Derivation of the testing thresholds

Dual processing model for medical decision-making:
An extension to diagnostic testing
Appendix
Derivation of the testing thresholds
Considering the decision tree in Fig. 2 we have:
Decision Weight Outcome Utility
Valuation
Probability
π‘₯1
π‘ˆπΌ,1
π‘₯1 𝐼 = 𝑅𝑔(π‘₯1 ) = 0
𝛾
π‘₯2
π‘ˆπΌ,2
π‘₯2 𝐼 = 𝑅𝑔(π‘₯2 ) = π‘ˆπΌ,4 βˆ’ π‘ˆπΌ,2
(1 βˆ’ 𝛾)
π‘₯1
π‘ˆπΌπΌ,1
π‘₯1
(1 βˆ’ 𝛾)
π‘₯2
π‘ˆπΌπΌ,2
π‘₯2
𝑅π‘₯
1
2
1
2
π‘š
𝛾
π‘š
π‘šπΌπΌ
= π‘ˆπΌπΌ,1
𝑝
π‘šπΌπΌ
= π‘ˆπΌπΌ,2
1βˆ’π‘
Note that under Type I processes, every outcome with non-zero probability is assigned
equal weight. Therefore, in the two alternative outcomes case each probability is
considered equal to 0.5 [12, 53]. The expected valuation of the decision to treat (Rx) is
computed as the summation of the valuations of each outcome:
𝛾
𝑉(𝑅π‘₯) = (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,2 ]
2
Decision Weight Outcome Utility
Valuation
Probability
π‘š
𝛾
π‘₯3
π‘ˆπΌ,3
π‘₯3 𝐼 = 𝑅𝑔(π‘₯3 ) = π‘ˆπΌ,1 βˆ’ π‘ˆπΌ,3
𝛾
π‘₯4
π‘ˆπΌ,4
π‘₯4 𝐼 = 𝑅𝑔(π‘₯4 ) = 0
(1 βˆ’ 𝛾)
π‘₯3
π‘ˆπΌπΌ,3
π‘₯3
(1 βˆ’ 𝛾)
π‘₯4
π‘ˆπΌπΌ,4
π‘₯4
π‘π‘œπ‘…π‘₯
π‘š
1
2
1
2
π‘šπΌπΌ
= π‘ˆπΌπΌ,3
𝑝
π‘šπΌπΌ
= π‘ˆπΌπΌ,4
1βˆ’π‘
The expected valuation of the decision not to treat (NoRx) is computed as the
summation of the valuations of each outcome:
1
𝑉(π‘π‘œπ‘…π‘₯) =
Decision
𝑇
𝛾
(π‘ˆ βˆ’ π‘ˆπΌ,1 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,4 ]
2 𝐼,3
Weight
Outcome
Utility
Valuation
Probability
𝛾
π‘₯1𝑇
π‘ˆπΌ,1 βˆ’ 𝐻𝐼,𝑇
π‘₯1𝑇𝐼 = 𝑅𝑔(π‘₯1𝑇 ) = βˆ’π»πΌ,𝑇
𝛾
π‘₯2𝑇
π‘ˆπΌ,2 βˆ’ 𝐻𝐼,𝑇
π‘₯2𝑇𝐼 = 𝑅𝑔(π‘₯2𝑇 ) = π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 βˆ’ 𝐻𝐼,𝑇
𝛾
π‘₯3𝑇
π‘ˆπΌ,3 βˆ’ 𝐻𝐼,𝑇
π‘₯3𝑇𝐼 = 𝑅𝑔(π‘₯3𝑇 ) = π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 βˆ’ 𝐻𝐼,𝑇
𝛾
π‘₯4𝑇
π‘ˆπΌ,4 βˆ’ 𝐻𝐼,𝑇
π‘₯4𝑇𝐼 = 𝑅𝑔(π‘₯4𝑇 ) = βˆ’π»πΌ,𝑇
(1 βˆ’ 𝛾)
π‘₯1𝑇
π‘ˆπΌπΌ,1 βˆ’ 𝐻𝐼𝐼,𝑇
π‘₯1𝑇𝐼𝐼 = π‘ˆπΌπΌ,1 βˆ’ 𝐻𝐼𝐼,𝑇
(1 βˆ’ 𝛾)
π‘₯2𝑇
π‘ˆπΌπΌ,2 βˆ’ 𝐻𝐼𝐼,𝑇
π‘₯2𝑇𝐼𝐼 = π‘ˆπΌπΌ,2 βˆ’ 𝐻𝐼𝐼,𝑇
(1 βˆ’ 𝛾)
π‘₯3𝑇
π‘ˆπΌπΌ,3 βˆ’ 𝐻𝐼𝐼,𝑇
π‘₯3𝑇𝐼𝐼 = π‘ˆπΌπΌ,3 βˆ’ 𝐻𝐼𝐼,𝑇
(1 βˆ’ 𝛾)
π‘₯4𝑇
π‘ˆπΌπΌ,4 βˆ’ 𝐻𝐼𝐼,𝑇
π‘₯4𝑇𝐼𝐼 = π‘ˆπΌπΌ,4 βˆ’ 𝐻𝐼𝐼,𝑇
1
4
1
4
1
4
1
4
π‘š
π‘š
π‘š
π‘š
π‘š
𝑝𝑆
π‘š
(1 βˆ’ 𝑝)(1 βˆ’ 𝑆𝑝 )
π‘š
𝑝(1 βˆ’ 𝑆)
π‘š
(1 βˆ’ 𝑝)𝑆𝑝
Note that under Type I processes, every outcome with non-zero probability is assigned
equal weight. Therefore, in the four alternative outcomes case each probability is
considered equal to 0.25 [12, 53]. The expected valuation of the decision to test (T) is
computed as the summation of the valuations for each outcome:
𝛾
𝑉(𝑇) = (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 + π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 )
4
+ (1 βˆ’ 𝛾)[π‘π‘†π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)(1 βˆ’ 𝑆𝑝 )π‘ˆπΌπΌ,2 + 𝑝(1 βˆ’ 𝑆)π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,4 ]
βˆ’ (𝛾𝐻𝐼,𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
Thresholds
We define the benefits and harms under type 1 and 2 as follows: 𝐡𝐼 = π‘ˆπΌ,1 βˆ’ π‘ˆπΌ,3, 𝐻𝐼 =
π‘ˆπΌ,4 βˆ’ π‘ˆπΌ,2 and 𝐡𝐼𝐼 = π‘ˆπΌπΌ,1 βˆ’ π‘ˆπΌπΌ,3, 𝐻𝐼𝐼 = π‘ˆπΌπΌ,4 βˆ’ π‘ˆπΌπΌ,2. We assume that and 𝐻𝐼 , 𝐻𝐼𝐼 > 0
Testing threshold
We set 𝑉(π‘π‘œπ‘…π‘₯) = 𝑉(𝑇), which results in:
𝛾
𝛾
(π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,4 ] = (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 + π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 )
2
4
2
+(1 βˆ’ 𝛾)[π‘π‘†π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)(1 βˆ’ 𝑆𝑝 )π‘ˆπΌπΌ,2 + 𝑝(1 βˆ’ 𝑆)π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,4 ]
βˆ’ (𝛾𝐻𝐼,𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
𝛾
(𝐻 βˆ’ 𝐡𝐼 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,4 ] + (𝛾𝐻𝐼,𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
4 𝐼
= (1 βˆ’ 𝛾)[π‘π‘†π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)(1 βˆ’ 𝑆𝑝 )π‘ˆπΌπΌ,2 + 𝑝(1 βˆ’ 𝑆)π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,4 ]
𝛾
(1 βˆ’ 𝛾)(1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼 + (1 βˆ’ 𝛾)𝐻𝐼𝐼𝑇 + (𝐻𝐼 βˆ’ 𝐡𝐼 ) + 𝛾𝐻𝐼,𝑇 = (1 βˆ’ 𝛾)𝑝[𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼 ]
4
(1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼 + 𝐻𝐼𝐼,𝑇
𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼
+
(𝐻𝐼 βˆ’ 𝐡𝐼 )
𝛾
1
𝛾𝐻𝐼,𝑇
+
=𝑝
4(1 βˆ’ 𝛾) 𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼 (1 βˆ’ 𝛾) 𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼
The formula for the threshold between withholding the treatment and testing becomes:
1 𝐻
1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇
𝛾
𝐡𝐼 βˆ’ 𝐻𝐼
1
𝛾𝐻𝐼,𝑇
𝑝
𝐼𝐼
𝑝𝑑𝑑 =
βˆ’
+
𝑆 𝐡
4(1 βˆ’ 𝛾) 𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼 (1 βˆ’ 𝛾) 𝑆𝐡𝐼𝐼 + (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼
1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼
𝑝 𝐼𝐼
1 𝐻
1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇
1
𝐻𝐼 βˆ’ 𝐡𝐼
𝛾𝐻𝐼,𝑇
𝑝
𝐼𝐼
𝑝𝑑𝑑 =
+
(𝛾
+4
)
𝑆 𝐡
𝑆 𝐡
(1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼
1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼
4(1 βˆ’ 𝛾) (1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼 ) (1 βˆ’ 𝑆𝑝 )𝐻𝐼𝐼
𝑝 𝐼𝐼
𝑝 𝐼𝐼
1 𝐻𝐼𝐼,𝑇
1 βˆ’ 𝑆𝑝 𝐻𝐼𝐼
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
𝑝𝑑𝑑 =
1+
( (1 βˆ’ ) + 4
)
𝑆 𝐡
1 𝐻𝐼𝐼,𝑇 𝐻𝐼𝐼
𝐻𝐼
𝐻𝐼𝐼
1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼
4(1 βˆ’ 𝛾)(1 βˆ’ 𝑆𝑝 ) (1 + 1 βˆ’ 𝑆 𝐻 )
𝑝 𝐼𝐼 [
]
𝑝
𝐼𝐼
1+
𝑝𝑑𝑑 = 𝑝𝑑𝑑 (πΈπ‘ˆπ‘‡) 1 +
[
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
( (1 βˆ’ ) + 4
)
1 𝐻
𝐻
𝐻𝐼
𝐻𝐼𝐼
4(1 βˆ’ 𝛾)(1 βˆ’ 𝑆𝑝 ) (1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇 ) 𝐼𝐼
]
𝑝
𝐼𝐼
To constrain the values of 𝑝𝑑𝑑 ∈ [0,1], we modify the 𝑝𝑑𝑑 formula such as:
𝑝𝑑𝑑 = min {𝑝𝑑𝑑,πΈπ‘ˆπ‘‡ 1
[
+
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
(1 βˆ’ ) + 4
) , 1} , π‘“π‘œπ‘Ÿ 𝛾
1 𝐻
𝐻
𝐻𝐼
𝐻𝐼𝐼
4(1 βˆ’ 𝛾)(1 βˆ’ 𝑆𝑝 ) (1 + 1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇 ) 𝐼𝐼
]
𝑝
𝐼𝐼
(
∈ [0,1)
where 𝑝𝑑𝑑,πΈπ‘ˆπ‘‡ ∈ [0,1] is the EUT based testing threshold.
3
Treatment threshold
We set 𝑉(𝑅π‘₯) = 𝑉(𝑇) which results in:
𝛾
𝛾
(π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,2 ] = (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 + π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 )
2
4
+(1 βˆ’ 𝛾)[π‘π‘†π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)(1 βˆ’ 𝑆𝑝 )π‘ˆπΌπΌ,2 + 𝑝(1 βˆ’ 𝑆)π‘ˆπΌπΌ,3 + (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,4 ]
βˆ’ (𝛾𝐻𝐼,𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
𝛾
(𝐡 βˆ’ 𝐻𝐼 ) + (𝛾𝐻𝐼,𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
4 𝐼
= (1 βˆ’ 𝛾)[βˆ’π‘(1 βˆ’ 𝑆)𝐡𝐼𝐼 βˆ’ (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,2 + (1 βˆ’ 𝑝)𝑆𝑝 π‘ˆπΌπΌ,4 ]
𝑝[(1 βˆ’ 𝑆)𝐡𝐼𝐼 + 𝑆𝑝 𝐻𝐼𝐼 ] = 𝑆𝑝 𝐻𝐼𝐼 βˆ’
π‘π‘Ÿπ‘₯ =
𝑆𝑝 𝐻𝐼𝐼 βˆ’ 𝐻𝐼𝐼,𝑇
𝑆𝑝 𝐻𝐷
((1 βˆ’ 𝑆)𝐡𝐼𝐼 + 𝑆𝑝 𝐻𝐼𝐼 )
𝑆𝑝 𝐻𝐼𝐼
π‘π‘Ÿπ‘₯
+
(𝛾𝐻𝐼𝑇 + (1 βˆ’ 𝛾)𝐻𝐼𝐼,𝑇 )
𝛾
(𝐡𝐼 βˆ’ 𝐻𝐼 ) βˆ’
(1 βˆ’ 𝛾)
4(1 βˆ’ 𝛾)
(𝐻𝐼 βˆ’ 𝐡𝐼 )
𝛾
𝐻𝐼,𝑇
(
βˆ’4
)
(1 βˆ’ 𝑆)𝐡𝐼𝐼 + 𝑆𝑝 𝐻𝐼𝐼
𝑆𝑝 𝐻𝐼𝐼
𝑆𝑝 𝐻𝐼𝐼
4(1 βˆ’ 𝛾) (
)
𝑆𝑝 𝐻𝐼𝐼
1𝐻
1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
𝑝
𝐼𝐼
=
1+
( (1 βˆ’ ) βˆ’ 4
)
1βˆ’π‘†π΅
1𝐻
𝐻
𝐻𝐼
𝐻𝐼𝐼
1 + 𝑆 𝐻𝐼𝐼
4(1 βˆ’ 𝛾)𝑆𝑝 (1 βˆ’ 𝑆 𝐻𝐼𝐼,𝑇 ) 𝐼𝐼
𝑝
𝐼𝐼 [
]
𝑝
𝐼𝐼
π‘π‘Ÿπ‘₯ = π‘π‘Ÿπ‘₯,πΈπ‘ˆπ‘‡ 1 +
[
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
( (1 βˆ’ ) βˆ’ 4
)
1 𝐻𝐼𝐼,𝑇 𝐻𝐼𝐼
𝐻𝐼
𝐻𝐼𝐼
4(1 βˆ’ 𝛾)𝑆𝑝 (1 βˆ’ 𝑆 𝐻 )
]
𝑝
𝐼𝐼
To constrain the values of π‘π‘Ÿπ‘₯ ∈ [0,1], we modify the π‘π‘Ÿπ‘₯ formula such as:
π‘π‘Ÿπ‘₯ = min {π‘π‘Ÿπ‘₯,πΈπ‘ˆπ‘‡ 1 +
[
𝛾
𝐻𝐼
𝐡𝐼
𝐻𝐼,𝑇
(1 βˆ’ ) βˆ’ 4
) , 1} , π‘“π‘œπ‘Ÿ 𝛾
1 𝐻𝐼𝐼,𝑇 𝐻𝐼𝐼
𝐻𝐼
𝐻𝐼𝐼
4(1 βˆ’ 𝛾)𝑆𝑝 (1 βˆ’ 𝑆 𝐻 )
]
𝑝
𝐼𝐼
(
∈ [0,1)
where π‘π‘Ÿπ‘₯,πΈπ‘ˆπ‘‡ ∈ [0,1] is the EUT based testing threshold.
Special Case: 𝛾 = 1
When 𝛾 = 1, equations 1, 2, and 3 of the main manuscript are undefined. However, we
can still identify the optimal decision by re-deriving the equations for 𝑝𝑑 , 𝑝𝑑𝑑 , and π‘π‘Ÿπ‘₯
4
using 𝛾 = 1 in each strategy valuation function. The strategy with greatest valuation
(see Fig 3) corresponds to the optimal decision. The valuations for each strategy are:
1
1
𝑉(π‘π‘œπ‘…π‘₯) = 2 (π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 ) = βˆ’ 2 𝐡𝐼
(A1)
𝛾
1
𝑉(𝑅π‘₯) = 2 (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 ) + (1 βˆ’ 𝛾)[π‘π‘ˆπΌπΌ,1 + (1 βˆ’ 𝑝)π‘ˆπΌπΌ,2 ] = βˆ’ 2 𝐻𝐼
1
1
1
𝑉(𝑇) = 4 (π‘ˆπΌ,2 βˆ’ π‘ˆπΌ,4 + π‘ˆπΌ,3 βˆ’ π‘ˆπΌ,1 ) βˆ’ 𝐻𝐼,𝑇 = βˆ’ 4 𝐻𝐼 βˆ’ 4 𝐡𝐼 βˆ’ 𝐻𝐼,𝑇
(A2)
(A3)
1. For equation 1 of the main manuscript, which is used to decide between treating
and not treating, we choose to treat when (𝐴2) β‰₯ (𝐴1) β†’ 𝑉(𝑅π‘₯) β‰₯ 𝑉(π‘π‘œπ‘…π‘₯) β†’
𝐡𝐼 β‰₯ 𝐻𝐼 otherwise we choose not to treat .
2. Similarly, for equation 2 of the main manuscript, which is used to decide between
testing and no treatment, we choose no treatment when (𝐴1) β‰₯ (𝐴3) β†’
𝑉(π‘π‘œπ‘…π‘₯) β‰₯ 𝑉(𝑇) β†’ 𝐡𝐼 ≀ 𝐻𝐼 + 4𝐻𝐼,𝑇 . Conversely, we choose testing when 𝐡𝐼 >
𝐻𝐼 + 4𝐻𝐼,𝑇 .
3. Finally, for equation 3 of the main manuscript, which is used to decide between
treating and testing, we choose treatment when (𝐴2) β‰₯ (𝐴3) β†’ 𝑉(𝑅π‘₯) β‰₯ 𝑉(𝑇) β†’
𝐡𝐼 β‰₯ 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 and we choose testing otherwise.
Since 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 ≀ 𝐻𝐼 + 4𝐻𝐼,𝑇 , items 2 and 3 above can be combined as follows:
ο‚·
From item 2, we choose testing when 𝐡𝐼 > 𝐻𝐼 + 4𝐻𝐼,𝑇 . However, if 𝐡𝐼 > 𝐻𝐼 + 4𝐻𝐼,𝑇
then 𝐡𝐼 > 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 . Therefore, from item 3 above we can skip testing and
choose treatment instead.
ο‚·
From item 3, we choose testing when 𝐡𝐼 < 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 . However, if 𝐡𝐼 < 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇
then 𝐡𝐼 < 𝐻𝐼 + 4𝐻𝐼,𝑇 . Therefore, from item 2 above, we can skip testing and
choose not to treat instead.
Note that whenever 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 < 𝐡𝐼 < 𝐻𝐼 + 4𝐻𝐼,𝑇 , we are indifferent between picking
treatment or no treatment, but since we don’t want to test, we can simply assume 𝐻𝐼,𝑇 =
0 and base our decision on the comparison of 𝐡𝐼 and 𝐻𝐼 .
To summarize, when 𝛾 = 1, we choose treatment when 𝐡𝐼 β‰₯ 𝐻𝐼 βˆ’ 4𝐻𝐼,𝑇 and choose no
treatment if 𝐡𝐼 ≀ 𝐻𝐼 + 4𝐻𝐼,𝑇 .
5