The Evolutionary Model of Physics Large-Scale Simulation on Parallel Dataflow Architecture Dr. Andrey V. Nikitin Dr. Ludmila I. Nikitina Lomonosov Moscow State University ACAT-2002 Physics Large-Scale Simulation Nonlinear 3D simulation of experimentally observed magnetohydrodynamic (MHD) burst in the DIII-D tokamak Fast (~10-6 sec) processes Slow (~10-2 sec) processes 3D calculations Different scales for time and space ACAT-2002 Physics Large-Scale Simulation Model: (V , )V P B B Re 1V V t B V B Re m1 (V B jbs ) t P ( PV ) ( 1) P V P || ||||P|| QOH t d P 0 V – velocity dt B – magnetic field B P - pressure ||P , P B d V , P P || P dt t ACAT-2002 Physics Large-Scale Simulation Numerical model: U ( , , , t ) U M max ( n ) N max m M min ( n ) n 1 c mn s ( , t ) cos( m n ) U mn ( , t ) sin( m n ) straight field line coordinate system ( , , ) ACAT-2002 Physics Large-Scale Simulation Requirements to the numerical simulation process: Inversion of matrixes 106 Near real time Evolution of simulation process ACAT-2002 Dataflow model of calculations Dataflow graph decomposition to layers 1(P) <a,4,-> 2(P) <b,4,-> 3(W) d = (a + b) * c <c,5,-> 1 4(R) <+,5,-> 2 Га 5(W) ACAT-2002 <*,-,-> h=3 Dataflow model of calculations packets tokens PE Switch S1 Switch S2 buffer tokens Associative memory M j module ACAT-2002 tokens Dataflow model of calculations Write time Search time Fi , j i , j ( Г а , X , M j , p) j M j Bi , j 1 n n n i , j ( Г а , X ) s lk s mk x il x jm 2 l 1 m 1 k 1 p 1 p ( Г а , X , p) ij ( Г а , X ) i 1 j i 1 h Total time T ( Г а , X , M , p ) max i , j ( Г а , X , p ) i 1 Effectiveness j 1, p Tэ M э E ( Г а , X , M , p) Tp ( Г а , X , M , p) M p ACAT-2002 Dataflow model of calculations Goal: E ( Г а , X , M , p) max ACAT-2002 Genetic algorithm 1 2 3 4 5 6 7 8 3 9 10 2 11 13 14 15 1 Partition matrix Chromosome x’ = 12 Га Algorithm Граф алгоритма 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 1 1 2 2 1 1 1 ACAT-2002 MHD dataflow graph U t t 1,1 r=1 U1 t Û t 1,1 t B0 ... U2 C0 t 1,1 U N max F0 B1 F1 <N-1> * AN-1 CN-1 <1> * ... r = 1, p = 1,...,P C1 ()-1 <1> t 1,1,1 Uˆ A1 * * * t 1,1, 2 Uˆ - + t 1,1, P Uˆ к U0 r=2 t 1, 2 U1 t 1, 2 ... U2 ()-1 t 1, 2 U N max <2> t+1 Uˆ * <2> <N-1> * * t 1, 2 ,1 ... r = 2, p = 1,...,P t 1, 2 , 2 Uˆ t 1, 2 , P Uˆ * * ... t 1, R r=R U1 t 1, R ... U2 - t 1, R + U N max ()-1 t 1, R ,1 Uˆ <N> ... r = 2, p = 1,...,P * <N> * t 1, R , 2 Uˆ * t 1, R , P Uˆ ACAT-2002 - UN-2 UN-1 BN-1 FN-1 Genetic algorithm Convergence of GA (mutation) Сходимость относительной ошибки при различных вероятностях мутации 0% 0.01% 1% 2% 5% 10% 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 ACAT-2002 90 100 110 120 130 140 150 Genetic algorithm vs. MK Convergence of GA and MK Сравнение работы ГА и метода Монте-Карло ГА МК (0.01) МК (0.5) 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 5 10 15 20 25 30 ACAT-2002 35 40 45 50 Conclusion GA was used to organize evolutionary computations of physics large-scale simulation on parallel dataflow architecture GA allows to find optimal distribution of data by modules with high effectiveness Code NFTC (1 iteration): SUN Ultra 400 Mhz/2 FPU ~ 50s, for dataflow ~ 4·10-2s. Total time of typical computations: Current (SUN Ultra Enterprise) – 30 hrs Dataflow (modules - 102,module capacity - 106,PE – 104/10 GFlops) – real time ACAT-2002 Questions? ACAT-2002
© Copyright 2026 Paperzz