestaguessinggame,andatworstatheoreticalfiction. Someofthe‘problems’ourvisualsystemsseemtosolvemaybeepiphenomenaloutputs,notexplicitadaptations. Second,theclaimthatvisionisanill-posedinferenceproblemisalogicalconsequenceoftreatingvisionasa collectionofrecoveryproblems,forwhichitcanbeshownthatthereisnoclosedformsolutionthatcanbederived fromtheinformationthatiscurrentlyavailable.Butiftheputative‘recoveryproblem’ismisidentified,orthe ‘informationavailableforsolvingit’isartificiallyrestricted(suchastypicallyoccursinlaboratoryenvironments), thenitmaynotbevisionthatisill-posed,butourparticularunderstandingofvisualprocessingthatis misconstrued. Analternativeapproachistobeginwithwhatwevisuallyexperienceabouttheworld,andattempttodetermine whatimagepropertiesmodulatetheseexperiences.Thequestionisnotwhetherthereissufficientinformationin theimagestospecifythetruestatesoftheworld,butrather,whetherthereissufficientinformationtoexplainwhat weexperienceabouttheworld.Thisapproachisneutralastothe‘computationalgoals’ofthevisualsystem,orif evenwhethertheideaofacomputationalgoalhasanyrealmeaningforbiologicalsystems.Whereastherecovery ofaworldpropertycanbeshowntobeunder-constrainedbyargument,thequestionwhetherthereissufficient informationavailabletoexplainwhatweexperienceabouttheworldisanempiricalquestion. 2.Disentanglingimagesintocausalsources Weexperiencetheworldasacollectionof3Dobjects,surfaces,andmaterialsthatpossessavarietyofdifferent phenomenologicalqualities.Thereflectanceandtransmittancepropertiesofamaterial,togetherwithits3D geometry,structurelightinwaysthatmodulatesourexperienceofshape,lightness,color,gloss,texture,and translucency.Someimagestructurealsoarisesfromtheidiosyncraticdistributionoflightsourcesinascene—the illuminationfield.Toafirstapproximation,thislistofsurfaceandmaterialpropertiestendtobeexperiencedas separatesourcesofimagestructure,despitethefactthattheyareconflatedintheimage.Muchresearchinto perceptualorganizationhasfocusedonhowthevisualsystemfillsinmissinginformationorgroupsimage fragmentsintoaglobalstructureorpattern.Whilesuchphenomenaareanextremelyimportantaspectofour visualexperience,oneoftheotherfundamentalorganizationalproblemsinvolvesunderstandinghowthevisual systemdisentanglesdifferentsourcesofimagestructureintothedistinctsurfaceandmaterialqualitiesthatwe Page 2 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss experience.Inwhatfollows,Iconsideravarietyofsegmentationproblemsintheperceptionofsurfaceandmaterial attributes,andtheinsightsthatsuchproblemsshedonthebroadertheoreticalissuesraisedabove. 2.1.Transparency Oneoftheperceptuallymostexplicitandtheoreticallychallengingformsofimagesegmentationoccursinthe perceptionoftransparency.Historically,thestudyoftransparencyfocusedonachromaticsurfaces,whichwas largelyduetheseminalinfluenceofMetelli’smodeloftransparency(Metelli1970,1974a,1974b,1985;seealso Gerbino’schapter,thisvolume).Theperceptionof(achromatic)transparentsurfacesgeneratestwodistinct impressions:itsperceivedlightnessanditsperceivedopacityor‘hidingpower’.Metelli’smodelwasbasedona simplephysicaldeviceknownasanepiscotister:arapidlyrotatingdiscwithamissingsector.Theproportionof thediskthatis‘missing’determinestheamountoflighttransmittedfromtheunderlyingsurfacesthroughthe episcotisterblades,whichisthephysicalcorrelateofatransparentsurface’stransmittance.Thelightness(or albedo)ofthetransparentsurfacecorrespondedtothecolorofthepaintusedonthefrontsurfaceofthe episcotister,whichdeterminesthecolorofthetransparentlayer(orforachromaticpaints,itslightness).Metelli’s modelwasrestrictedto‘balanced’transparency,whichreferredtoconditionswheretheepiscotisterhadauniform reflectanceandtransmittance,reducingeachtoasinglescalar(number).ForthesimplebipartitefieldsMetelliused asbackgrounds,thisallowedequationsforthetotalreflectedlightintheregionsofoverlaytobewrittenasasum oftwocomponents:amultiplicativetransmittanceterm,whichdeterminedtheweightforthecontributionofthe underlyingsurface;andanadditiveterm,whichcorrespondsthelightreflectedbytheepiscotistersurface.By construction,Metelliconsidereddisplayscontainingtwouniformlycoloredbackgroundregions,whichgavehima systemoftwoequationsandtwounknownsthatcouldbesolvedinclosedform.Asignificantbodyofworkshowed thattheperceptionoftransparencyisoftenwellpredictedbyMetelli’sepiscotistermodel:balancedtransparency isperceivedwhendisplayswereconsistentwiththeepiscotisterequations,butgenerallynototherwise.Notethat Metelli’smodelserveddoubledutyasbothaphysicalmodeloftransparencyandapsychologicalmodelofthe conditionsthatelicitperceptsoftransparency. Despitethesesuccesses,Metellihimselfnotedacuriousdiscrepancybetweenthepredictionsoftheepiscotister modelandperception:alightepiscotisterlookslesstransmissivethandarkepiscotister(Metelli1974a).Froma ‘recovery’pointofview,thisconstitutesaperceptualerror,andhencenon-idealperformance,butalmostno experimentalworkwasconductedtounderstandthisdeviationfromthepredictionsofMetelli’smodel.Wetherefore performedaseriesofexperimentstotestwhetherthephysicalindependenceofopacityandlightnessisobserved psychophysically(SinghandAnderson2002).Observersmatchedthetransmittanceofsimulatedsurfacesthat variedinlightness,andthelightnessoftransparentfiltersthatvariedintransmittance.Wefoundthatlightness judgmentsweremodulatedbysimulatedtransmittance,andtransmittancejudgmentsweremodulatedbysimulated variationsinlightness.Thus,althoughthetransmittanceandreflectanceoftransparentlayersarephysically independentparametersinMetelli’smodel,theyarenotexperiencedasbeingindependentperceptually. Whattheoreticalconclusionscanbedrawnfromtheseresults?Metelli’smodeltreatedaphysicalmodelof transparencyasaperceptualmodeloftransparency.Ourfindingsofmutual‘contamination’ofthetransmittance andlightnessofthetransparentfilterimpliesoneoftwopossibilities:(1)thereisnosimplecorrespondence betweenthedimensionsofaphysicalmodelandaperceptualmodel,or(2)thatMetelli’smodelisthewrong physicalmodelonwhichtobasetheoriesofperceivedtransparency.Withrespectto(1),Metelli’smodelequates theperceivedopacityofanepiscotisterwithitsphysicaltransmittance,andhencecannotexplainwhylight episcotisterslookmoreopaquethandarkepiscotisters.Thedependenceofperceivedopacityonlightnesscanbe readilyunderstood,however,ifthevisualsystemreliedonimagecontrasttoassessthehidingpowerof transparentsurfaces.Alightepiscotisterreducesthecontrastofunderlyingsurfacestructuremorethanan otherwiseidenticaldarkepiscotister,andhence,shouldappearmoreopaqueifthevisualsystemusesimage contrasttoassessperceivedopacity1.Indeed,itseemsalmostinevitablethatthevisualsystemutilizescontrastto judgetheperceivedopacityoftransparentfilters,sincecontrastdeterminesthevisibilityofimagestructurein general.Butthisimpliesthatthevisualsystemisusingthe‘wrong’imagepropertiestogenerateourexperienceof aworldproperty,andhencewillalmostalwaysresultinthe‘wrong’answer.Fromtheperspectiveofexplainingour experience,suchissuesarelargelyirrelevant;theonlyissueiswhetherthereissufficientinformationintheimage toexplainwhatitisweexperienceabouttheworld,notwhethersuchperceptsareveridical. Page 3 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Alternatively,itcouldbe(andhasbeen)arguedthatthediscrepancybetweenperceptionandMetelli’smodel merelyprovidesevidencethatthereissomethingwrongwithMetelli’smodel,anddoesnotimpactonthemore generalclaimthatperceptioncanbeidentifiedwiththerecoveryofsomephysicalmodel.FaulandEkroll(2011) havemadepreciselythisargument.Theycontendthatasubtractivefiltermodelbettercapturestheperceptionof chromatictransparency,andhencemaybeamoreappropriatemodelofachromatictransparencyaswell. Althoughthereiscurrentlyinsufficientdatatodeterminewhichofthesealternativesisultimatelycorrectfor achromaticstimuli,FaulandEkrollreportedsubstantialdiscrepanciesbetweentheirfiltermodelandperceived transparencywhenthechromaticcontentoftheilluminantwasvaried,despitedemonstratingthattherewas theoreticallysufficientinformationforamuchbetterlevelofperformance(FaulandEkroll2012).Atthisjuncture, thereiscurrentlynophysicalmodelthatmapsdirectlyontoourexperienceoftransparentsurfaces,anditis largelyamatterofscientificfaiththatsuchamodelmayultimatelybediscovered. 2.2.Lightness Theperceptionoflightnessalsohasbeentreatedasakindofsegmentationproblem.Forachromaticsurfaces,the termlightness(oralbedo)referstoasurface’sdiffusereflectance.Thelightreturnedtotheeyeisaconflated mixtureoftheilluminant,surfacereflectance,and3Dpose.Thereiscurrentlyextensivedebateoverthe computations,mechanisms,and/orassumptionsthatareresponsibleforgeneratingourexperienceoflightness (seeGilchrist’schapter,thisvolume).Therearefourgeneraltheoreticalapproachestotheproblemoflightness: scission(orlayersmodels),equivalentilluminantmodels,anchoringmodels,andfilterorfilling-inmodels.Iconsider eachmodelclassinturn. 2.2.1.Modelsandtheoriesoflightness Scissionmodels Scissionmodelsassertthatthevisualsystemderiveslightnessbyexplicitlysegmentingtheilluminantfromsurface reflectanceinamanneranalogoustothedecompositionthatoccursinconditionsoftransparency.Suchmodels havebeendubbedlayers,scission,orintrinsicimagemodels(Adelson1999;Anderson1997;Andersonand Winawer,2005,2008;Barrowetal.1978;Gilchrist1979).Inmodelsoflightness,scissionmodelsassertthatthe visualsystemteasesapartthecontributionsofreflectance,theilluminant,and3Dpose.Althoughsomeauthors associatescission(orintrinsicimage)modelswithveridicalperception(Gilchristetal.1999),thereisnothing inherentinscissionmodelsthatmandatesthisassociation.Theconceptofscissionentailsaclaimabouta particularrepresentationalformatorprocessofimagedecompositionthatispresumedtounderlieourexperience oflightness.Thehypothesizedsegmentationprocessesresponsibleforgeneratingtheputativelayered representationmayormaynotresultinveridicallightnessperceptsdependingonhow(andhowwell)thevisual systemperformsthehypothesizeddecomposition. Equivalentillumination Onemodelthatisconceptuallyrelatedtolayersmodelsistheequivalentilluminationmodel(EIM)developedby BrainardandMaloney(2011).Aswithlayersmodels,theEIMassumesthatthevisualsystemrecoverssurface reflectancebyfactoringtheimageintotwocomponents:anestimateoftheilluminant(whichtheyterman ‘equivalentilluminant’)andsurfacereflectance.Whereaslayersmodelshaveassumedthatthereisanexplicit representationofboththeilluminantandsurfacereflectance,thesameisnotnecessarilytruefortheEIM.TheEIM isatwo-stagemodelwhichassertsthatthevisualsystembeginsbygeneratinganestimateoftheilluminant,and usesthisinformationinasecondstagetoderivesurfacereflectancepropertiesfromtheimagedata.Thismodel remainsmuteastohowthevisualsystemestimatestheparametersoftheestimatedilluminantfromimagesand alsoremainsuncommittedastotheanyrepresentationalformattheEImaytake.Themainexperimentally assessableclaimisthatitpredictsthattheparametricstructureofcolororlightnessmatchescanbedescribedby someEIM.TheapproachoftheEIMcanbeunderstoodasfollows:Givenasetofreflectancematches,isitpossible tofindamodeloftheilluminantthatisconsistentwiththematches?Notethatthereisnopresumptionthatthe particularEIMthatputativelyshapesobserver’smatchesisveridical;theonlyclaimisthatobservers’lightness matchesareshapedbysomeEIM.Indeed,thebenefitofthisclassofmodelisthatitcaninprincipleaccountfor bothveridicalmatchesand/orthespecificpatternoffailuresinveridicality. Page 4 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Anchoringtheory Athirdtheoreticalapproachtolightnessiscapturedbyanchoringtheory,whichwasdevelopedinanattemptto accountforavarietyofsystematicerrorsintheperceptionoflightness(Gilchristetal.1999).UnlikelayersorEIM models,thereisnoexplicitfactorizationoftheilluminantandreflectanceinanchoringtheory.Rather,anchoring theoryassertsthatperceivedlightnessisderivedthroughasetofheuristicrulesthatthevisualsystemusesto mapluminanceontoperceivedlightness.Therearetwomaincomponentstoanchoringtheory(seeGilchrist’s chapter,thisvolume).First,followingWallach(1948),luminanceratiosareusedtoderiveinformationaboutrelative lightness.Whenthefull30:1rangeofphysicallyrealizablereflectancesarepresentinacommonilluminant,the truereflectanceofsurfacescanbederivedonthebasisoftheseratiosalone.However,inscenescontainingless thanthisfull30:1range,someadditionalinformationorruleisneededtotransformambiguousinformationabout relativelightnessintoanestimateofabsolutesurfacereflectance.Forexample,animagecontaininga2:1rangeof luminancescouldbegeneratedbysurfaceswithreflectancesofthreepercentandsixpercent,orfivepercent and10percent,40percent,80,adinfinitum.Anchoringtheoryassertsthatthisambiguitymustberesolvedwith ananchoringrule,suchthataspecificrelativeimageluminance(suchasthehighest)ismappedontoafixed lightnessvalue(suchaswhite).Allotherlightnessvaluesinasceneareputativelyderivedbycomputingratios relativetothisanchorvalue.Anumberoffixedpointsarepossible(e.g.,theaverageluminancecouldbegrey,the highestluminancecouldbewhite,orthelowestluminancecouldbeblack),butavarietyofexperiments,especially thosefromGilchrist’slab,havesuggestedthatinmanycontexts,thehighestluminanceisperceivedaswhite. Filteringandfilling-inmodels Athirdapproachtolightnesstreatlightnessperceptsastheoutputsoflocalimagefiltersapplieddirectlytothe images(BlakesleeandMcCourt2004;DakinandBex2003;KingdomandMoulden1988,1992;ShapiroandLu 2011).Suchapproachestypicallydonotdistinguishbetweenperceivedlightness(perceivedsurfacereflectance) andbrightness(perceivedluminance),atleastnotexplicitlyintheconstructionofthemodel.Rather,anewimage isgeneratedfromasetoftransformationsappliedtotheinputimage.Inastrictsense,filtermodelsarenottruly lightnessmodels,sincetheysimplytransformoneimageintoanotherimage.Suchmodelsaremoreappropriately construedasmodelsofbrightnessthanlightness,sincethereisnoexplicitattempttorepresentsurface reflectance,ordistinguishreflectancefromluminance.Theirrelevancetounderstandinglightnessdependsonthe extenttowhichthedistinctionbetweenbrightnessandlightnessmakesbiologicalorpsychologicalsensefora givenimageorexperimentalprocedure.Likeanchoringmodels,filterapproachestolightnessdonotexplicitly segmentimageluminanceintoseparatecomponentsofreflectanceandillumination. Inarelatedmanner,avarietyoffilling-inmodelshavebeenproposedthatdonotexplicitlydistinguishlightness andbrightness(GrossbergandMingolla1985;ParadisoandNakayama1991;RuddandArrington2001).Such modelsinvokeatwostageprocess:onethatrespondstothemagnitudeandorientationof‘edges’(oriented contrast)and/orgradients,andasecondprocessthatpropagatesinformationbetweensuchlocalized‘edge’ responsestogenerateafully‘filled-in’orinterpolatedperceptofbrightnessorcolor. 2.2.2.Evaluatingtheoriesoflightness Asnotedinarecentarticle,thetopicoflightnessandbrightnesshashistoricallybeenquitedivisive(Kingdom 2011).Onesourceofdisagreementinvolvestheverydistinctionbetweenbrightnessandlightness.Althoughsuch constructsareeasilydistinguishedfromeachotherwithregardtotheirintendedphysicalreferents,itisnotclear that(orwhen)suchdistinctionshavepsychologicalmeaning.Thedistinctionbetweenlightnessandbrightnessis particularlyproblematicforthekindsofdisplaysthataretypicallystudiedineitherlightnessorbrightnessstudies. Inalmostallcases,thetargetsofinteresthaveasingle,uniformluminance(orapproximatelyso),andare embeddedinhighlysimplifiedgeometricandilluminationcontexts.Forscenesdepictingrealorsimulatedsurfaces, thesurfacesofinterestaretypicallyflat,matte,andarrangedinasingledepthand/orilluminant.Theytypically lackinformationaboutthelightfield,suchasthatprovidedbyspecularreflections,3Dstructure,shading,and inter-reflections.Itisperhapsnotsurprising,then,thatthefieldremainsdividedastotheproperwaytounderstand howsuchimpoverisheddisplaysareexperienced,sinceitisunclearwhetherthedistinctionbetweenlightnessand brightnessispsychologicallymeaningfulinmanyofthesedisplays.Inwhatfollows,Iwillconsidersomerecent evidencerelevantforeachofthetheoriesoflightnessdescribedabove. Page 5 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Clicktoviewlarger Figure1 .StereoscopicKanizsafiguredemonstratingtheroleofscissiononperceivedlightnessfortwo differentgreyvalues.Thesmallpieshapedinducingsectorsarethesameshadeofdarkgreyinthetoptwo rows,andthesameshadeoflightgreyinthebottomtworows.Whenthelefttwoimagesarecrossfused, ortherighttwoimagesdivergentlyfused,anillusorydiamondisexperience.Notethatthediamondsinthe firstandthirdrowsappearmuchlighterthantheircorrespondingfiguresinthesecondandfourthrows. AdaptedfromAnderson(1998,TrendsinCognitiveScience). Thecoreclaimofscissionmodelsisthatourexperienceoflightnessinvolvesthedecompositionoftheinputinto separablecauses.Oneofthedifficultiesinassessingscissionmodelsisthatitisnotalwaysclearwhether(or when)suchseparationoccurs,orwhatcriteriathatshouldbeappliedtodeterminewhethersuchdecomposition occurs.Onecanbeginbyposingaquestionofsufficiency:Canscissioninducetransformationsinperceived lightnesswhenitisphenomenallyapparent?Themostphenomenologicallycompellingsenseofscissionoccursin conditionsoftransparency,whichrequiresthesatisfactionofbothgeometricandphotometricconditions.One techniqueforinducingscissioninvolvesmanipulatingtherelativedepthandphotometricrelationshipsof stereoscopicKanizsafiguressuchasthosedepictedinFigure1.Whenthegrey,wedge-shapedsegmentsofthe Kanizsafigure’sinducingelementsinFigure1aredecomposedintoatransparentlayeroverlyingawhitedisk (secondandfourthrowsofFigure1),theyappearsubstantiallydarkerthanwhenthesamegreysegmentappears tooverlieadarkdisk(firstandthirdrowsofFigure1).Notethatthecoloroftheunderlyingcircularinducing elementappearstobe‘removed’fromthegreywedge-shapedsegmentsandattributedtothemoredistantlayer, whichputativelytransformstheperceivedlightnessofthetransparentlayer.Notealsothatthedirectionofthe lightnesstransformationdependsonwhichlayerobserversareaskedtoreport.Ifobserversareaskedtoreport thecolorofthefarlayerunderneaththegreysectorsofthetopimage,theyreportitasappearingquitedark (nearlyblack),sincethisisthecoloroftheinterpolateddisc.Butiftheyareaskedtoreportthenearlayerofthe transparentregion,theyreportitasappearingquitelight. Page 6 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Clicktoviewlarger Figure2 .Stereoscopicnoisepatternscanalsobedecomposedintolayersinwaysthatinducelarge transformationsinperceivedlightness.Ifthelefttwoimagesarecrossfusedortherighttwoimages divergentlyfused,thetopimageappearstosplitintoapatternofdarkcloudsoverlyinglightdiscs(top),or lightcloudsoverlyingdarkdisks(bottom).Thetexturesinthetopandbottomarephysicallyidentical. AdaptedfromAnderson(1999). Clicktoviewlarger Figure3 .Scissioncanalsobeinducedbyaselectivegroupingthelightanddarkcomponentsoftextureof thetargets(chesspieces)withthesurround.Thetextureswithinthechesspiecesinthetopandbottom imagesareidentical,butappearasdarkcloudoverlyinglightchesspiecesonthetop,andlightclouds overlyingdarkchesspiecesonthebottom. AdaptedfromAndersonandWinawer(2005). Inordertoprovidemoreconclusiveevidencefortheeffectsofscissiononperceivedlightness,Iconstructed stereoscopicvariantsofFigure1usingrandomnoisetextures.Thegoalwastoinducetransparencyinatexture suchthatthelightanddark‘components’ofthetexturewouldperceptuallysegregateintodifferentdepthplanes. AnexampleispresentedinFigure2.Whenthelefttwocolumnsarecross-fused,vividperceptsofinhomogeneous transparencycanbeobserved:Thetopimageappearsasdarkcloudsoverlyinglightdisks,andthebottom appearsaslightcloudsoverlyingdarkdisks.Notethatthelightestcomponentsofthetextureinthetopimage appearasportionsoftheunderlyingdiscinplainview,whereasthesameregionsinthebottomimageappearas themostopaqueregionsofthelightcloudsinthebottomimage(andviceversaforthedarkregions).We subsequentlyshowedthatsimilarphenomenacouldbeobservedinnon-stereoscopicdisplays.Intheseimages, scissionwasinducedbyembeddingtargetsinsurroundsthatcontaintexturesthatselectivelygroupwitheitherthe lightordark‘components’ofthetextureswithinthetargets(Figure3).Aswiththeirstereoscopicanalogues,the whiteandblackchesspiecesareactuallyphysicallyidentical(i.e.,containidenticalpatternsoftexture).Notethat Page 7 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss theluminancevariationswithinthetextureofthechesspiecefiguresareexperiencedasvariationsintheopacity ofatransparentlayerthatoverlieauniformlycoloredsurface.Theopacityofthetransparentsurfaceisgreatest forluminancevaluesthatmostcloselymatchthesurroundalongthebordersofthechesspieces(darkontop,light onthebottom),andtheleastopaquewhenforluminancevaluesthataremostdifferentfromthesurround(lighton top,darkonthebottom).Notethatthelightestregionswithinthetargetsonthedarksurroundappearinplainview, andthedarkestregionswithinthetargetsappearinplainviewonthelightsurround.Thisbiasisevidentfor essentiallyallrangesoftargetluminancetested,althoughthisperceptualfactisinnowaymandatedbythe physicsoftransparency,particularlyforunderlyingsurfacesthatdonotappearblackorwhite. Thesephenomenademonstratethatscissioncaninducestrikingtransformationsinperceivedlightnessin conditionsoftransparency,butitdoesnotaddressthebroaderquestionofwhetherscissionplaysarolein generatingourexperienceoflightnessinconditionsthatdonotgenerateexplicitperceptsofmultiplelayersor transparency. EIMsalsoassertthattheperceptionofsurfacecolorandlightnessisderivedbydecomposingtheimageinto estimatesoftheilluminantandsurfacereflectance.Theevidenceinsupportofthismodelis,however, phenomenologicallyindirect.WorkfromBrainard’sandMaloney’slabshavedemonstratedthattheparametric structureofavarietyofmatchingdatacanbeexplainedwithatwo-stagemodelinwhichthefirststageinvolvesan estimationoftheilluminant(an‘equivalentilluminant’),whichisthenusedtoderiveobservers’reflectancematches fromtheinputimages(BrainardandMaloney,2011). UnlikescissionmodelsorEIMs,anchoringtheoryassertsthatlightnessisderivedwithoutexplicitlydecomposing theimagesintoanexplicitrepresentationofilluminationandreflectance.Thecentralpremiseofanchoringtheory isthatthevisualsystemsolvestheambiguityoflightnessbytreatingaparticularrelativeluminanceasafixed (anchor)pointonthelightnessscale(namely,thatthehighestluminanceaswhite),independentofthelevelof illuminationorabsoluteluminancevaluesinascene.Totestthisclaim,weconstructedbothpaperMondrians displayedinanotherwiseuniformlyblacklaboratory,andsimulatedMondriansdisplayedonaCRTinadarkblack labroom(Andersonetal.2008).Inallcases,thehighestluminanceintheroomwasthecentraltargetpatchofthe Mondriandisplay.Wevariedboththereflectancerangeandilluminationleveloftheformer(i.e.,paperMondrians), andthesimulatedreflectancerangeandsimulatedilluminantlevelsofthelattersimulatedMondrians.Forrestricted reflectanceranges(3:1orless),wefoundthatthehighestluminancecouldvaryinperceivedlightnessasa functionofillumination.ForoursimulatedilluminantsandMondriandisplays,observers’lightnessmatches (expressedasapercentageofreflectance)werealogarithmicfunctionof(simulated)illuminant,ratherthanan invariant‘white’aspredictedbyanchoringtheory.Theseresultssuggestthattheapparent‘anchoring’of luminanceto‘white’isaconsequenceoftheparticularexperimentalconditionsthathavebeenusedtoassessthis model,ratherthanreflectinganinvariant‘anchorpoint’usedtoscaleotherlightnessvalues. Somerecentdatahasprovidedsomestrongevidenceagainstanexplicitilluminationestimationmodel,andmore generally,anymostthatreliesonluminanceratiostocomputeperceivedlightness(suchasanchoringtheory). Radonjicetal.(2011)conductedexperimentsdepictingcheckerboarddisplaysinadisplaycapableofdisplaying anextremelylargedynamicrange,andfoundthatobserversmappedaveryhighdynamicrange(~10,000:1)onto anextendedlightnessrangeof100:1,whichspannedfrom‘white’to‘darkblack’(thedarkestvalueswere obtainedusingglossypapers).Suchbehaviorwouldnotbeexpectedforanymodelthatattemptstoinfera physicallyrealizableilluminant,oranyrealizablereflectanceratiosofrealsurfaces,asembracedbyanchoring theoryortheEIM. OnecommonassumptionofanchoringtheoryandtheEIMisthatthevisualsystemexplicitlyattemptstoextractan estimateoflightnessthatcorrespondstothephysicaldimensionofsurfacealbedo.TheresultsofRadonjićetal. (2011)providecompellingevidenceagainstthisview.Justasourexperienceoftransparencymaynothaveany directcorrespondencetothephysicaldimensionsthatmodulateperceivedtransparency(suchastransmittance), theperceptionoflightnessmaynotrepresentanapproximationofthephysicaldimensionofsurfacealbedo.The resultsofRadonjicetal.provideevidencethatdirectlychallengeanyattempttointerpretthevisualresponseasa ‘bestguess’astotheenvironmentalsourcesthatproducedtheirstimuli,sincethereisnocombinationofsurface reflectanceandilluminantthatcanproducesuchstimuli(atleastinacommonilluminant).Iwillreturntothis generalpointinthegeneraldiscussionbelow. Page 8 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss 3.Gloss Theexperienceofglossisanotheraspectofourexperienceofsurfacereflectancethathasreceivedagrowing amountofexperimentalattention.Whereastheconceptofsurfacelightnesshasbeencastastheproblemof understandinghowweexperiencethediffusereflectanceofasurface,theperceptionofglossistypicallycastas theproblemofunderstandinghowweexperiencethespecular‘component’ofreflectance.Fromagenerativepoint ofview,thediffuseandspecular‘components’ofreflectancearetreatedascomputationallyseparable.So construed,theproblemofglossperceptioninvolvesunderstandinghowthevisualsystemsegmentstheimage structuregeneratedbyspecularreflectancefromdiffusereflectance(andallothersourcesofimagestructure). Theapparentintractabilityofthisproblemhasinspiredattemptstofindcomputationalshort-cutstoavoidthe complexityofthisdecompositionproblem.Oneapproachassertsthatthevisualsystemusessimpleimage statisticsthatdonotrequireanyexplicitdecompositionoftheimagesintodistinctcomponentsofreflectanceto deriveourexperienceofgloss.Motoyoshietal.(2007)arguedthatperceivedglosswaswellpredictedbyan image’shistogramorsub-bandskew,ameasureoftheasymmetryofthepixelhistogram(orresponseofcentersurroundfilters)respectively.Thisclaimwasevaluatedforaclassofstuccosurfaceswithastatisticallyfixedlevel ofsurfacereliefthatwereviewedinfixedilluminationfield.Intheseconditions,glossysurfacesgeneratedimages withastrongpositiveskew,whereasmattesurfacesgeneratedsurfaceswithnegativeskew.Theattractivefeature ofthiskindofmodelisthatitpotentiallyreducesacomplexmid-levelvisionproblemintoacomparativelysimple problemofdetectinglow-levelimageproperties. Clicktoviewlarger Clicktoviewlarger Figure4 .Theperceptionofglossdependscriticallyhighlightsappearinginthe‘rightplaces’ofasurface’s diffuseshadingprofile.InA,thehighlightsappearneartheluminancemaximaofthediffusedshading Page 9 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss profileandhavesimilarorientations,andthesurfaceappearsrelativelyglossy.InB,thehighlightshave beenrotatedsothattheyappearwithrandompositionsandorientationsrelativetothediffuseshading profile,anddonotappearglossy. AdaptedfromAndersonandKim(2009). However,subsequentworkhasshownthatourexperienceofglosscannotbeunderstoodsoeasily(Andersonand Kim2009;KimandAnderson2010;Kimetal.2011;Marlowetal.2011;OlkkonenandBrainard2010,2011).Oneof themainproblemswiththeproposedimagestatisticsisthattheyfailtotakeintoaccountthekindofimage structurethatpredictswhenglosswillorwon’tbeperceived.Specularhighlights,andspecularreflectionsmore generally,mustappearinthe‘rightplaces’onsurfacestoelicitaperceptofgloss(seeFigure4).Fromaphysical perspective,specularhighlightsclingtoregionsofhighsurfacecurvature.Theperceptionofglossalsorequires highlightstoappearinspecificplacesandhaveorientationsconsistentwithsurfaceshadingforasurfaceto appearglossy,ageometricconstraintthatisnotcapturedbyhistogramorsub-bandskew. Clicktoviewlarger Figure5 .Interactionsbetween3Dshapeandperceivedglossasafunctionoftheilluminationfield.Allof theimagesinthisimagehavethesamephysicalglosslevel,butdonotappearequallyglossy.Theimages inthetoprowwererenderedinanilluminationfieldwheretheprimarylightsourceswereorientedobliquely tothesurface,andtheimagesinthesecondrowwereilluminatedinthesameilluminationfieldwiththe primarylightsourcesorientedtowardsthesurface. AdaptedfromMarlowetal.(2012). Clicktoviewlarger Figure6 .Dataandmodelfitsfortheexperimentsweperformedontheinteractionsbetweenperceived gloss,3Dshape(ascapturedbyameasureofsurfacerelief),andtheilluminationfield.Thestimuliwere viewedeitherwithorwithoutstereoscopicdepth(the‘disparity’and‘nodisparity’conditionsrespectively). Thedifferentcoloredcurvesineachgraphcorrespondtoadifferentilluminationdirectionofaparticular illuminationfield(called‘Grace’).Theglossjudgmentsareinthetwotoprightpanels.Thepanelsonthe leftrepresentthejudgmentsofaseparategroupofobserversoffourdifferentcuestogloss:thedepth, coverage,contrast,andsharpnessofspecularreflections.Thepanellabeled‘skew’wascomputeddirectly Page 10 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss fromimages.Thedottedlinesinthetwographsonthetoprightcorrespondtothebestfittinglinear combinationofthecuesontheleft,whichaccountfor94percentofthevarianceofglossjudgments.The weightsaredenotedintheboxesadjacenttothesmallarrowsinthecenterofthegraphs. AdaptedfromMarlowetal.(2012). Althoughtheseresultssuggestthatthevisualsysteminsomesense‘understands’thephysicsofspecular reflection,thereareotherfindingsthatrevealthattheextentofanysuchunderstandingislimited.Theperception ofglosshasbeenshowntointeractwithasurface’s3Dshapeanditslightingconditions,whicharephysically independentsourcesofimagevariability(Hoetal.2008;Marlowetal.2012;OlkkonenandBrainard2011).These interactionshavebeenobservedbyavarietyofauthorsandhaveresistedexplanation.Indeed,theseinteractions aredifficulttounderstandfromaphysicalperspective,sinceglossand3Dshapeareindependentsourcesof imagestructure.However,werecentlypresentedevidencethattheseinteractionscanbeunderstoodasa consequenceofasimplesetofimagecuesthatthevisualsystemusestogenerateourexperienceofgloss,which areonlyroughlycorrelatedwithasurface’sphysicalglosslevel(Marlowetal.2012).Someoftheintuitionshaping thistheoreticalproposalcanbegainedbyconsideringthesurfacesdepictedinFigure5.Allofthesurfacesin theseimageshavethesamephysicalglosslevel,yetappeartovaryappreciablyinperceivedgloss.Eachcolumn containssurfaceswithacommondegreeofrelief,andeachrowcontainsimagesthatwereplacedinan illuminationfieldwiththesamedirectionoftheprimarylightsources.Wevariedthestructureofthelightfield,the directionoftheprimarylightsources,and3Dsurfacerelief.Observersperformpairedcomparisonjudgmentsof theperceivedglossofallsurfaces,wheretheychosewhichofapairofsurfaceswasperceivedasglossier.The datarevealedcomplexinteractionsbetweenthelightfieldandsurfaceshapeonglossjudgments.Ascanbeseen inFigure6,thevariationoftheilluminationfieldandshapehadasignificantimpactonthesharpness,size,and contrastofspecularhighlightsintheseimages.Wereasonedthatifobserverswerebasingtheirglossjudgments onthesecues,thenitshouldbepossibletomodelobservers’glossjudgmentswithaweightedcombinationof theseimagecues.However,thereiscurrentlynoknownmethodforcomputingthesecuesdirectlyfromimage.We thereforehadindependentsetsofobserversjudgeeachofthesecues,andtestedwhetheritwaspossibleto predictglossjudgmentswithaweightedsumofthesecues.Wefoundthatasimpleweightedsummodelwas capableofpredictingover94percentofthevarianceoftheotherobservers’glossjudgments.Thus,althoughthe perceptionofsurfaceswiththesamephysicalglosslevelcanappeartovarysignificantlyinperceivedgloss,these effectscanbeunderstoodwithasetofrelativelysimple,albeitimperfect,‘cues’thatthevisualsystemusesto generateourexperienceofgloss. 4.Theperceptualorganizationofsurfacesandmaterials Thelastfewdecadeshavewitnessedanexplosiveincreaseinmodelsthathavetreatedvisualprocessesasa collectionofapproximatelyideal‘solutions’toparticularcomputationalproblems.Suchmodelsareexplicitly teleological:theytreatadesiredoutcome,goal,ortaskastheorganizingforcethatshapestheperceptualabilities theyareattemptingtomodel.Evolutionarytheoryservesastheengineeringforcethatputativelydrivesbiological systemstowardoptimalsolutions.Thismodelingprocesshingescriticallyontheabilitytospecifythe‘naturaltasks’ thatwereputativelyshapedbyevolution.Thejustificationfortheadaptiveimportanceofaparticular‘naturaltask’ typicallytakesagenericform:anenvironmentalpropertyistreatedashavingevolutionarysignificancebecauseit isanintrinsicpropertyoftheworld.Thus,anyanimalcapableofaccuratelyrecoveringthatpropertywouldgainan adaptiveadvantage.Thepropertiestoberecovered—the‘tasks’ofvision—aredefinedinwithrespecttoparticular physicalsourcesofvariability.Ourexperienceoflightnessistreatedasthevisualsystem’ssolutiontotheproblem ofrecoveringthealbedoofasurface.Ourexperienceoftransparencyistreatedastheperceptualsolutiontoa particulargenerativemodeloftransparency(suchasMetelli’sepiscotistermodelorFaulandEkroll’sfiltermodel). Andourexperienceofglossisunderstoodasthevisualsystem’sattempttoestimatethespecularcomponentof surfacereflectance. Oneoftheassumptionsofthisapproachisthatthedimensionsofpsychologicalvariationareassumedtomirror thesourcesofphysicalvariation.ThisassumptionisexplicitinbothMetelli’smodel,whichtreatedtheepiscotister asbothaphysicalandpsychologicalmodeloftransparency,andtheEIMofBrainardandMaloney,whichasserts thatthevisualsystemgeneratesa‘virtual’modeloftheilluminanttorecovercolorandlightness.Theperceptionof glosshasalsobeenstudiedasakindof‘constancy’problem,whichinvolvesrecoveringthespecular‘component’ ofreflectance. Page 11 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Amainthemeofthischapteristoquestiontheadequacyofthisconceptualizationofvision.Ratherthanattempting toguessthe‘naturaltasks’andananimal,Iviewthegoalofperceptualtheorytodiscoverthe‘natural decompositions’ofrepresentationalspace,i.e.,todiscoverthepsychologicaldimensionsthatcapturethespace ofourexperiences.Theprecedingfocusedonourexperienceoftransparency,lightness,andgloss.Eachofthese attributescanbeidentifiedwithaparticularphysicalpropertyofsurfacesandmaterial,whichcanbedescribedin physicaltermsindependentlyofanyperceptualsystem.Suchdescriptionsassumethatthevisualsystemplaysno partindefiningtheattributesthatitputativelyrepresents;thedimensionsaregivenbyidentifiablesourcesof variationintheworld,whichthevisualsystemisattemptingtorecover,notbyintrinsicpropertiesofthevisual system.Weareleftdiscussinghowwellthevisualsystemencodesorrecoversaparticularworldproperty,rather thanhowthevisualsystemcontributestoshapingthedimensionsofourvisionexperience. Theprecedingsuggeststhatthisgeneralapproachfailstoexplainanumberofdifferentphenomenainsurfaceand materialperception.TheperceptionofsurfaceopacitydoesnotfollowMetelli’smodeloftransmittance.Weargued thatoneofthemainreasonsforthisfailurewasthatMetelli’smodelisbasedonaratioofluminancedifferences, wherearenotavailabletoavisualsystemthattransformsretinalluminanceintolocalcontrastsignals.Weshowed thatourmatchingdatawerewellpredictedbyamodelinwhichobserversmatchedcontrastratios,ratherthan luminancedifferenceratios.Oneofthekeypointsofourmodelwastodefinetransmittanceinawaythatwas consistentwithintrinsiccodingpropertiesofthevisualsystem,evenifthisresultsinthefailuretocompute physicallyaccuratemeasureofsurfaceopacity.Thisgeneralapproachofaphysiologicallymotivatedmodelhas alsobeenpursuedbyarecentmodeloftheseresultsbyVladusich,whoproposedanalternativemodelofour transmittancematchingdata(Vladusich2013).Heshowsthatourtransmittancematchingdatacanbecaptured withamodifiedversionofMetelli’smodelinwhichlogluminancevaluesareusedinsteadofluminancevalues (Vladusich,submitted).Likeourmodel,thechoicetouseLogluminancevaluescannotbederivedfromthephysics oftransparentsurfaces;theyarederivedfromintrinsicresponsepropertiesofthevisualsystem. Thedifferenttheoriesoflightnessperceptionareevenmorecontentiousanddiversethanthosefoundinthe transparencyliterature.Oneofthebasicissuesinvolvesthedistinctionbetweenlightnessandbrightness.The perceptionoflightnessisthendefinedastheperceptionofdiffuse(achromatic)surfacereflectance,whereas brightnessisdefinedastheperceptionofimageluminance.Thepresumptionisthatthesephysicaldistinctions havepsychologicalmeaning.Butthisisfarfromself-evident.Themajorityofworkonlightnesshasused2D(flat) mattedisplaysofsurfaceswithuniformalbedos,forwhichthedistinctionbetweenlightnessandbrightnessis arguablyleastvalid(ormeaningful)perceptually.Forsomeexperimentalconditions,observers’matchingdatawill differsubstantiallyifinstructedtomatcheitherbrightnessorlightness.Butinothers,adifferenceininstructions maymakelittleornodifference.Consider,forexample,theproblemofmatchingthe‘brightness’versusthe ‘lightness’ofthechecker-shadowillusion.Agivenpatchappearsaparticularshadeofgrey,andthereisno evidencethatobserverscoulddistinguishitsbrightnessandlightness.Insupportofthisview,wefoundthatthe perceptionoflightnessincreasedasafunctionofitsluminanceinbothsimulatedand‘real’Mondriandisplays. Moreover,thedataofRadonjićetal.(2011)demonstratethatobserverswillreadilymapaphysicallyunrealizedset ofluminances,spanning4ordersofmagnitude,ontoalightnessscaletwoorderssmaller.Theseresultsare impossibletoreconcilewithmodelsthattreattheproblemoflightnessasarecoveryproblem,sincetherangeof reflectancesinanaturalscenecanonlyspanarangeof~30:1. Intheperceptionofgloss,wefoundthatobserver’sexperienceofglosscanbewellpredictedbyasetofsimple cuesthatareonlyimperfectlycorrelatedwiththephysicalglossofasurface.Glossisnotdefinedwithrespectto somephysicallyspecifieddimensionofsurfaceoptics,butwithrespecttoasetofcuesthevisualsystemusesas aproxyforanobjectivelydefinedsurfaceproperty. Whatgeneralunderstandingcanbegleanedfromthesepatternsofresults?Alloftheseresultsrevealthe insufficiencyofattemptingtoidentifypsychologicaldimensionsofourexperiencewithphysicalsourcesofimage variability.Thefactthatwehaveaparticularexperienceoflightness,gloss,ortransparencydoesnotimplythat thedimensionsofourexperiencemapontoaparticularphysicaldimensionand/oritsparameterization.The generalargumentusedtojustify‘naturaltasks’takesthegenericformthat‘gettinganenvironmentalpropertyright increasesadaptivefitness.’Thepresumedidentificationoffitnesswithveridicalperceptionisactuallyfallacious (seeHoffman2009;cf.Lewontin1996),butevenifsuchviewswereaccepted,theyareincapableofdistinguishing perceptualabilitiesthatwereactuallyshapedbynaturalselectionfromthe‘spandrels’thatcamealongforthe evolutionaryride.Thefactthathumanobserverswillreadilymapanecologicallyunobtainablerangeofluminance Page 12 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss values(inasingleilluminant)ontolightnessestimatessuggeststhatlightnessmaybeoneexampleofaperceptual spandrel.Althoughhumanobserverscanusuallydistinguishreflectancedifferencesfromothersourcesofimage variation,theperceptionofabsolutelightnessmaysimplybetheresultoflow-levelprocessesofadaptationthat allowthevisualsystemtoencodeaparticularrangeofluminancevalues.Indeed,Iamawareofnocompelling evidenceorargumentaboutwhylightnessconstancyperseprovidedanadaptiveadvantage,orissomethingthat thevisualsystemisexplicitly‘designed’tocompute.Asimilarargumentholdsfortheperceptionoftransparency andgloss.Wecanreadilydistinguishbetweensurfacesormediathattransmitlightfromthosethatdonot,or distinguishbetweensurfacesthatreflectlightspecularlyfromthosethatdonot.Butthedataalsosuggeststhatwe donotscalethesedimensionsinawaythatisphysicallycorrectforanyoftheseproperties. Althoughitisdifficulttocraftacompellingargumentforthespecificadaptiveutilityofdevelopingaphysically accuratemodeloflightness,gloss,andtransparency,thefactthatweexperiencethesedifferentsourcesof variableasdifferentunderlyingcausesimpliesthatthevisualsystemiscapableofatleastqualitatively distinguishingdifferentsourcesofimagestructure.This‘sourcesegmentation’isarguablyoneofthemost importantgeneralpropertiesofourvisualsystem.Thevisualsystemmay,infact,bequitepoorinestimating lightnessinarbitrarycontexts,butitisnonethelesstypicallyquitegoodatdistinguishingimagestructuregenerated bylightnessdifferencesfromilluminationchanges,orvariationsintheopacityofatransparentsurface,orfrom specularreflections.Theidentificationofspecularreflectionsasspecularreflectionsdependsontheircompatibility withdiffusesurfaceshadingand3Dsurfacegeometry,andismodulatedbythestructure,intensity,anddistribution ofimagestructuresoidentified,evenifitdoesnotaccuratelycapturethe‘true’glosslevelofasurface.And althoughthephysicaltransmittance(oropacity)ofasurfacedoesnotvaryasafunctionofitsalbedoorcolor,the psychologicalanalogofopacity—its‘hidingpower’—willforavisualsystemthatusescontrasttodeterminethe visibilityofimagestructure.Thevisualsystemmaynotdeterminethe‘true’opacityofasurface,butnonethelessis effectiveatperformingasegmentationthatcapturesthepresenceorabsenceoftransmissivesurfacesandmedia. 5.Summaryandconclusions Inthischapter,Ihaveconsideredanumberoftopicsintheareaofsurfaceandmaterialperception:transparency, lightness,andgloss.Theorganizationofthesetopicswaslargelyshapedbymyhistoricalprogressionin conductingresearchintoeachofthesedomains;manyalternativeorganizationsarepossible.Inalloftheseareas ofinquiry,therehasbeenastrikingtendencytotreatphysicalmodelsofimageformationassomekindof approximationtoaperceptualmodeloftheirapprehension.Theprecisewaythataphysicalmodel‘counts’asa psychologicalmodelistypicallyleftunspecified.Itappearstobebasedonsomeintuitionthatthevisualsystem ‘knows’or‘understands’thephysicsthatofaparticularsurfaceormaterialattribute.Icontendthatoneofthemain goalsofvisionscienceshouldbetodiscoverthedimensionsofperceptualexperience,andtheimagevariables thatmodulateourresponsetothem.Whereasthedimensionsofphysicalvariablescanbespecifiedindependently ofanyperceptualsystem,thedimensionsofperceptualexperienceareinherentlyrelational,andmustconsider theintrinsicpropertiesofthevisualsystemaswellastheenvironmentsinwhichtheyoperate. References Adelson,E.H.(1999).‘Lightnessperceptionandlightnessillusions’.InThenewcognitiveneurosciences,2nded., pp.339–51.(Cambridge,MA:MITPress). Anderson,B.L.(1997).‘Atheoryofillusorylightnessandtransparencyinmonocularandbinocularimages:the roleofcontourjunctions’.Perception26(4):419–53. Anderson,B.L.(1998).Stereovision:Beyonddisparitycomputations.TrendsinCognitiveSciences,2:222–228. Anderson,B.L.(1999).Stereoscopicsurfaceperception.Neuron,24:919–928. Anderson,B.L.,andKim,J.(2009).‘Imagestatisticsdonotexplaintheperceptionofglossandlightness’.Journalof Vision9(11):1–17. Anderson,B.L.,andWinawer,J.(2005).‘Imagesegmentationandlightnessperception’.Nature434(7029):79–83. Page 13 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss doi:10.1038/nature03271. Anderson,B.L.,andWinawer,J.(2008).‘Layeredimagerepresentationsandthecomputationofsurfacelightness’. JournalofVision8(7):18,11–22.doi:10.1167/8.7.18. Anderson,B.L.,deSilva,C.,andWhitbread,M.(2008).‘Lightnessperceptionhasnoanchor’.JournalofVision 8(6):284. Barrow,H.G.,Tenenbaum,J.M.,Hanson,A.,andRiseman,R.(1978).‘Recoveringintrinsicscenecharacteristics fromimages’.ComputerVisionSystems,pp.3–26.(NewYork:AcademicPress). Blakeslee,B.,andMcCourt,M.E.(2004).‘Aunifiedtheoryofbrightnesscontrastandassimilationincorporating orientedmultiscalespatialfilteringandcontrastnormalization’.VisionResearch44(21):2483–503.doi: 10.1016/j.visres.200405.015. Brainard,D.H.,andMaloney,L.T.(2011).‘Surfacecolorperceptionandequivalentilluminationmodels’.Journalof Vision11(5),doi:10.1167/11.5.1. Dakin,S.C.,andBex,P.J.(2003).‘Naturalimagestatisticsmediatebrightness“fillingin”’.ProcBiolSci270(1531): 2341–8.doi:10.1098/rspb.2003.2528. Faul,F.,andEkroll,V.(2011).‘Onthefilterapproachtoperceptualtransparency’.JournalofVision11(7):doi: 10.1167/11.7.7. Faul,F.,andEkroll,V.(2012).‘Transparentlayerconstancy’.JournalofVision12(12):1–26.doi: 10.1167/12.12.7. Feldman(thisvolume),InTheHandbookofPerceptualOrganization,editedbyJ.Wagemans.(Oxford:Oxford UniversityPress). Geisler,W.S.,andRingach,D.(2009).‘Naturalsystemsanalysis.Introduction’.VisNeurosci26(1):1–3. Gerbin(thisvolume),InTheHandbookofPerceptualOrganization,editedbyJ.Wagemans.(Oxford:Oxford UniversityPress). Gilchrist,A.L.(1979).‘Theperceptionofsurfaceblacksandwhites’.SciAm240(3):112–2,124. Gilchrist,A.,Kossyfidis,C.,Bonato,F.,Agostini,T.,Cataliotti,J.,Li,X.J.,…Economou,E.(1999).‘Ananchoring theoryoflightnessperception’.PsychologicalReview106(4):795–834. Gilchrist,A.(thisvolume),InTheHandbookofPerceptualOrganization,editedbyJ.Wagemans.(Oxford:Oxford UniversityPress). Grossberg,S.,andMingolla,E.(1985).‘Neuraldynamicsofformperception:boundarycompletion,illusoryfigures, andneoncolorspreading’.PsycholRev92(2):173–211. Ho,Y.X.etal.(2008).‘Conjointmeasurementofglossandsurfacetexture’.PsycholSci19(2):196–204. Hoffman,D.(2009).‘Theinterfacetheoryofperception:Naturalselectiondrivestrueperceptiontoswiftextinction’. InObjectcategorization:Computerandhumanvisionperspectives,editedbyS.Dickinson,M.Tarr,A.Leonardis, B.Schiele,pp.148–65.(Cambridge:CambridgeUniversityPress). Kim,J.,andAnderson,B.L.(2010).‘Imagestatisticsandtheperceptionofsurfaceglossandlightness’.Journalof Vision10(9):1–17. Kim,J.,Marlow,P.,andAnderson,B.L.(2011).‘Theperceptionofglossdependsonhighlightcongruencewith surfaceshading’.JournalofVision11(9),1–19.doi:10.1167/11.9.4. Kingdom,F.A.(2011).‘Lightness,brightnessandtransparency:aquartercenturyofnewideas,captivating demonstrationsandunrelentingcontroversy’.VisionRes51(7):652–73.doi:10.1016/j.visres.2010.09.012. Page 14 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss Kingdom,F.,andMoulden,B.(1988).‘Bordereffectsonbrightness:areviewoffindings,modelsandissues’.Spat Vis3(4):225–62. Kingdom,F.,andMoulden,B.(1992).‘Amulti-channelapproachtobrightnesscoding’.VisionRes32(8):1565–82. Lewontin,R.C.(1996).‘EvolutionasEngineering’.InIntegrativeApproachestoMolecularBiology,editedbyJ. Colladoet.al.(Cambridge,MA:MITPress). Marlow,P.,Kim,J.,andAnderson,B.L.(2011).‘Theroleofbrightnessandorientationcongruenceintheperception ofsurfacegloss’.JournalofVision11(9):1–12.doi:10.1167/11.9.16 Marlow,P.J.,Kim,J.,andAnderson,B.L.(2012).‘Theperceptionandmisperceptionofspecularsurface reflectance’.CurrBiol22(20):1909–13.doi:10.1016/j.cub.2012.08.009. Metelli,F.(1970).‘Analgebraicdevelopmentofthetheoryofperceptualtransparency’.Ergonomic13:59–66. Metelli,F.(1974a).‘Achromaticcolorconditionsintheperceptionoftransparency’.InPerception:Essaysinhonor ofJ.J.Gibson,editedbyR.B.MacLeodandH.L.Pick,pp.95–116.(Ithaca,NY:CornellUniversityPress). Metelli,F.(1974b).‘Theperceptionoftransparency’.ScientificAmerican230:90–8. Metelli,F.(1985).‘Stimulationandperceptionoftransparency’.PsycholRes47(4):185–202. Motoyoshi,I.,Nishida,S.,Sharan,L.,andAdelson,E.H.(2007).‘Imagestatisticsandtheperceptionofsurface qualities’.Nature447(7141):206–9.doi:10.1038/nature05724. Olkkonen,M.,andBrainard,D.H.(2010).‘Perceivedglossinessandlightnessunderreal-worldillumination’.Journal ofVision10(9):5.doi:10.1167/10.9.5. Olkkonen,M.,andBrainard,D.H.(2011).‘Jointeffectsofilluminationgeometryandobjectshapeintheperception ofsurfacereflectance’.Iperception2(9):1014–34.doi:10.1068/i0480. Paradiso,M.A.,andNakayama,K.(1991).‘Brightnessperceptionandfilling-in’.VisionRes31(7–8):1221–36. Radonjić,A.,Allred,S.R.,Gilchrist,A.L.,andBrainard,D.H.(2011).‘Thedynamicrangeofhumanlightness perception’.CurrBiol21(22):1931–6.doi:10.1016/j.cub.2011.10.013. Rudd,M.E.,andArrington,K.F.(2001).‘Darknessfilling-in:aneuralmodelofdarknessinduction’.VisionRes 41(27):3649–62. Shapiro,A.,andLu,Z.L.(2011).‘Relativebrightnessinnaturalimagescanbeaccountedforbyremovingblurry content’.PsycholSci22(11):1452–9.doi:10.1177/0956797611417453. Singh,M.,andAnderson,B.L.(2002).‘Towardaperceptualtheoryoftransparency’.PsychologicalReview 109(3):492–519.doi:10.1037//0033–295x.109.3.492. Vladusich,T.(2013).‘Gamutrelativity:Anewcomputationalapproachtobrightnessandlightnessperception’. JournalofVision13(1):1–21doi:10.1167/13.1.14. Wallach,H.(1948)‘Brightnessconstancyandthenatureofachromaticcolors’.JournalofExperimental Psychology38:310–24. Notes: (1)Thisreductionincontrastoccursforalmostanydefinitionofcontrast,whichincludesadivisivenormalization termthatisafunctionofintegratedormeanluminanceintheregionoverwhichcontrastisdefined.Unfortunately, thereiscurrentlynogeneraldefinitionofcontrastthatadequatelycapturesperceivedcontrastinarbitraryimages, sotheprecisewayinwhichcontrastisreduceddependsonthedefinitionofcontrastusedinaparticularcontext. Page 15 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015 The perceptual representation of transparency, lightness, and gloss BartonL.Anderson BartonL.Anderson,SchoolofPsychology,TheUniversityofSydney,Australia Page 16 of 16 PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford Handbooks Online for personal use (for details see Privacy Policy). Subscriber: OUP-Reference Gratis Access; date: 08 September 2015
© Copyright 2026 Paperzz