Setting 10% of elastic demand 30% of elastic demand - Nano-Tera

SmartGrid
RTD 2013
GECN: Primary Voltage Control for Active Distribution
Networks via Real-Time Demand-Response
K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, M. Paolone
Laboratory for Communications and Applications LCA2 ,Distributed Electrical Systems Laboratory DESL
Voltage Problem in ADNs
Voltage Control via Demand-Response
HV network
Why?
Network voltage profile [p.u.]
1.15
ο‚§ PQ variations can control voltage
Ξ” 𝐸 β‰ˆ 𝐾𝑃 Δ𝑃 + 𝐾𝑄 Δ𝑄
CP
1.10
CUB 1
CUB 2
1.05
G1
𝑬
π’Žπ’‚π’™
=1.05 p.u.
G3
G4
𝑬
π’Žπ’Šπ’
Distribution
Substation
Distribution
Substation
ο‚§ Increased availability
(small residential loads)
ο‚§ Flexibility of control
(Spatially distributed resources)
Feeder #1
0.95
Distribution
Substation
Benefits
1.00
G2
Feeder #1
passive
Feeder #2
Primary Substation
=0.95 p.u.
0.90
0 1 2 3 4 5 6 7 8 9 10 11 12
Feeder #2
active
Problem: Point-to-point communication not tractable
Solution: Design of control schemes based on broadcast signals
Distance from primary substation
The Grid Explicit Congestion Notification Mechanism
Network Controller (Generic)
Local Controller Design (e.g., TCL)
Every S seconds
ο‚§ Operating Modes
𝐸𝑖 , 𝑃𝑖 , 𝑄𝑖
Measure
βˆ€ 𝑏𝑒𝑠 𝑖
1.
Obtain network state (e.g., via state estimation)
2.
Compute optimal PQ and OLTC variations that lead to the desired operating point
min
βˆ†(𝐏,𝐐,𝐧)
2
πœ‡π‘– βˆ†(𝐏, 𝐐)𝑖 βˆ’ βˆ†(𝐏, 𝐐)𝑓𝑖
+
𝑖
πœ†π‘–
𝐸𝑖 + (𝐾𝐏,𝐐,𝐧 𝑑 Ξ” 𝐏, 𝐐, 𝐧 )𝑖 βˆ’ 𝐸
2
βˆ’ π‘Ž2
+
1
β„Ž(1, πœƒ)
0
Start
𝑖
Map βˆ†π‘ƒ 𝑑 to GECN signal 𝑔(𝑑)πœ–[-1,1]
(+ inhibits consumption, - encourages consumption)
βˆ—
βˆ†π‘ƒ (𝑑)
𝑓 βˆ†π‘ƒ
βˆ†π‘ƒβˆ— (𝑑 βˆ’ 1) +
βˆ—
G= 𝑒
βˆ†π‘ƒ(𝑑 βˆ’ 1) βˆ’
βˆ—
βˆ’ βˆ†π‘ƒβˆ— /𝑏
)
π‘‘βˆ’1 βˆ’βˆ†π‘ƒ(π‘‘βˆ’1))
1
𝑔(𝑑)
βˆ’1
πœƒ
πœƒπ‘šπ‘Žπ‘₯
Participate? π‘Œ~π΅π‘’π‘Ÿπ‘›( 𝑔 𝑑 )
Y=0
= 𝑠𝑖𝑔𝑛(βˆ†π‘ƒ )(1 βˆ’ 𝑒
𝑠𝑖𝑔𝑛(βˆ†π‘ƒβˆ— (π‘‘βˆ’1))(βˆ†π‘ƒβˆ—
πœƒπ‘šπ‘–π‘›
ο‚§ GECN control
+ πœ“Ξ”π§2
βˆ—
3.
---- OFF mode
β„Ž(0, πœƒ)
ON mode
B-cast
Normal
Operation
(i.e., do Z=0
nothing)
(reflects DNO’s desire)
Y=1
React? 𝑍~π΅π‘’π‘Ÿπ‘›(π‘ž(πœƒ 𝑑 , 𝑔(𝑑)))
(accounts for internal state)
Z=1
Switch mode and ignore signal
for T steps (avoids mini-cycles)
Simulation Results
Setting
ο‚§
ο‚§
ο‚§
ο‚§
IEEE 13-Node Test Feeder
Non dispatchable PV production
10% and 30% of elastic demand
GECN signals sent every 16’’
10% of elastic demand
30% of elastic demand
24hr Voltage profile
24hr Voltage profile
Primary
substation
Slack bus 1
bus 2
bus 5
bus 6
200 Kva,
20kV/0.4kV
400 Kva,
20kV/0.4kV
600 Kva,
20kV/0.4kV
400 Kva,
20kV/0.4kV
200 Kva,
20kV/0.4kV
GECN signal
TCL Power
GECN signal
TCL Power
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
bus13
bus 4
bus 7
bus 10
bus 11
bus 3
bus 8
bus 9
500 Kva,
20kV/0.4kV
300 Kva,
20kV/0.4kV
200 Kva,
20kV/0.4kV
200 Kva,
20kV/0.4kV
800 Kva,
20kV/0.4kV
400 Kva,
20kV/0.4kV
200 Kva,
20kV/0.4kV
bus12
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Further Applications
ο‚§ Aggregated response of mixed
populations under the same
signal (e.g., storage/loads)
ο‚§ Inclusion of different ancillary
services (e.g., lines congestion)
References
1. K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, and M. Paolone, GECN: Primary Voltage Control for Active Distribution Networks via Real-Time Demand-Response, IEEE Trans. on Smart
Grids, vol.5, no.2, pp.622-631, March 2014
2. K. Christakou, D.-C. Tomozei, M. Bahramipanah, J.-Y. Le Boudec and M. Paolone, Primary Voltage Control in Active Distribution Networks via Broadcast Signals: The Case of Distributed
Storage, in press, IEEE Transactions on Smart Grids, 2014