Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 rsos.royalsocietypublishing.org Research Cite this article: Singh O, Sawariya K, Aparoy P. 2014 Graphlet signature-based scoring method to estimate protein–ligand binding affinity. R. Soc. open sci. 1: 140306. http://dx.doi.org/10.1098/rsos.140306 Received: 15 September 2014 Accepted: 31 October 2014 Subject category: Structural biology and biophysics Subject Areas: bioinformatics/theoretical biology/computational biology Keywords: graphlet signature, interaction network, docking, binding affinity Author for correspondence: P. Aparoy e-mail: [email protected]; [email protected] Electronic supplementary material is available at http://dx.doi.org/10.1098/rsos.140306 or via http://rsos.royalsocietypublishing.org. Graphlet signature-based scoring method to estimate protein–ligand binding affinity Omkar Singh, Kunal Sawariya and Polamarasetty Aparoy Centre for Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India 1. Summary Over the years, various computational methodologies have been developed to understand and quantify receptor–ligand interactions. Protein–ligand interactions can also be explained in the form of a network and its properties. The ligand binding at the protein-active site is stabilized by formation of new interactions like hydrogen bond, hydrophobic and ionic. These non-covalent interactions when considered as links cause non-isomorphic subgraphs in the residue interaction network. This study aims to investigate the relationship between these induced sub-graphs and ligand activity. Graphlet signature-based analysis of networks has been applied in various biological problems; the focus of this work is to analyse protein–ligand interactions in terms of neighbourhood connectivity and to develop a method in which the information from residue interaction networks, i.e. graphlet signatures, can be applied to quantify ligand affinity. A scoring method was developed, which depicts the variability in signatures adopted by different amino acids during inhibitor binding, and was termed as GSUS (graphlet signature uniqueness score). The score is specific for every individual inhibitor. Two wellknown drug targets, COX-2 and CA-II and their inhibitors, were considered to assess the method. Residue interaction networks of COX-2 and CA-II with their respective inhibitors were used. Only hydrogen bond network was considered to calculate GSUS and quantify protein–ligand interaction in terms of graphlet signatures. The correlation of the GSUS with pIC50 was consistent in both proteins and better in comparison to the Autodock results. The GSUS scoring method was better in activity prediction of molecules with similar structure and diverse activity and vice versa. This study can be a major platform in developing approaches that can be used alone or together with existing methods to predict ligand affinity from protein–ligand complexes. 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 2. Introduction The aim of the present study was to evaluate the efficiency of graphlet signatures in inhibitor activity prediction. For this study two well-known drug targets, COX-2 and CA-II, were considered. Thirty inhibitors for each of the targets were chosen randomly. The crystal structures of CA-II complexed with various inhibitors have been obtained from the Protein Data Bank (PDB) [10]. Similarly, COX-2 crystal structure co-complexed with Celecoxib was selected for the studies [11]. For the inhibitors which are not co-crystallized with these enzymes, docking procedure was employed to identify the favourable conformations at the active site. Structures in PDB, 2POU and 3LN1 were employed for docking studies with CA-II and COX-2, respectively. Prior to docking, all the potential ligands were prepared in DG-AMMOS [12] using AMMP force field sp4. Autodock program was used for docking [13]. During the docking process, maximum number of conformer generation was set to 100 and other parameters were set to default values. In this study, residue interaction networks for COX-2 (3LN1) and CA-II (2POU) [11,14] were obtained from RING server [15]. Furthermore, the networks were visualized and analysed in Cytoscape [16]. The hydrogen bond pattern in protein structure was identified using the HB explore tool in RING server [17] and was analysed in RINalyzer [18]. Further, graphlet counter was used to examine the signature patterns made by different inhibitors with the active-site residues [19] (figure 1). Ligand binding at the protein-active site is stabilized by the formation of non-covalent interactions. Hydrogen bond interactions play a major role in proteins [20]. The residues present in protein-active site have hydrogen bond connectivity with their neighbours and create a local hydrogen bond network. Ligand binding leads to change in the graphlet signatures of the residues at the active site. In this study, only the hydrogen bond network of the protein was considered and the effects of ligand binding on the signatures at the active site were studied. The signature analysis method that provides an opportunity to analyse the residues that are not in direct contact with inhibitors and are in secondary shell of active site is also considered in this approach. ................................................. 3. Material and methods rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 Understanding and quantifying receptor–ligand interactions forms the core of computer-aided drug discovery methods [1]. One such method, molecular docking, has been widely used owing to its high speed and performance. The approximations in the scoring methods are one of the limitations of these docking programs. Recently, to improve the performance of virtual screening experiments, approaches like free energy perturbation methods, pharmacophore modelling, post docking consensus scoring/tuned scoring, etc. are used in combination with docking methods [2]. There is a need for development of more such methods that can improve the authenticity of virtual screening findings when used alone or together with the existing methods. System biology is an emerging discipline used to analyse and interpret various kinds of biological networks [3]. Various graph theory methods, especially residue interaction networks, have been extensively used to analyse protein structure and dynamics [4]. In the residue interaction network, amino acids (AAs) are represented as nodes and edges represent the interactions among them. Reports suggest that the protein–ligand interactions can also be explained in the form of network. The impact of a ligand binding on protein network can be measured in terms of its network properties and it has substantial effects on the closeness centrality of network [5]. The purpose of this study was to analyse the changes in local connectivity of each node (active site residues) present in protein-active site after ligand binding in the residue interaction networks and to relate these changes to compound activity. Each node present in protein-active site has its own neighbourhood and local connectivity. Binding of ligand/substrate with active site residues is mediated by the creation of new interactions. These new interactions will change the local connectivity and neighbourhood of the active site residues and induce non-isomorphic sub-graphs in the proteinactive site with respect to an active site residue. Small connected non-isomorphic induced sub-graphs of large network are termed as graphlets [6]. Graphlet signature-based analysis of biological networks has been successfully applied extensively in various biological problems [7,8]. The importance of graphlet signatures in networks led to the development of combinatorial approaches for graphlet counting [9]. This study focuses on the identification of induced sub-graphs in the protein-active site after ligand binding employing graphlet signature-based analysis of residue interaction networks and their application to estimate binding affinity of various ligands. 2 Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 (a) (b) (c) step I step II with inhibitor without inhibitor (c2) step III identification and selection of active site residues (yellow) step IV (d1) (d2) AA1 AA1 AA2 addition of inhibitor ( j) (blue) no inhibitor AA2 j AA3 AA3 (e1) step V amino acids i = 1 to n AA1 signatures at respective AA 0 signatures formed at the active site with every respective amino acid were studied in the absence and presence of inhibitor amino acids i = 1 to n signatures at respective AA 0 1 AA1 1 AA2 0 ( f) 1 8 2 8 AA2 2 AA3 (e2) 2 step VI determination of St, Sij, Si, Li from the signatures identified AA3 0 1 2 8 signature pool collection of unique signatures made by ith amino acid with ligand ‘j’ at respective AA’s 1 to n, Sij collection of all the signatures identified as unique signatures in the presence of all individual inhibitors, St Sij / St n GSUS = S (S /S + L / L) i=1 i t i Si = total number of unique signatures made by ith AA with all ligands Li = total number of ligand making unique signature with ith AA L = total number of ligands Figure 1. Flowchart depicting the work plan: (a) crystal structure of CA-II retrieved from PDB; (b) residue interaction network of the PDB structure with all types of non-covalent interactions generated by RING server; (c) residual interaction network of the hydrogen bond interactions from RINanalyzer. Identification and selection of active site residue (yellow) and analysis of graphlet signature by using GRAPHLET COUNTER in the absence of ligand (c1–e1) and in the presence of ligand (c2–e2) at the active site (yellow) and (f ) extraction of new signatures and computation of GSUS. The graphlet signatures corresponding to every AA in the active site were analysed before and after ligand binding. Unique signatures, i.e. the signatures that are formed at the active site only after ligand binding were identified. These are the signatures which exist only after ligand binding and are nonexistent in apoprotein structure. A pool of all the unique signatures formed by the 30 inhibitors with respect to the residues present in protein-active site was created. Furthermore, the information from these graphlet signatures was employed to quantify affinity of every inhibitor in the dataset. Uniqueness score for each inhibitor was ................................................. AA interaction network with hydrogen bonds only rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 AA interaction network with all type of interactions three-dimensional structure (c1) 3 Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 measured in terms of variability in signatures adopted by different AAs during inhibitor binding. The uniqueness at these signatures was quantified as follows: Sij /St i=1 (Si /St + Li /L) , (3.1) where GSUS = graphlet signature uniqueness score for ligand j; Sij = 73 k=1 max(0, Xijk − Xi∗ k ), where Xijk − Xi∗ k = {1 if Xijk = Xi∗ k , else 0}, Xi∗ k represent the total number of signature in absence of ligand with respect to ith AA, Xijk represent the total number of signature in presence of ligand with respect to ith AA in particular orbit k, and Sij represents the number of unique signatures made by ith AA with inhibitor j; total number of unique signatures made by all the ligands with all AAs (signature pool); St = Si = Lj=1 Sij and it represents the total number of unique signatures made by ith AA with all the ligands; Li = Lj=1 min(Sij , 1) and it represents the number of ligands forming unique signatures with ith AA; and L = total number of ligands used in the dataset. The correlation between the biological activity and predicted activity (GSUS and Autodock score with default settings) for the compounds in the dataset was performed using Pearson’s correlation coefficient. The pair-wise diversity of the compound dataset was measured. The dependency of the method on diversity was illustrated to check if the methods hold good for various scaffolds. The similarity between each pair of molecules was measured using Tanimoto coefficient in OpenBabel [21]. 4. Results and discussion Studies on the application of network properties to differentiate ligand selectivity have been reported [22]. Graphlet signature methods have been successfully applied to identify functional residues in protein-active site and ligand-binding site predictions [23,24]. This study focuses on the knowledge of induced sub-graphs in protein-active site and their application to estimate and quantify protein–ligand interactions is novel and promising. 4.1. Studies on COX-2 RING server was used to generate the residue interaction network of COX-2. All the AAs within 10 Å radius from the centre of the active site were selected (electronic supplementary material, table S1). From the hydrogen bond interaction networks formed, we analysed signatures with varying orbits present at each selected residue. Collectively, these were termed as native signatures of active site as they are present in the native structure of protein, i.e. non-inhibitor bound form. To analyse the hydrogen bond interactions between inhibitor and enzyme, the complexes of 30 inhibitors with COX-2 were used. The respective hydrogen bonds formed by each of the inhibitors at the active site were identified (electronic supplementary material, table S2). Prior to the graphlet signature analysis, the individual inhibitors were added to the protein–hydrogen bond network manually and the contacts were created between the inhibitor and the respective hydrogen bond forming AAs. The graphlet signatures of each individual inhibitor with the active site AAs were studied and unique signatures, i.e. the new signature formed from non-existence at each of the AAs, were identified. In some cases, it was observed that the same AA was involved in signatures with different orbits more than once. Each of such situations was counted as unique signatures. All the unique signatures formed with each of the selected AAs by every inhibitor were identified as listed in electronic supplementary material, table S3. The total number of unique signatures for all the inhibitors with all the AAs was found to be 761. This collection was termed as signature pool, St . All the quantified features were further applied in the calculation of GSUS for each inhibitor using equation (3.1) (table 1). Calculation strategy used for Celecoxib is shown in figure 2 with all the graphlet signature details. Valdecoxib had the highest GSUS of 0.756, and lowest score was 0.0064 for Etodalac. Most of the active molecules were scored high and least active were scored low. For all the 30 molecules, correlation coefficient was 0.55. The correlation results clearly indicate positive association between biological activity and GSUS. The correlation of the GSUS with pIC50 was almost the same as the correlation of Autodock scores with pIC50 , which ................................................. n rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 GSUS = 4 Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 Table 1. Estimation of binding affinity of COX-2 inhibitors. 5 IC50 (nM) pIC50 GSUS Autodock score 1 6-methylnaphthylacetic acid 80 000 4.09691 0.16908121 −7.09 2 Piroxicam 70 000 4.154902 0.00913255 −8.13 3 Etodalac 60 000 4.221849 0.00639931 −7.49 4 Ibuprofen 40 000 4.39794 0.01738897 −7.04 5 flufenamic acid 20 000 4.69897 0.10528901 −7.1 6 ETYA 15 000 4.823909 0.02308672 −7.17 7 BW755C 10 000 5 0.07490419 −5.71 8 Lumiracoxib 7000 5.154902 0.02972949 −7.68 9 SC-560 6300 5.200659 0.0237849 −8.74 10 Etoricoxib 5000 5.30103 0.01738897 −11.16 11 Fenclofenac 4000 5.39794 0.09343407 −8.26 12 Ketoprofen 2500 5.60206 0.02308673 −8.71 13 Suprofen 2000 5.69897 0.01738897 −8.4 14 Naproxen 2000 5.69897 0.05585896 −7.15 15 Flurbiprofen 500 6.30103 0.01335906 −7.58 16 Nimuslide 500 6.30103 0.06857699 −8.98 17 Rofecoxib 500 6.30103 0.22399585 −10.79 18 Meloxicam 400 6.39794 0.49026752 −8.27 19 Licofelon 370 6.431798 0.03997682 −9.57 20 SC-58125 300 6.522879 0.01738897 −9.99 21 mefenamic acid 300 6.522879 0.018128 −7.56 22 Flosulide 130 6.886057 0.23717307 −8.85 23 CHEMBL257539 100 7 0.1167376 −8.65 24 Indisulam 100 7 0.12526685 −9.46 25 niflumic acid 100 7 0.23149516 −6.67 26 NS398 81 7.091515 0.05656345 −9.1 27 Celecoxib 50 7.30103 0.40196448 −10.35 28 Dichlofenac 9.4 8.02 0.44306776 −8.32 29 DUP-697 8.7 8.060481 0.01738894 −11.22 30 Valdecoxib 5 8.30103 0.7564579 −10.54 ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... was −0.55. The major challenges for in silico binding affinity prediction methods are to differentiate structurally similar molecules with different activities and structurally diverse molecules with similar activity. To check the efficiency of GSUS method in such cases, subset of compounds were made based on structure similarity (greater than 0.7) quantified by Tanimoto coefficient (electronic supplementary material, table S5). Dichlofenac and Lumiracoxib have high similarity in structure but there is 700-fold difference in their pIC50 values against COX-2. Similarly, four pairs of compounds, Ibuprofen/Naproxen, Piroxicam/Meloxicam, SC-560/SC58125 and flufenamic acid/mefenamic acid have high structural similarity and diverse pIC50 values. GSUS method was more accurate in differentiating active and inactive molecules in the subsets. Autodock was unable to distinguish the activities of the molecules with similar structures. The performance of scoring method was also assessed for distinguishing pairs of inhibitors with very low structural similarity and high activity similarity (electronic supplementary material, table S6). COX-2 inhibitor pairs indomethacin and niflumic acid, SC58125 and mefenamic acid, Flurbinprofen/Nimesulide, CHEMBL257539/indomethacin, etc. show very low structural similarity ................................................. drug rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 no. ......................................................................................................................................................................................................................... addition of Celecoxib amino acids (shown in yellow) forming unique signatures in the presence of Celecoxib (i = 13) active site residues (d) Phe 504 Arg 499 Val 335 Gln 178 Gln 336 Leu 338 Ala 421 Tyr 334 Tyr 341 Arg 106 Ser 339 Ala 502 no. of unique signatures with Celecoxib, Sij i=1 n Sij / St S (Si /St + Li / L) = 0.339 lle 503 GSUS = total no. of ligands = 30 total no. of unique signatures identified, St = 761 Ser 339 = 18, Arg 106 = 7, Tyr 341 = 19, Ala 421= 4, val 335 = 18, Leu 338 = 4, Arg 449 = 17, Tyr 334 = 4, Gln 336 = 10, Gln 178 = 5, Ala 502 = 15, Ile 503 = 5, Phe 504 = 19 no. of ligands forming unique signatures with AAi, Li Ser 339 = 73, Arg 106 = 47, Tyr 341 = 67, Ala 421= 5, val 335 = 36, Leu 338 = 24, Arg 449 = 85, Tyr 334 = 7, Gln 336 = 23, Gln 178 = 38, Ala 502 = 22, Ile 503 = 17, Phe 504 = 77 no. of unique signatures with all inhibitors, Si Ser 339 = 6, Arg 106 = 10, Tyr 341 = 2, Ala 421=1, Val 335 = 3, Leu 338 = 8, Arg 449 = 7, Tyr 334 = 4, Gln 336 = 3, Gln 178 = 8, Ala 502 = 3, Ile 503 = 4, Phe 504 = 3 rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 ................................................. identification of unique signatures formed at the 13 amino acid residues in the presence of Celecoxib Figure 2. Computation of GSUS of Celecoxib with COX-2: (a) AA interaction network; (b) selection of active site residues in hydrogen bond network; (c) Celecoxib induces unique graphlet signatures with respect to the AAs present in the active site (yellow) and (d) various signature parameters formed with respect to individual AAs. (c) (b) (a) Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 6 Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 Table 2. Estimation of binding affinity of CA-II inhibitors. 7 IC50 (nM) pIC50 GSUS Autodock score 1 2-hydroxy-3-methylbenzoic acid 4 700 000 2.33 0.002865 −5.08 2 4-amino-2-hydroxybenzoic acid 750 000 3.12 0.044757 −4.6 3 2-hydroxy-5-sulfobenzoic acid 290 000 3.54 0.047693 −5.87 4 saccharin 5950 5.225483 0.009956 −4.32 5 (E)-6-oxo-3-(2-(4-(N-(pyridin-2yl)sulfamoyl)phenyl)hydrazono) 4490 5.35 0.177222 −6.97 ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... cyclohexa-1,4-dienecarboxylic acid ......................................................................................................................................................................................................................... 6 2-hydroxy-3,5-dinitrobenzoic acid 2800 5.55 0.016072 −5.33 7 3-(4-sulfamoylphenyl)propanoic 495 6.305395 0.044916 −6.18 ......................................................................................................................................................................................................................... acid ......................................................................................................................................................................................................................... 8 2-aminobenzenesulfonamide 295 6.530178 0.02644 −5.75 9 4-sulfamoylbenzoic acid 133 6.876148 0.105051 −5.58 10 2-hydrazinylbenzenesulfonamide 124 6.906578 0.098203 −6.21 11 4-amino-6-chlorobenzene-1,3disulfonamide 75 7.124939 0.089529 −7.07 4-amino-6- 63 ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... 12 7.200659 0.046369 −6.66 (trifluoromethyl)benzene-1,3disulfonamide ......................................................................................................................................................................................................................... 13 4-amino-3- 60 7.221849 0.02644 −5.24 fluorobenzenesulfonamide ......................................................................................................................................................................................................................... 14 4-amino-N-(4sulfamoylphenethyl) 50 7.30103 0.148955 −7.65 benzenesulfonamide ......................................................................................................................................................................................................................... 15 methazolamide 50 7.30103 0.114469 −4.79 16 4-amino-N-(4sulfamoylbenzyl)benzenesulfonamide 46 7.337242 0.137639 −7.15 17 sulpiride 40 7.39794 0.097432 −6.77 18 dichlorophenamide 38 7.420216 0.076751 −5.38 19 zonisamide 35 7.455932 0.055204 −6.95 20 4-((2-aminopyrimidin-4- 33 7.481486 0.162283 −5.79 ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... yl)amino)benzenesulfonamide ......................................................................................................................................................................................................................... 21 Celecoxib 21 7.677781 0.088067 −6.56 22 5-imino-4-methyl-4,5-dihydro1,3,4-thiadiazole-2-sulfonamide 19 7.721246 0.095185 −5.35 23 indisulam 15 7.823909 0.082407 −6.83 24 acetazolamide 12 7.920819 0.0338 −4.66 25 topiramate 10 8 0.3007 −4.86 26 sulthiame 9 8.045757 0.03563 −4.39 27 benzolamide 9 8.045757 0.076824 −5.06 28 dorzolamide 9 8.045757 0.110511 −5.69 29 ethoxzolamide 8 8.09691 0.16463 −5.18 30 brinzolamide 3 8.522879 0.110511 −4.53 ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ......................................................................................................................................................................................................................... ................................................. drug rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 no. ......................................................................................................................................................................................................................... Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 The unique signature selection was performed using the same procedure as we used in COX-2. The total number of unique signatures was found to be 1201 collectively for all the inhibitors (electronic supplementary material, table S4). All the quantified features were further applied in the calculation of GSUS for each inhibitor using equation (3.1) and it was observed that topiramate had the highest GSUS of 0.3, and lowest value was 0.002 for 2-hydroxy-3-methylbenzoic acid (table 2). Correlation coefficient has been calculated for pIC50 value and GSUS. Correlation coefficient was 0.40 for all the 30 molecules and was significant at the 0.05 level (two tailed). In the dataset of CA-II inhibitors considered, three pairs of inhibitors, 2-aminobenzenesulfonamide/2-hydrazinylbenzenesulfonamide, 2-hydroxy-3-methylbenzoic acid/4-amino-2-hydroxybenzoic acid and 4-amino-6-chlorobenzene-1,3disulfonamide/dichlorophenamide, showed high structural similarity of Tanimoto coefficient greater than 0.7 with activity difference of twofold, sixfold and twofold, respectively (electronic supplementary material, table S7). The performance of GSUS was better in distinguishing the activities of these molecules with similar structure. The performance of GSUS method in CA-II was consistent with that in COX-2, unlike Autodock which showed great difference in correlation coefficient in both of these enzymes. The results in this study hint that GSUS method is promising, and it can be further improved into a more applicable and reliable method. Its performance in distinguishing activities of structurally related and unrelated compounds shows that it can be a part of virtual screening experiments employing multi-layered screening methods. Acknowledgements. The authors thank Central University of Himachal Pradesh for providing the necessary computational facilities. Funding statement. We duly acknowledge UGC for providing Rajiv Gandhi National fellowship to Omkar Singh. Competing interests. We declare we have no competing interests. References 1. Aparoy P, Reddy KK, Reddanna P. 2012 Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem. 19, 3763–3778. (doi:10.2174/092986712801661112) 2. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C. 2009 Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model. 49, 1455–1474. (doi:10.1021/ci900056c) 3. Uetz P, Finley Jr RL. 2005 From protein networks to biological systems. FEBS Lett. 579, 1821–1827. (doi:10.1016/j.febslet.2005.02.001) 4. Bode C, Kovacs IA, Szalay MS, Palotai R, Korcsmaros T, Csermely P. 2007 Network analysis of protein dynamics. FEBS Lett. 581, 2776–2782. (doi:10.1016/j.febslet.2007.05.021) 5. Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B. 2007 Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput. Biol. 3, e117. (doi:10.1371/journal.pcbi.0030117) 6. Milenkovic T, Przulj N. 2008 Uncovering biological network function via graphlet degree signatures. Cancer Inform. 6, 257–273. 7. Wang XD, Huang JL, Yang L, Wei DQ, Qi YX, Jiang ZL. 2014 Identification of human disease genes from interactome network using graphlet interaction. PLoS ONE 9, e86142. (doi:10.1371/journal.pone.0086142) 8. Milenkovic T, Memisevic V, Ganesan AK, Przulj N. 2010 Systems-level cancer gene identification from protein interaction network topology applied to melanogenesis-related functional genomics data. J. R. Soc. Interface 7, 423–437. (doi:10.1098/rsif. 2009.0192) 9. Hocevar T, Demsar J. 2014 A combinatorial approach to graphlet counting. Bioinformatics 30, 559–565. (doi:10.1093/bioinformatics/btt717) 10. Bernstein FC, Koetzle TF, Williams GJ, Meyer Jr EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. 1978 The Protein Data Bank: a computer-based archival file for macromolecular structures. Arch. Biochem. Biophys. 185, 584–591. (doi:10.1016/0003-9861(78)90204-7) 11. Wang JL et al. 2010 The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2. The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett. 20, 7159–7163. (doi:10.1016/ j.bmcl.2010.07.054) 12. Lagorce D, Pencheva T, Villoutreix BO, Miteva MA. 2009 DG-AMMOS: a new tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem. Biol. 9, 6. (doi:10.1186/1472-6769-9-6) 13. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. 1998 Automated docking using a Lamarckian genetic algorithm and an 14. 15. 16. 17. 18. empirical binding free energy function. J. Comput. Chem. 19, 1639–1662. (doi:10.1002/(SICI)1096-987X (19981115)19:14<1639::AID-JCC10>3.0.CO;2-B) Alterio V, De Simone G, Monti SM, Scozzafava A, Supuran CT. 2007 Carbonic anhydrase inhibitors: inhibition of human, bacterial, and archaeal isozymes with benzene-1,3-disulfonamides—solution and crystallographic studies. Bioorg. Med. Chem. Lett. 17, 4201–4207. (doi:10.1016/j.bmcl.2007.05.045) Alberto JM, Martin MV, Filippo B, Tomás Di D, Ian W, Silvio CET. 2011 RING: networking interacting residues, evolutionary information and energetics in protein structures. Bioinformatics 27, 2003–2005. (doi:10.1093/bioinformatics/btr191) Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2111 Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432. (doi:10.1093/ bioinformatics/btq675) Lindauer K, Bendic C, Suhnel J. 1996 HBexplore—a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. Comput. Appl. Biosci. 12, 281–289. Doncheva NT, Assenov Y, Domingues FS, Albrecht M. 2012 Topological analysis and interactive visualization of biological networks and protein structures. Nat. Protoc. 7, 670–685. (doi:10.1038/nprot.2012.004) ................................................. 4.2. Studies on CA-II 8 rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 but their activity against COX-2 is almost the same. GSUS method was more accurate in the activity prediction of these molecules and the results show clearly that GSUS is more efficient in differentiating similar structure molecules with varied activity and diverse structure molecules with similar activity. Downloaded from http://rsos.royalsocietypublishing.org/ on July 12, 2017 23. Vacic V, Iakoucheva LM, Lonardi S, Radivojac P. 2010 Graphlet kernels for prediction of functional residues in protein structures. J. Comput. Biol. 17, 55–72. (doi:10.1089/cmb.2009.0029) 24. Bertolazzi P, Guerra C, Liuzzi G. 2014 Predicting protein-ligand and protein-peptide interfaces. Eur. Phys. J. Plus 129, 132. (doi:10.1140/epjp/i201414132-1) 9 ................................................. 21. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. 2011 Open Babel: an open chemical toolbox. J. Cheminform. 3, 33. (doi:10.1186/1758-2946-3-33) 22. Lalanne J-B, François P. 2013 Principles of adaptive sorting revealed by in silico evolution. Phys. Rev. Lett. 110, 218102. (doi:10.1103/ PhysRevLett.110.218102) rsos.royalsocietypublishing.org R. Soc. open sci. 1: 140306 19. Whelan C, Sonmez K. 2012 Computing graphlet signatures of network nodes and motifs in Cytoscape with GraphletCounter. Bioinformatics 28, 290–291. (doi:10.1093/bioinformatics/ btr637) 20. Hubbard RE, Kamran Haider M. 2001 Hydrogen bonds in proteins: role and strength. New York, NY: John Wiley & Sons, Ltd.
© Copyright 2026 Paperzz