SmartGrid RTD 2013 GECN: Primary Voltage Control for Active Distribution Networks via Real-Time Demand-Response K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, M. Paolone Laboratory for Communications and Applications LCA2 ,Distributed Electrical Systems Laboratory DESL Voltage Problem in ADNs Voltage Control via Demand-Response HV network Why? Network voltage profile [p.u.] 1.15 ο§ PQ variations can control voltage Ξ πΈ β πΎπ Ξπ + πΎπ Ξπ CP 1.10 CUB 1 CUB 2 1.05 G1 π¬ πππ =1.05 p.u. G3 G4 π¬ πππ Distribution Substation Distribution Substation ο§ Increased availability (small residential loads) ο§ Flexibility of control (Spatially distributed resources) Feeder #1 0.95 Distribution Substation Benefits 1.00 G2 Feeder #1 passive Feeder #2 Primary Substation =0.95 p.u. 0.90 0 1 2 3 4 5 6 7 8 9 10 11 12 Feeder #2 active Problem: Point-to-point communication not tractable Solution: Design of control schemes based on broadcast signals Distance from primary substation The Grid Explicit Congestion Notification Mechanism Network Controller (Generic) Local Controller Design (e.g., TCL) Every S seconds ο§ Operating Modes πΈπ , ππ , ππ Measure β ππ’π π 1. Obtain network state (e.g., via state estimation) 2. Compute optimal PQ and OLTC variations that lead to the desired operating point min β(π,π,π§) 2 ππ β(π, π)π β β(π, π)ππ + π ππ πΈπ + (πΎπ,π,π§ π‘ Ξ π, π, π§ )π β πΈ 2 β π2 + 1 β(1, π) 0 Start π Map βπ π‘ to GECN signal π(π‘)π[-1,1] (+ inhibits consumption, - encourages consumption) β βπ (π‘) π βπ βπβ (π‘ β 1) + β G= π βπ(π‘ β 1) β β β βπβ /π ) π‘β1 ββπ(π‘β1)) 1 π(π‘) β1 π ππππ₯ Participate? π~π΅πππ( π π‘ ) Y=0 = π πππ(βπ )(1 β π π πππ(βπβ (π‘β1))(βπβ ππππ ο§ GECN control + πΞπ§2 β 3. ---- OFF mode β(0, π) ON mode B-cast Normal Operation (i.e., do Z=0 nothing) (reflects DNOβs desire) Y=1 React? π~π΅πππ(π(π π‘ , π(π‘))) (accounts for internal state) Z=1 Switch mode and ignore signal for T steps (avoids mini-cycles) Simulation Results Setting ο§ ο§ ο§ ο§ IEEE 13-Node Test Feeder Non dispatchable PV production 10% and 30% of elastic demand GECN signals sent every 16ββ 10% of elastic demand 30% of elastic demand 24hr Voltage profile 24hr Voltage profile Primary substation Slack bus 1 bus 2 bus 5 bus 6 200 Kva, 20kV/0.4kV 400 Kva, 20kV/0.4kV 600 Kva, 20kV/0.4kV 400 Kva, 20kV/0.4kV 200 Kva, 20kV/0.4kV GECN signal TCL Power GECN signal TCL Power . . . . . . . . . . . . . . . . . . . . bus13 bus 4 bus 7 bus 10 bus 11 bus 3 bus 8 bus 9 500 Kva, 20kV/0.4kV 300 Kva, 20kV/0.4kV 200 Kva, 20kV/0.4kV 200 Kva, 20kV/0.4kV 800 Kva, 20kV/0.4kV 400 Kva, 20kV/0.4kV 200 Kva, 20kV/0.4kV bus12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Applications ο§ Aggregated response of mixed populations under the same signal (e.g., storage/loads) ο§ Inclusion of different ancillary services (e.g., lines congestion) References 1. K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, and M. Paolone, GECN: Primary Voltage Control for Active Distribution Networks via Real-Time Demand-Response, IEEE Trans. on Smart Grids, vol.5, no.2, pp.622-631, March 2014 2. K. Christakou, D.-C. Tomozei, M. Bahramipanah, J.-Y. Le Boudec and M. Paolone, Primary Voltage Control in Active Distribution Networks via Broadcast Signals: The Case of Distributed Storage, in press, IEEE Transactions on Smart Grids, 2014
© Copyright 2025 Paperzz