Approximating subset k-connectivity problems

Approximating subset ๐’Œ-connectivity problems
Zeev Nutov
The Open University of Israel [email protected]
Abstract. A subset ๐‘‡ โІ ๐‘‰ of terminals is ๐‘˜-connected to a root ๐‘  in
a directed/undirected graph ๐ฝ if ๐ฝ has ๐‘˜ internally-disjoint ๐‘ฃ๐‘ -paths for
every ๐‘ฃ โˆˆ ๐‘‡ ; ๐‘‡ is ๐‘˜-connected in ๐ฝ if ๐‘‡ is ๐‘˜-connected to every ๐‘  โˆˆ ๐‘‡ . We
consider the Subset ๐‘˜-Connectivity Augmentation problem: given a graph
๐บ = (๐‘‰, ๐ธ) with edge/node-costs, node subset ๐‘‡ โІ ๐‘‰ , and a subgraph
๐ฝ = (๐‘‰, ๐ธ๐ฝ ) of ๐บ such that ๐‘‡ is ๐‘˜-connected in ๐ฝ, ๏ฌnd a minimum-cost
augmenting edge-set ๐น โІ ๐ธ โˆ– ๐ธ๐ฝ such that ๐‘‡ is (๐‘˜ + 1)-connected in
๐ฝ โˆช ๐น . The problem admits trivial ratio ๐‘‚(โˆฃ๐‘‡ โˆฃ2 ). We consider the case
โˆฃ๐‘‡ โˆฃ > ๐‘˜ and prove that for directed/undirected graphs and edge/nodecosts, a ๐œŒ-approximation for Rooted Subset ๐‘˜-Connectivity Augmentation
implies the following ratios for Subset ๐‘˜-Connectivity Augmentation:
(
)2 (
)
(
)
โˆฃ
โˆฃ
โˆฃ
(i) ๐‘(๐œŒ + ๐‘˜) + โˆฃ๐‘‡3โˆฃ๐‘‡
๐ป โˆฃ๐‘‡3โˆฃ๐‘‡
and (ii) ๐œŒ โ‹… ๐‘‚ โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
log ๐‘˜ ,
โˆฃโˆ’๐‘˜
โˆฃโˆ’๐‘˜
where ๐‘ = 1 for undirected graphs and ๐‘ = 2 for directed graphs, and
๐ป(๐‘˜) is the ๐‘˜th harmonic number. The best known values of ๐œŒ on undirected graphs are min{โˆฃ๐‘‡ โˆฃ, ๐‘‚(๐‘˜)} for edge-costs and min{โˆฃ๐‘‡ โˆฃ, ๐‘‚(๐‘˜ log โˆฃ๐‘‡ โˆฃ)}
for node-costs; for directed graphs ๐œŒ = โˆฃ๐‘‡ โˆฃ for both versions. Our results
imply that unless ๐‘˜ = โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘œ(โˆฃ๐‘‡ โˆฃ), Subset ๐‘˜-Connectivity Augmentation
admits the same ratios as the best known ones for the rooted version.
This improves the ratios in [19, 14].
1
Introduction
In the Survivable Network problem we are given a graph ๐บ = (๐‘‰, ๐ธ) with
edge/node-costs and pairwise connectivity requirements {๐‘Ÿ(๐‘ข, ๐‘ฃ) : ๐‘ข, ๐‘ฃ โˆˆ ๐‘‡ โІ ๐‘‰ }
on a set ๐‘‡ of terminals. The goal is to ๏ฌnd a minimum-cost subgraph of ๐บ that
contains ๐‘Ÿ(๐‘ข, ๐‘ฃ) internally-disjoint ๐‘ข๐‘ฃ-paths for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‡ . In Rooted Subset
๐‘˜-Connectivity problem there is ๐‘  โˆˆ ๐‘‡ such that ๐‘Ÿ(๐‘ , ๐‘ก) = ๐‘˜ for all ๐‘ก โˆˆ ๐‘‡ โˆ– {๐‘ }
and ๐‘Ÿ(๐‘ข, ๐‘ฃ) = 0 otherwise. In Subset ๐‘˜-Connectivity problem ๐‘Ÿ(๐‘ข, ๐‘ฃ) = ๐‘˜ for all
๐‘ข, ๐‘ฃ โˆˆ ๐‘‡ and ๐‘Ÿ(๐‘ข, ๐‘ฃ) = 0 otherwise. In the augmentation versions, ๐บ contains a
subgraph ๐ฝ of cost zero with ๐‘Ÿ(๐‘ข, ๐‘ฃ) โˆ’ 1 internally disjoint paths for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‡ .
A subset ๐‘‡ โІ ๐‘‰ of terminals is ๐‘˜-connected to a root ๐‘  in a directed/undirected
graph ๐ฝ if ๐ฝ has ๐‘˜ internally-disjoint ๐‘ฃ๐‘ -paths for every ๐‘ฃ โˆˆ ๐‘‡ ; ๐‘‡ is ๐‘˜-connected
in ๐ฝ if ๐‘‡ is ๐‘˜-connected to every ๐‘  โˆˆ ๐‘‡ . Formally, the versions of Survivable
Network we consider are as follows, where we revise our notation to ๐‘˜ โ† ๐‘˜ + 1.
Rooted Subset ๐‘˜-Connectivity Augmentation
Instance: A graph ๐บ = (๐‘‰, ๐ธ) with edge/node-costs, a set ๐‘‡ โІ ๐‘‰ of terminals,
root ๐‘  โˆˆ ๐‘‡ , and a subgraph ๐ฝ = (๐‘‰, ๐ธ๐ฝ ) of ๐บ such that ๐‘‡ โˆ– {๐‘ }
is ๐‘˜-connected to ๐‘  in ๐ฝ.
Objective: Find a minimum-cost augmenting edge-set ๐น โІ ๐ธ โˆ– ๐ธ๐ฝ such that
๐‘‡ โˆ– {๐‘ } is (๐‘˜ + 1)-connected to ๐‘  in ๐ฝ โˆช ๐น .
Subset ๐‘˜-Connectivity Augmentation
Instance: A graph ๐บ = (๐‘‰, ๐ธ) with edge/node-costs, subset ๐‘‡ โІ ๐‘‰ , and a subgraph ๐ฝ = (๐‘‰, ๐ธ๐ฝ ) of ๐บ such that ๐‘‡ is ๐‘˜-connected in ๐ฝ.
Objective: Find a minimum-cost augmenting edge-set ๐น โІ ๐ธ โˆ– ๐ธ๐ฝ such that
๐‘‡ is (๐‘˜ + 1)-connected in ๐ฝ โˆช ๐น .
The Subset ๐‘˜-Connectivity Augmentation is Label-Cover hard to approximate
[9]. It is known and easy to see that for both edge-costs and node-costs, if
Subset ๐‘˜-Connectivity Augmentation admits approximation ratio ๐œŒ(๐‘˜) such that
๐œŒ(๐‘˜) is a monotone increasing function, then Subset ๐‘˜-Connectivity admits ratio
๐‘˜ โ‹… ๐œŒ(๐‘˜). Moreover, for edge costs, if in addition the approximation ๐œŒ(๐‘˜) is w.r.t. a
standard setpair/biset LP-relaxation to the problem, then Subset ๐‘˜-Connectivity
admits ratio ๐ป(๐‘˜) โ‹… ๐œŒ(๐‘˜), where ๐ป(๐‘˜) denotes the ๐‘˜th harmonic number. For
edge-costs, a standard LP-relaxation for Survivable Network (due to Frank and
Jordaฬn [5]) is:
โŽง
โŽซ
โŽจโˆ‘
โŽฌ
โˆ‘
๐‘๐‘’ ๐‘ฅ๐‘’ :
๐‘ฅ๐‘’ โ‰ฅ ๐‘Ÿ(๐‘‹, ๐‘‹ โˆ— ), ๐‘‹, ๐‘‹ โˆ— โІ ๐‘‰, ๐‘‹ โˆฉ ๐‘‹ โˆ— = โˆ…, 0 โ‰ค ๐‘ฅ๐‘’ โ‰ค 1
min
โŽฉ
โŽญ
โˆ—
๐‘’โˆˆ๐ธ
๐‘’โˆˆ๐ธ(๐‘‹,๐‘‹ )
where ๐‘Ÿ(๐‘‹, ๐‘‹ โˆ— ) = max{๐‘Ÿ(๐‘ข, ๐‘ฃ) : ๐‘ข โˆˆ ๐‘‹, ๐‘ฃ โˆˆ ๐‘‹ โˆ— } and ๐ธ(๐‘‹, ๐‘‹ โˆ— ) is the set of
edges in ๐ธ from ๐‘‹ to ๐‘‹ โˆ— .
The Subset ๐‘˜-Connectivity problem admits trivial ratios ๐‘‚(โˆฃ๐‘‡ โˆฃ2 ) for both edgecosts and node-costs, by computing for every ๐‘ข, ๐‘ฃ โˆˆ ๐‘‰ an optimal edge-set of ๐‘˜
internally-disjoint ๐‘ข๐‘ฃ-paths (this is essentially a Min-Cost ๐‘˜-Flow problem, that
can be solved in polynomial time), and taking the union of the computed edgesets. We note that for metric edge-costs the problem admits an ๐‘‚(1) ratio [2]. For
โˆฃ๐‘‡ โˆฃ โ‰ฅ ๐‘˜+1 the problem can also be decomposed into ๐‘˜ instances of Rooted Subset
๐‘˜-Connectivity problems, c.f. [11] for the case ๐‘‡ = ๐‘‰ , where it is also shown that
for ๐‘‡ = ๐‘‰ the number( of of Rooted
) Subset ๐‘˜-Connectivity Augmentation instances
โˆฃ๐‘‡ โˆฃ
can be reduced to ๐‘‚ โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ log ๐‘˜ , which is ๐‘‚(log ๐‘˜) unless ๐‘˜ = โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘œ(โˆฃ๐‘‡ โˆฃ).
Recently, Laekhanukit [14] made an important observation that the method
of [11] can be extended for the case of arbitrary ๐‘‡ โІ ๐‘‰ . Speci๏ฌcally, he proved
that if โˆฃ๐‘‡ โˆฃ โ‰ฅ 2๐‘˜, then ๐‘‚(log ๐‘˜) instances of Rooted Subset ๐‘˜-Connectivity Augmentation will su๏ฌƒce. Thus for โˆฃ๐‘‡ โˆฃ โ‰ฅ 2๐‘˜, the ๐‘‚(๐‘˜)-approximation algorithm of [19]
for Rooted Subset ๐‘˜-Connectivity Augmentation leads to the ratio ๐‘‚(๐‘˜ log ๐‘˜) for
Rooted Subset ๐‘˜-Connectivity Augmentation. By cleverly exploiting an additional
property of the algorithm of [19] (see [14, Lemma 14]), he reduced the ratio to
๐‘‚(๐‘˜) in the case โˆฃ๐‘‡ โˆฃ โ‰ฅ ๐‘˜ 2 .
However, using a di๏ฌ€erent approach, we will show that all this is not necessary, as for both directed and undirected graphs and edge-costs and node-costs,
Subset ๐‘˜-Connectivity Augmentation can be reduced to solving one instance (or
two instances, in the case of directed graphs) of Rooted Subset ๐‘˜-Connectivity
)2 (
)
(
โˆฃ
3โˆฃ๐‘‡ โˆฃ
Augmentation and ๐‘‚ โˆฃ๐‘‡3โˆฃ๐‘‡
๐ป
instances of Min-Cost ๐‘˜-Flow problem.
โˆฃโˆ’๐‘˜
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
This leads to a much simpler algorithm, improves the result of Laekhanukit [14]
for โˆฃ๐‘‡ โˆฃ < ๐‘˜ 2 , and applies also for node-costs and directed graphs. In addition,
we give a more natural and much simpler extension
of the
(
) algorithm of [11] for
๐‘‡ = ๐‘‰ , that also enables the same bound ๐‘‚
โˆฃ๐‘‡ โˆฃ
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
log ๐‘˜ as in [11] for arbitrary
๐‘‡ with โˆฃ๐‘‡ โˆฃ โ‰ฅ ๐‘˜ + 1, and in addition applies also for directed graphs, for nodecosts, and for an arbitrary type of edge-costs, e.g., metric costs, or uniform costs,
or 0, 1-costs. When we say โ€œ0, 1-edge-costsโ€ we mean that the input graph ๐บ is
complete, and the goal is to add to the subgraph ๐ฝ of ๐บ formed by the zero-cost
edges a minimum size edge-set ๐น (any edge is allowed) such that ๐ฝ โˆช ๐น satis๏ฌes
the connectivity requirements. Formally, our result is the following.
Theorem 1. For both directed and undirected graphs, and edge-costs and nodecosts the following holds. If Rooted Subset ๐‘˜-Connectivity Augmentation admits
approximation ratio ๐œŒ = ๐œŒ(๐‘˜, โˆฃ๐‘‡ โˆฃ), then for โˆฃ๐‘‡ โˆฃ โ‰ฅ ๐‘˜ + 1 Subset ๐‘˜-Connectivity
Augmentation admits the following approximation ratios:
)2 (
)
(
โˆฃ
โˆฃ
, where ๐‘ = 1 for undirected graphs and
๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
(i) ๐‘(๐œŒ + ๐‘˜) + โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
๐‘ = 2(for directed graphs.
)
โˆฃ
(ii) ๐œŒ โ‹… ๐‘‚ โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
log min{๐‘˜, โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜} , and this is so also for 0, 1-edge-costs.
Furthermore, if for edge-costs the approximation ratio ๐œŒ is w.r.t. a standard LPrelaxation for the problem, then so are the ratios in (i) and (ii).
For โˆฃ๐‘‡ โˆฃ > ๐‘˜, the best known values of ๐œŒ on undirected graphs are ๐‘‚(๐‘˜)
for edge-costs and min{๐‘‚(๐‘˜ log โˆฃ๐‘‡ โˆฃ), โˆฃ๐‘‡ โˆฃ} for node-costs [19]; for directed graphs
๐œŒ = โˆฃ๐‘‡ โˆฃ for both versions. For 0, 1-edge-costs ๐œŒ = ๐‘‚(log ๐‘˜) [20] for undirected
graphs and ๐œŒ = ๐‘‚(log โˆฃ๐‘‡ โˆฃ) [18] for directed graphs. For edge-costs, these ratios
are w.r.t. a standard LP-relaxation. Thus Theorem 1 implies the following.
Corollary 1. For โˆฃ๐‘‡ โˆฃ โ‰ฅ ๐‘˜ + 1, Subset ๐‘˜-Connectivity Augmentation admits the
following approximation ratios.
(
)2 (
)
โˆฃ
โˆฃ
โ€“ For undirected graphs, the ratios are ๐‘‚(๐‘˜) + โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
for edge(
)2 (
)
(
)
โˆฃ
โˆฃ
โˆฃ
costs, ๐‘‚(๐‘˜ log โˆฃ๐‘‡ โˆฃ)+ โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
for node-costs, and โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
โ‹…๐‘‚ log2 ๐‘˜
for 0, 1-edge-costs.
(
)2 (
)
โˆฃ
โˆฃ
โ€“ For directed graphs, the ratio is 2(โˆฃ๐‘‡ โˆฃ + ๐‘˜) + โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
for both
edge-costs and node-costs, and
โˆฃ๐‘‡ โˆฃ
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
โ‹… ๐‘‚ (log โˆฃ๐‘‡ โˆฃ log ๐‘˜) for 0, 1 edge-costs.
For Subset ๐‘˜-Connecivity, the ratios are larger by a factor of ๐ป(๐‘˜) for edge-costs,
and by a factor ๐‘˜ for node-costs.
Note that except the case of 0, 1-edge-costs, Corollary 1 is deduced from
part (i) of Theorem 1. However, part (ii) of Theorem 1 might become relevant
if Rooted Subset ๐‘˜-Connectivity Augmentation admits ratio better than ๐‘‚(๐‘˜). In
addition, part (ii) applies for any type of edge-costs, e.g. metric or 0, 1-edge-costs.
We conclude this section by mentioning some additional related work. The
case ๐‘‡ = ๐‘‰ of Rooted Subset ๐‘˜-Connectivity problem is the ๐‘˜-Outconnected Subgraph problem; this problem admits a polynomial time algorithm for directed
graphs [6], which implies ratio 2 for undirected graphs. For arbitrary ๐‘‡ , the
problem harder than Directed Steiner Tree [15]. The case ๐‘‡ = ๐‘‰ of Subset ๐‘˜Connectivity problem is the ๐‘˜-Connected Subgraph
problem.
) This problem is NP(
๐‘›
for both directed and
hard, and the best known ratio for it is ๐‘‚ log ๐‘˜ log ๐‘›โˆ’๐‘˜
undirected graphs [17]; for the augmentation
(
) version of increasing the connectivity by one the ratio in [17] is ๐‘‚ log
๐‘›
๐‘›โˆ’๐‘˜
. For metric costs the problem admits
๐‘˜โˆ’1
๐‘›
ratios 2 +
for undirected graphs and 2 + ๐‘›๐‘˜ for directed graphs [10]. For
0, 1-edge-costs the problem is solvable for directed graphs [5], which implies ratio 2 for undirected graphs. The Survivable Network problem is Label-Cover hard
[9], and the currently best known non-trivial ratios for it on undirected graphs
are: ๐‘‚(๐‘˜ 3 log โˆฃ๐‘‡ โˆฃ) for arbitrary edge-costs by Chuzhoy and Khanna
[3], ๐‘‚(log
{
} ๐‘˜)
for metric costs due to Cheriyan and Vetta [2], ๐‘‚(๐‘˜) โ‹… min log2 ๐‘˜, log โˆฃ๐‘‡ โˆฃ for
0, 1-edge-costs [20, 13], and ๐‘‚(๐‘˜ 4 log2 โˆฃ๐‘‡ โˆฃ) for node-costs [19].
2
Proof of Theorem 1
We start by proving the following essentially known statement.
Proposition 1. Suppose that Rooted Subset ๐‘˜-Connectivity Augmentation admits an approximation ratio ๐œŒ. If for an instance of Subset ๐‘˜-Connectivity Augmentation we are given a set of ๐‘ž edges (when any edge is allowed) and ๐‘ stars (directed to or from the root) on ๐‘‡ whose addition to ๐บ makes ๐‘‡ (๐‘˜ + 1)-connected,
then we can compute a (๐œŒ๐‘+๐‘ž)-approximate solution ๐น to this instance in polynomial time. Furthermore, for edge-costs, if the ๐œŒ-approximation is w.r.t. a standard LP-relaxation, then ๐‘(๐น ) โ‰ค (๐œŒ๐‘ + ๐‘ž)๐œ โˆ— , where ๐œ โˆ— is an optimal standard
LP-relaxation value for Subset ๐‘˜-Connectivity Augmentation.
Proof. For every edge ๐‘ข๐‘ฃ among the ๐‘ž edges compute a minimum-cost edge-set
๐น๐‘ข๐‘ฃ โІ ๐ธ โˆ– ๐ธ๐ฝ such that ๐ฝ โˆช ๐น๐‘ข๐‘ฃ contains ๐‘˜ internally-disjoint ๐‘ข๐‘ฃ-paths. This
can be done in polynomial time for both edge and node costs, using a Min-Cost
๐‘˜-Flow algorithm. For edge-costs, it is known that ๐‘(๐น๐‘ข๐‘ฃ ) โ‰ค ๐œ โˆ— . Then replace
๐‘ข๐‘ฃ by ๐น๐‘ข๐‘ฃ , and note that ๐‘‡ remains ๐‘˜-connected. Similarly, for every star ๐‘†
with center ๐‘  and leaf-set ๐‘‡ โ€ฒ , compute an ๐›ผ-approximate augmenting edge-set
๐น๐‘† โІ ๐ธ โˆ– ๐ธ๐ฝ such that ๐ฝ โˆช ๐น๐‘† contains ๐‘˜ internally-disjoint ๐‘ ๐‘ฃ-paths (or ๐‘ฃ๐‘ paths, in the case of directed graphs and ๐‘† being directed twords the root) for
every ๐‘ฃ โˆˆ ๐‘‡ โ€ฒ . Then replace ๐‘† by ๐น๐‘† , and note that ๐‘‡ remains ๐‘˜-connected. For
edge-costs, it is known that if the ๐œŒ-approximation for the rooted version is w.r.t.
a standard LP-relaxation, then ๐‘(๐น๐‘† ) โ‰ค (๐›ผ๐‘ + ๐‘ž)๐œ โˆ— . The statement follows. โŠ”
โŠ“
Motivated by Proposition 1, we consider the following question:
Given a ๐‘˜-connected subset ๐‘‡ in a graph ๐ฝ, how many edges and/or stars on ๐‘‡
one needs to add to ๐ฝ such that ๐‘‡ will become (๐‘˜ + 1)-connected?
We emphasize that we are interested in obtaining absolute bounds on the
number of edges in the question, expressed in certain parameters of the graph;
namely we consider the extremal graph theory question and not the algorithmic
problem. Indeed, the algorithmic problem of adding the minimum number of
edges on ๐‘‡ such that ๐‘‡ will become (๐‘˜ + 1)-connected can be shown to admit
a polynomial-time algorithm for directed graphs using the result of Frank and
Jordaฬn [5]; this also implies a 2-approximation algorithm for undirected graphs.
However, in terms of the parameters โˆฃ๐‘‡ โˆฃ, ๐‘˜, the result in [5] implies only the
trivial bound ๐‘‚(โˆฃ๐‘‡ โˆฃ2 ) on the the number of edges one needs to add to ๐ฝ such
that ๐‘‡ will become (๐‘˜ + 1)-connected.
Our bounds will be derived in terms of the family of the โ€œde๏ฌcientโ€ sets of
the graph ๐ฝ. We need some de๏ฌnitions to state our results.
ห† = (๐‘‹, ๐‘‹ + ) of subsets of a groundset ๐‘‰ is
De๏ฌnition 1. An ordered pair ๐‘‹
+
ห†
called a biset if ๐‘‹ โІ ๐‘‹ ; ๐‘‹ is the inner part and ๐‘‹ + is the outer part of ๐‘‹,
+
โˆ—
+
ห†
ห†
๐›ค (๐‘‹) = ๐‘‹ โˆ– ๐‘‹ is the boundary of ๐‘‹, and ๐‘‹ = ๐‘‰ โˆ– ๐‘‹ is the complementary
ห†
set of ๐‘‹.
Given an instance of Subset ๐‘˜-Connectivity Augmentation we may assume that
๐‘‡ is an independent set in ๐ฝ. Otherwise, we obtain an equivalent instance by
subdividing every edge ๐‘ข๐‘ฃ โˆˆ ๐ฝ with ๐‘ข, ๐‘ฃ โˆˆ ๐‘‡ by a new node.
De๏ฌnition 2. Given a ๐‘˜-connected independent set ๐‘‡ in a graph ๐ฝ = (๐‘‰, ๐ธ๐ฝ )
ห† on ๐‘‰ is (๐‘‡, ๐‘˜)-tight in ๐ฝ if ๐‘‹ โˆฉ ๐‘‡, ๐‘‹ โˆ— โˆฉ ๐‘‡ โˆ•= โˆ…, ๐‘‹ + is
let us say that a biset ๐‘‹
ห† = ๐‘˜.
the union of ๐‘‹ and the set of neighbors of ๐‘‹ in ๐ฝ, and โˆฃ๐›ค (๐‘‹)โˆฃ
ห† if it goes from ๐‘‹ to ๐‘‹ โˆ— . By Mengerโ€™s Theorem,
An edge covers a biset ๐‘‹
๐น is a feasible solution to Subset ๐‘˜-Connectivity Augmentation if, and only if, ๐น
covers the biset-family โ„ฑ of tight bisets; see [12, 20]. Thus our question can be
reformulated as follows:
Given a ๐‘˜-connected independent set ๐‘‡ in a graph ๐ฝ, how many edges and/or
stars on ๐‘‡ are needed to cover the family โ„ฑ of (๐‘‡, ๐‘˜)-tight bisets?
ห† ๐‘Œห† is de๏ฌned by
De๏ฌnition 3. The intersection and the union of two bisets ๐‘‹,
+
+
+
+
ห†
ห†
ห†
ห†
ห† ๐‘Œห†
๐‘‹ โˆฉ ๐‘Œ = (๐‘‹ โˆฉ ๐‘Œ, ๐‘‹ โˆฉ ๐‘Œ ) and ๐‘‹ โˆช ๐‘Œ = (๐‘‹ โˆช ๐‘Œ, ๐‘‹ โˆช ๐‘Œ ). Two bisets ๐‘‹,
โˆ—
โˆ—
ห†
ห†
intersect if ๐‘‹ โˆฉ ๐‘Œ โˆ•= โˆ…; if in addition ๐‘‹ โˆฉ ๐‘Œ โˆ•= โˆ… then ๐‘‹, ๐‘Œ cross. We say that
a biset-family โ„ฑ is:
ห† โˆฉ ๐‘Œห† , ๐‘‹
ห† โˆช ๐‘Œห† โˆˆ โ„ฑ for any ๐‘‹,
ห† ๐‘Œห† โˆˆ โ„ฑ that cross.
โ€“ crossing if ๐‘‹
ห†
ห†
ห† โˆฉ ๐‘Œห† , ๐‘‹
ห† โˆช ๐‘Œห† โˆˆ โ„ฑ for any
โ€“ ๐‘˜-regular if โˆฃ๐›ค (๐‘‹)โˆฃ โ‰ค ๐‘˜ for every ๐‘‹ โˆˆ โ„ฑ, and if ๐‘‹
ห†
ห†
intersecting ๐‘‹, ๐‘Œ โˆˆ โ„ฑ with โˆฃ๐‘‹ โˆช ๐‘Œ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜ โˆ’ 1.
The following statement is essentially known.
Lemma 1. Let ๐‘‡ be a ๐‘˜-connected independent set in a graph ๐ฝ = (๐‘‰, ๐ธ๐ฝ ), and
ห† ๐‘Œห† be (๐‘‡, ๐‘˜)-tight bisets. If (๐‘‹ โˆฉ ๐‘‡, ๐‘‹ + โˆฉ ๐‘‡ ), (๐‘Œ โˆฉ ๐‘‡, ๐‘Œ + โˆฉ ๐‘‡ ) cross or if
let ๐‘‹,
ห† โˆฉ ๐‘Œห† , ๐‘‹
ห† โˆช ๐‘Œห† are both (๐‘‡, ๐‘˜)-tight.
โˆฃ(๐‘‹ โˆช ๐‘Œ ) โˆฉ ๐‘‡ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜ โˆ’ 1 then ๐‘‹
Proof. The case (๐‘‹ โˆฉ ๐‘‡, ๐‘‹ + โˆฉ ๐‘‡ ), (๐‘Œ โˆฉ ๐‘‡, ๐‘Œ + โˆฉ ๐‘‡ ) was proved in [20] and [14].
The proof of the case โˆฃ(๐‘‹ โˆช ๐‘Œ ) โˆฉ ๐‘‡ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜ โˆ’ 1 is identical to the proof of [7,
Lemma 1.2] where the case ๐‘‡ = ๐‘‰ is considered.
โŠ”
โŠ“
Corollary 2. The biset-family
โ„ฑ = {(๐‘‹ โˆฉ ๐‘‡, ๐‘‹ + โˆฉ ๐‘‡ ) : (๐‘‹, ๐‘‹ + ) is a (๐‘‡, ๐‘˜)-tight biset in ๐ฝ}
ห† โˆˆ โ„ฑ}
is crossing and ๐‘˜-regular, and the reverse family โ„ฑฬ„ = {(๐‘‡ โˆ– ๐‘‹ + , ๐‘‡ โˆ– ๐‘‹) : ๐‘‹
of โ„ฑ is also crossing and ๐‘˜-regular. Furthermore, if ๐ฝ is undirected then โ„ฑ is
symmetric, namely, โ„ฑ = โ„ฑฬ„.
ห† ๐‘Œห† we write ๐‘‹
ห† โІ ๐‘Œห† and say that ๐‘Œห† contains ๐‘‹
ห† if ๐‘‹ โІ ๐‘Œ
Given two bisets ๐‘‹,
ห† โŠ‚ ๐‘Œห† and ๐‘Œห† properly contains ๐‘‹
ห† if ๐‘‹ โŠ‚ ๐‘Œ or if
or if ๐‘‹ = ๐‘Œ and ๐‘‹ + โІ ๐‘Œ + ; ๐‘‹
๐‘‹ = ๐‘Œ and ๐‘‹ + โŠ‚ ๐‘Œ + .
De๏ฌnition 4. A biset ๐ถห† is a core of a biset-family โ„ฑ if ๐ถห† โˆˆ โ„ฑ and ๐ถห† contains
ห† namely, a core is an inclusion-minimal biset in โ„ฑ. Let ๐’ž(โ„ฑ)
no biset in โ„ฑ โˆ– {๐ถ};
be the family of cores of โ„ฑ and let ๐œˆ(โ„ฑ) = โˆฃ๐’ž(โ„ฑ)โˆฃ denote their number.
Given a biset-family โ„ฑ and an edge-set ๐ผ on ๐‘‡ , the residual biset-family โ„ฑ๐ผ
of โ„ฑ consists of the members of โ„ฑ uncovered by ๐ผ. We will assume that for any ๐ผ,
the cores of โ„ฑ๐ผ and of โ„ฑฬ„๐ผ can be computed in polynomial time. For โ„ฑ being the
family of (๐‘‡, ๐‘˜)-tight bisets this can be implemented in polynomial time using
the Ford-Fulkerson Max-Flow Min-Cut algorithm, c.f. [20]. It is known and easy
to see that if โ„ฑ is crossing and/or ๐‘˜-regular, so is โ„ฑ๐ผ , for any edge-set ๐ผ.
De๏ฌnition 5. For a biset-family โ„ฑ on ๐‘‡ let ๐œˆ(โ„ฑ) be the maximum number of
bisets in โ„ฑ which inner parts are pairwise-disjoint. For an integer ๐‘˜ let โ„ฑ ๐‘˜ =
ห† โˆˆ โ„ฑ : โˆฃ๐‘‹โˆฃ โ‰ค (โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜)/2}.
{๐‘‹
ห† ๐‘Œห† โˆˆ โ„ฑ ๐‘˜ intersect.
Lemma 2. Let โ„ฑ be a ๐‘˜-regular biset-family on ๐‘‡ and let ๐‘‹,
๐‘˜
ห†
ห†
ห†
ห†
Then ๐‘‹ โˆฉ ๐‘Œ โˆˆ โ„ฑ and ๐‘‹ โˆช ๐‘Œ โˆˆ โ„ฑ.
Proof. Since โˆฃ๐‘‹โˆฃ, โˆฃ๐‘Œ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
2 , we have โˆฃ๐‘‹ โˆช๐‘Œ โˆฃ = โˆฃ๐‘‹โˆฃ+โˆฃ๐‘Œ โˆฃโˆ’โˆฃ๐‘‹ โˆฉ๐‘Œ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ โˆ’1.
ห†
ห†
ห†
ห†
ห† โˆฉ ๐‘Œห† โˆˆ โ„ฑ ๐‘˜ , since
Thus ๐‘‹ โˆฉ ๐‘Œ , ๐‘‹ โˆฉ ๐‘Œ โˆˆ โ„ฑ, by the ๐‘˜-regularity of โ„ฑ. Moreover, ๐‘‹
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
โˆฃ๐‘‹ โˆฉ ๐‘Œ โˆฃ โ‰ค โˆฃ๐‘‹โˆฃ โ‰ค 2 .
โŠ”
โŠ“
We will prove the following two theorems that imply Theorem 1.
Theorem 2. Let โ„ฑ be a biset-family on ๐‘‡ such that both โ„ฑ, โ„ฑฬ„ are crossing and
๐‘˜-regular. Then there exists a polynomial-time algorithm that computes an edge)2 (
)
( )
( ) (
โˆฃ
โˆฃ
cover ๐ผ of โ„ฑ of size โˆฃ๐ผโˆฃ = ๐œˆ โ„ฑ ๐‘˜ + ๐œˆ โ„ฑฬ„ ๐‘˜ + โˆฃ๐‘‡3โˆฃ๐‘‡
๐ป โˆฃ๐‘‡3โˆฃ๐‘‡
โˆฃโˆ’๐‘˜
โˆฃโˆ’๐‘˜ . Furthermore,
)2 (
)
( ) (
โˆฃ
โˆฃ
if โ„ฑ is symmetric then โˆฃ๐ผโˆฃ = ๐œˆ โ„ฑ ๐‘˜ + โˆฃ๐‘‡3โˆฃ๐‘‡
๐ป โˆฃ๐‘‡3โˆฃ๐‘‡
โˆฃโˆ’๐‘˜
โˆฃโˆ’๐‘˜ .
Theorem 3. Let โ„ฑ be a biset-family
( on ๐‘‡ such that both โ„ฑ and
) โ„ฑฬ„ are ๐‘˜-regular.
โˆฃ๐‘‡ โˆฃ
Then there exists a collection of ๐‘‚ โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ lg min{๐œˆ, โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜} stars on ๐‘‡ which
union covers โ„ฑ, and such a collection can be computed in polynomial
( ) time.
( Fur)
thermore, the total number of edges in the stars is at most ๐œˆ โ„ฑ ๐‘˜ + ๐œˆ โ„ฑฬ„ ๐‘˜ +
)2
(
)
(
โˆฃ
โˆฃ๐‘‡ โˆฃ
โ‹… ๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
.
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜
Note that the second statement in Theorem 3 implies (up to constants) the
bound in Theorem 2. However, the proof of Theorem 2 is much simpler than the
proof of Theorem 3, and the proof of Theorem 2 is a part of the proof of the
second statement in Theorem 3.
Let us show that Theorems 2 and 3 imply Theorem 1. For that, all we
need is to show that by applying one time the ๐›ผ-approximation algorithm for
the
๐‘˜-Connectivity Augmentation, we obtain an instance with
( Rooted
) ( Subset
)
๐œˆ โ„ฑ ๐‘˜ , ๐œˆ โ„ฑฬ„ ๐‘˜ โ‰ค ๐‘˜ + 1. This is achieved by the following procedure due to
Khuller and Raghavachari [8] that originally considered the case ๐‘‡ = ๐‘‰ , see also
[1, 4, 10]; the same procedure is also used by Laekhanukit in [14].
Choose an arbitrary subset ๐‘‡ โ€ฒ โІ ๐‘‡ of ๐‘˜ + 1 nodes, add a new node ๐‘  (the
root) and all edges between ๐‘  and ๐‘‡ โ€ฒ of cost zero each, both to ๐บ and to ๐ฝ.
Then, using the ๐›ผ-approximation algorithm for the Rooted Subset ๐‘˜-Connectivity
Augmentation, compute an augmenting edge set ๐น such that ๐ฝ โˆช ๐น contains ๐‘˜
internally disjoint ๐‘ฃ๐‘ -paths and ๐‘ ๐‘ฃ-paths for every ๐‘ฃ โˆˆ ๐‘‡ โ€ฒ . Now, add ๐น to ๐ฝ and
remove ๐‘  from ๐ฝ. It is a routine to show that ๐‘(๐น ) โ‰ค ๐‘opt, and that for edge-costs
ห† is a tight biset of the obtained graph ๐ฝ,
๐‘(๐น ) โ‰ค ๐‘๐œ โˆ— . It is also known that if ๐‘‹
โ€ฒ
โˆ—
โ€ฒ
then
๐‘‹
โˆฉ
๐‘‡
,
๐‘‹
โˆฉ
๐‘‡
=
โˆ•
โˆ…,
c.f.
[1,
14].
Combined with Lemma 2 we obtain that
( ) ( )
๐œˆ โ„ฑ ๐‘˜ , ๐œˆ โ„ฑฬ„ ๐‘˜ โ‰ค โˆฃ๐‘‡ โ€ฒ โˆฃ โ‰ค ๐‘˜ + 1 for the obtained instance, as claimed.
3
Proof of Theorem 2
De๏ฌnition 6. Given a biset-family โ„ฑ on ๐‘‡ , let ๐›ฅ(โ„ฑ) denote the maximum
ห† โˆˆ โ„ฑ } of the inner parts of the bisets in
degree in the hypergraph โ„ฑ ๐‘–๐‘› = {๐‘‹ : ๐‘‹
๐‘–๐‘›
โ„ฑ. We say that ๐‘‡ โ€ฒ โІ ๐‘‡ is a transversal of โ„ฑ if ๐‘‡ โ€ฒ โˆฉ ๐‘‹ โˆ•= โˆ… for
โˆ‘ every ๐‘‹ โˆˆ โ„ฑ ;
a function ๐‘ก : ๐‘‡ โ†’ [0, 1] is a fractional transversal of โ„ฑ if ๐‘ฃโˆˆ๐‘‹ ๐‘ก(๐‘ฃ) โ‰ฅ 1 for
every ๐‘‹ โˆˆ โ„ฑ ๐‘–๐‘› .
( )
Lemma 3. Let โ„ฑ be a crossing biset-family. Then ๐›ฅ(๐’ž(โ„ฑ)) โ‰ค ๐œˆ โ„ฑฬ„ .
Proof. Since โ„ฑ is crossing, the members of ๐’ž(โ„ฑ) are pairwise non-crossing. Thus
if โ„‹ is a subfamily of ๐’ž(โ„ฑ) such that the intersection of the inner parts of the
bisets in โ„‹ is non-empty, then โ„‹ฬ„ is a subfamily of
( โ„ฑฬ„) such that the inner parts of
the bisets in โ„‹ฬ„ are pairwise disjoint, so โˆฃโ„‹ฬ„โˆฃ โ‰ค ๐œˆ โ„ฑฬ„ . The statement follows. โŠ”
โŠ“
Lemma 4. Let ๐‘‡ โ€ฒ be a transversal of a biset-family โ„ฑ โ€ฒ on ๐‘‡ and let ๐ผ โ€ฒ be an
edge-set on ๐‘‡ obtained by picking for every ๐‘  โˆˆ ๐‘‡ โ€ฒ an edge from ๐‘  to every
ห† โˆˆ โ„ฑ โ€ฒ , ๐‘  โˆˆ ๐‘‹}. Then ๐ผ โ€ฒ covers โ„ฑ โ€ฒ .
inclusion member of the set-family {๐‘‹ โˆ— : ๐‘‹
โ€ฒ
โ€ฒ
โ€ฒ
Moreover, if โ„ฑ is crossing then โˆฃ๐ผ โˆฃ โ‰ค โˆฃ๐‘‡ โˆฃ โ‹… ๐œˆ(โ„ฑฬ„ โ€ฒ ).
Proof. The statement that ๐ผ โ€ฒ covers โ„ฑ โ€ฒ is obvious. If โ„ฑ โ€ฒ is crossing, then for every
ห† โˆˆ โ„ฑ โ€ฒ , ๐‘  โˆˆ ๐‘‹} are pairwise๐‘  โˆˆ ๐‘‡ the inclusion-minimal members of {๐‘‹ โˆ— : ๐‘‹
โ€ฒ
disjoint, hence their number is at most ๐œˆ(โ„ฑฬ„ ). The statement follows.
โŠ”
โŠ“
Lemma 5. Let โ„ฑ be a ๐‘˜-regular biset-family on ๐‘‡ . Then the following holds.
( )
โˆฃ
(i) ๐œˆ(โ„ฑ) โ‰ค ๐œˆ โ„ฑ ๐‘˜ + โˆฃ๐‘‡2โˆฃ๐‘‡
โˆฃโˆ’๐‘˜ .
)
(
( )
( )
โˆฃ
๐‘˜
= ๐œˆ โ„ฑ ๐‘˜ holds for every edge ๐‘’ on ๐‘‡ then ๐œˆ โ„ฑ ๐‘˜ โ‰ค โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
.
(ii) If ๐œˆ โ„ฑ{๐‘’}
โ€ฒ
(iii) There exists a polynomial
algorithm
( (time
) that ๏ฌnds a transversal ๐‘‡ of ๐’ž(โ„ฑ)
)
2โˆฃ๐‘‡
โˆฃ
of size at most โˆฃ๐‘‡ โ€ฒ โˆฃ โ‰ค ๐œˆ โ„ฑ ๐‘˜ + โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ โ‹… ๐ป(๐›ฅ(๐’ž(โ„ฑ))).
Proof. Part (i) is immediate. ( )
ห†๐ถ be the union of the bisets in โ„ฑ ๐‘˜
We prove (ii). Let ๐ถห† โˆˆ ๐’ž โ„ฑ ๐‘˜ and let ๐‘ˆ
( )
that contain ๐ถห† and contain no other member of ๐’ž โ„ฑ ๐‘˜( . If โˆฃ๐‘ˆ
) ๐ถ โˆฃ โ‰ค( โˆฃ๐‘‡ โˆฃ)โˆ’ ๐‘˜ โˆ’ 1
๐‘˜
๐‘˜
ห†๐ถ โˆˆ โ„ฑ, by the ๐‘˜-regularity of โ„ฑ. In this case ๐œˆ โ„ฑ
then ๐‘ˆ
โˆ’ 1 for
{๐‘’} โ‰ค ๐œˆ โ„ฑ
any edge from ๐ถ to ๐‘ˆ๐ถโˆ— . Hence โˆฃ๐‘ˆ๐ถ โˆฃ โ‰ฅ โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜ must hold for every ๐ถห† โˆˆ ๐’ž(โ„ฑ).
By Lemma 2, the sets in the set family {๐‘ˆ๐ถ : ๐ถห† โˆˆ ๐’ž(โ„ฑ)} are pairwise disjoint.
The statement follows.
Let ๐‘‡ ๐‘˜ be an inclusion-minimal transversal of โ„ฑ ๐‘˜ . By Lemma 2,
๐‘˜We
prove
( (iii).
)
๐‘‡ = ๐œˆ โ„ฑ ๐‘˜ . Setting ๐‘ก(๐‘ฃ) = 1 if ๐‘ฃ โˆˆ ๐‘‡ ๐‘˜ and ๐‘ก(๐‘ฃ) = 2 otherwise, we obtain
( โˆฃ๐‘‡ )โˆฃโˆ’๐‘˜
โˆฃ
a fractional transversal of ๐’ž(โ„ฑ) of value at most ๐œˆ โ„ฑ ๐‘˜ + โˆฃ๐‘‡2โˆฃ๐‘‡
โˆฃโˆ’๐‘˜ . Consequently,
โ€ฒ
the greedy algorithm of Lovaฬsz [16] ๏ฌnds a transversal ๐‘‡ as claimed.
โŠ”
โŠ“
The algorithm for computing ๐ผ as in Theorem 2 starts with ๐ผ = โˆ… and then
continues as follows.
Phase 1
(
)
( )
๐‘˜
While there exists an edge ๐‘’ on ๐‘‡ such that ๐œˆ โ„ฑ๐ผโˆช{๐‘’}
โ‰ค ๐œˆ โ„ฑ๐ผ๐‘˜ โˆ’ 1, or such
(
)
( )
๐‘˜
that ๐œˆ โ„ฑฬ„๐ผโˆช{๐‘’}
โ‰ค ๐œˆ โ„ฑฬ„๐ผ๐‘˜ โˆ’ 1, add ๐‘’ to ๐ผ.
Phase 2
Find a transversal ๐‘‡ โ€ฒ of ๐’ž(โ„ฑ โ€ฒ ) as in Lemma 5(iii), where โ„ฑ โ€ฒ = โ„ฑ๐ผ . Then ๏ฌnd an
edge-cover ๐ผ โ€ฒ of โ„ฑ โ€ฒ as in Lemma 4 and add ๐ผ โ€ฒ to ๐ผ.
The edge-set ๐ผ computed covers โ„ฑ by( Lemma
the number of
)
(4. Clearly,
)
( edges
)
in ๐ผ at the end of Phase 1 is at most ๐œˆ โ„ฑ ๐‘˜ + ๐œˆ โ„ฑฬ„ ๐‘˜ , and is at most ๐œˆ โ„ฑ ๐‘˜ if
โ„ฑ is symmetric.
the size of ๐ผ โ€ฒ . Note that at the
1
( ๐‘˜ ) Now
( ๐‘˜we
) bound
( end
) of Phase
โˆฃ๐‘‡ โˆฃ
โˆฃ
(by
we have ๐œˆ โ„ฑ๐ผ , ๐œˆ โ„ฑฬ„๐ผ โ‰ค โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ (by Lemma 5(ii)) and thus ๐œˆ โ„ฑฬ„๐ผ โ‰ค โˆฃ๐‘‡3โˆฃ๐‘‡
โˆฃโˆ’๐‘˜
( )
( )
โˆฃ
3โˆฃ๐‘‡ โˆฃ
Lemma 5(i)) and ๐›ฅ(๐’ž(โ„ฑ๐ผ )) โ‰ค ๐œˆ โ„ฑฬ„๐ผ โ‰ค ๐œˆ โ„ฑฬ„๐ผ๐‘˜ + โˆฃ๐‘‡2โˆฃ๐‘‡
โ‰ค
(by
Lemma
3).
โˆฃโˆ’๐‘˜
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ (
( ( )
)
)
3โˆฃ๐‘‡ โˆฃ
3โˆฃ๐‘‡ โˆฃ
2โˆฃ๐‘‡ โˆฃ
โ€ฒ
๐‘˜
Consequently, โˆฃ๐‘‡ โˆฃ โ‰ค ๐œˆ โ„ฑ๐ผ + โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ โ‹…๐ป(๐›ฅ(๐’ž(โ„ฑ๐ผ ))) โ‰ค โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ โ‹…๐ป โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ . From
)2
(
)
( ) (
โˆฃ
โˆฃ
this we get โˆฃ๐ผ โ€ฒ โˆฃ โ‰ค โˆฃ๐‘‡ โ€ฒ โˆฃ โ‹… ๐œˆ โ„ฑฬ„๐ผ โ‰ค โˆฃ๐‘‡3โˆฃ๐‘‡
โ‹… ๐ป โˆฃ๐‘‡3โˆฃ๐‘‡
โˆฃโˆ’๐‘˜
โˆฃโˆ’๐‘˜ .
The proof of Theorem 2 is now complete.
4
Proof of Theorem 3
We
( start
) by analyzing the performance of a natural Greedy Algorithm for covering
๐œˆ โ„ฑ ๐‘˜ , that starts with ๐ผ = โˆ… and while ๐œˆ(โ„ฑ๐ผ๐‘˜ ) โ‰ฅ 1 adds to ๐ผ a star ๐‘† for which
๐‘˜
๐œˆ(โ„ฑ๐ผโˆช๐‘†
) is minimal. It is easy to see that the algorithm terminates since any star
with center ๐‘  in the inner part of some core of โ„ฑ๐ผ๐‘˜ and edge set {๐‘ฃ๐‘  : ๐‘ฃ โˆˆ ๐‘‡ โˆ– {๐‘ }}
reduces the number of cores by one. The proof of the following statement is
similar to the proof of the main result of [11].
Lemma 6. Let โ„ฑ be a ๐‘˜-regular biset-family and let ๐’ฎ be the collection of stars
computed by the Greedy Algorithm. Then
)
(
{ ( ๐‘˜)
}
โˆฃ๐‘‡ โˆฃ
ln min ๐œˆ โ„ฑ , โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜
.
โˆฃ๐’ฎโˆฃ = ๐‘‚
โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜
( )
ห†๐ถ the union of the bisets in โ„ฑ ๐‘˜
Recall that given ๐ถห† โˆˆ ๐’ž โ„ฑ๐ผ๐‘˜ we denote by ๐‘ˆ
๐ผ
( )
that contain ๐ถห† and contain no other member of ๐’ž โ„ฑ๐ผ๐‘˜ , and that by Lemma 2,
the sets in the set-family {๐‘ˆ๐ถ : ๐ถห† โˆˆ ๐’ž(โ„ฑ)} are pairwise disjoint.
( )
De๏ฌnition 7 ([11]). Let us say that ๐‘  โˆˆ ๐‘‰ out-covers ๐ถห† โˆˆ ๐’ž โ„ฑ ๐‘˜ if ๐‘  โˆˆ ๐‘ˆ๐ถโˆ— .
( )
Lemma 7. Let โ„ฑ be ๐‘˜-regular biset-family and let ๐œˆ = ๐œˆ โ„ฑ ๐‘˜ .
)
(
( )
(i) There is ๐‘  โˆˆ ๐‘‡ that out-covers at least ๐œˆ 1 โˆ’ โˆฃ๐‘‡๐‘˜ โˆฃ โˆ’ 1 members of ๐’ž โ„ฑ ๐‘˜ .
( )
(ii) Let ๐‘  out-cover the members of ๐’ž โІ ๐’ž โ„ฑ ๐‘˜ and let ๐‘† be a star with one edge
from ๐‘  to the inner part of each member of ๐’ž. Then ๐œˆ(โ„ฑ ๐‘˜ ) โ‰ค ๐œˆ(โ„ฑ๐‘†๐‘˜ ) โˆ’ โˆฃ๐’žโˆฃ/2.
Consequently, there exists a star ๐‘† on ๐‘‡ such that
(
)
1
๐‘˜
1
๐‘˜
๐œˆ(โ„ฑ๐‘† ) โ‰ค
1+
โ‹…๐œˆ+ =๐›ผโ‹…๐œˆ+๐›ฝ .
(1)
2
โˆฃ๐‘‡ โˆฃ
2
{
( )
( )}
ห†๐ถ : ๐ถห† โˆˆ ๐’ž โ„ฑ ๐‘˜ .
Proof. We prove (i). Consider the hypergraph โ„‹ = ๐‘‡ โˆ– ๐›ค ๐‘ˆ
( )
Note that the number of members of ๐’ž โ„ฑ ๐‘˜ out-covered by any ๐‘ฃ โˆˆ ๐‘‡ is at least
the degree of ๐‘  in โ„‹ minus 1. Thus all (we need)to prove is that there is a node
๐‘  โˆˆ ๐‘‡ whose degree in โ„‹ is at least ๐œˆ 1 โˆ’ โˆฃ๐‘‡๐‘˜ โˆฃ . For every ๐ถ โˆˆ ๐’ž(โ„ฑ) we have
( )
ห†๐ถ โ‰ฅ โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜, by the ๐‘˜-regularity of โ„ฑ. Hence the bipartite incidence
๐‘‡ โˆ– ๐›ค ๐‘ˆ
graph of
( โ„‹ has )at least ๐œˆ(โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜) edges, and thus has a node ๐‘  โˆˆ ๐‘‡ of degree at
least ๐œˆ 1 โˆ’ โˆฃ๐‘‡๐‘˜ โˆฃ , which equals the degree of ๐‘  in โ„‹. Part (i) follows.
( )
We prove (ii). It is su๏ฌƒcient to show that every ๐ถห† โˆˆ ๐’ž โ„ฑ๐‘†๐‘˜ contains some
(
)
๐ถห† โ€ฒ โˆˆ ๐’ž โ„ฑ ๐‘˜ โˆ– ๐’ž or contains at least two members in ๐’ž. Clearly, ๐ถห† contains some
( )
( )
๐ถห† โ€ฒ โˆˆ ๐’ž โ„ฑ ๐‘˜ . We claim that if ๐ถห† โ€ฒ โˆˆ ๐’ž then ๐ถห† must contain some ๐ถห† โ€ฒโ€ฒ โˆˆ ๐’ž โ„ฑ ๐‘˜
distinct from ๐ถห† โ€ฒ . Otherwise, ๐ถห† โˆˆ โ„ฑ ๐‘˜ (๐ถ). But as ๐‘† covers all members of โ„ฑ ๐‘˜ (๐ถ),
๐ถห† โˆˆ
/ โ„ฑ๐‘†๐‘˜ . This is a contradiction.
โŠ”
โŠ“
Let us use parameters ๐›ผ, ๐›ฝ, ๐›พ, ๐›ฟ and ๐‘— set to
(
)
1
๐‘˜
1
๐‘˜
๐›ผ=
1+
๐›ฝ=
๐›พ =1โˆ’
= 2(1 โˆ’ ๐›ผ)
๐›ฟ = 1,
2
โˆฃ๐‘‡ โˆฃ
2
โˆฃ๐‘‡ โˆฃ
(
)
๐›ฝ
2
and ๐‘— is the minimum integer such that ๐›ผ๐‘— ๐œˆ โˆ’ 1โˆ’๐›ผ
โ‰ค 1โˆ’๐›ผ
(note that ๐›ผ < 1),
namely,
โŒŠ 1
โŒ‹ โŒŠ 1
โŒ‹
ln 2 (๐œˆ(1 โˆ’ ๐›ผ) โˆ’ ๐›ฝ)
ln 2 ๐œˆ(1 โˆ’ ๐›ผ)
๐‘—=
โ‰ค
.
(2)
ln(1/๐›ผ)
ln(1/๐›ผ)
We assume that ๐œˆ โ‰ฅ
๐›ฝ
1โˆ’๐›ผ
=
2+๐›ฝ
1โˆ’๐›ผ
to have ๐‘— โ‰ฅ 0 (otherwise Lemma 6 follows). Note that
โˆฃ๐‘‡ โˆฃ
โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ .
Lemma 8. Let 0 โ‰ค ๐›ผ < 1, ๐›ฝ โ‰ฅ 0, ๐œˆ0 = ๐œˆ, and for ๐‘– โ‰ฅ 1 let
๐œˆ๐‘–+1 โ‰ค ๐›ผ๐œˆ๐‘– + ๐›ฝ
(
Then ๐œˆ๐‘– โ‰ค ๐›ผ๐‘– ๐œˆ โˆ’
๐›ฝ
1โˆ’๐›ผ
)
+
๐›ฝ
1โˆ’๐›ผ
and
Moreover, if ๐‘— is given by (2) then
๐‘ ๐‘– = ๐›พ๐œˆ๐‘–โˆ’1 โˆ’ ๐›ฟ .
๐‘—
โˆ‘
(
)
(
)
๐›ฝ
๐›พ๐›ฝ
โ‹… ๐›พ ๐œˆ โˆ’ 1โˆ’๐›ผ
โˆ’๐›ฟ .
+ ๐‘— 1โˆ’๐›ผ
)
(
โˆ‘๐‘—
โˆฃ
โˆฃ๐‘‡ โˆฃ
= โˆฃ๐‘‡5โˆฃ๐‘‡
๐‘–=1 ๐‘ ๐‘– โ‰ค 2 ๐œˆ โˆ’ โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ .
โˆฃโˆ’๐‘˜ and
๐‘ ๐‘– โ‰ค
๐‘–=1
2+๐›ฝ
๐œˆ๐‘— โ‰ค 1โˆ’๐›ผ
1โˆ’๐›ผ๐‘—
1โˆ’๐›ผ
Proof. Unraveling the recursive inequality ๐œˆ๐‘–+1 โ‰ค ๐›ผ๐œˆ๐‘– + ๐›ฝ in the lemma we get:
(
)
(
)
๐›ฝ
1 โˆ’ ๐›ผ๐‘–
๐›ฝ
= ๐›ผ๐‘– ๐œˆ โˆ’
.
๐œˆ๐‘– โ‰ค ๐›ผ๐‘– ๐œˆ + ๐›ฝ 1 + ๐›ผ + โ‹… โ‹… โ‹… + ๐›ผ๐‘–โˆ’1 = ๐›ผ๐‘– ๐œˆ + ๐›ฝ
+
1โˆ’๐›ผ
1โˆ’๐›ผ
1โˆ’๐›ผ
(
)
๐›ฝ
๐›พ๐›ฝ
This implies ๐‘ ๐‘– โ‰ค ๐›พ ๐œˆ โˆ’ 1โˆ’๐›ผ
๐›ผ๐‘–โˆ’1 + 1โˆ’๐›ผ
โˆ’ ๐›ฟ, and thus
๐‘—
โˆ‘
(
๐‘ ๐‘– โ‰ค ๐›พ ๐œˆ โˆ’
๐‘–=1
๐›ฝ
1โˆ’๐›ผ
)โˆ‘
๐‘—
๐‘–=1
๐›ผ๐‘–โˆ’1 + ๐‘—
(
๐›พ๐›ฝ
โˆ’๐›ฟ
1โˆ’๐›ผ
)
)
(
)
๐›ฝ
1 โˆ’ ๐›ผ๐‘—
๐›พ๐›ฝ
โ‹…
+๐‘—
โˆ’๐›ฟ
1โˆ’๐›ผ
1โˆ’๐›ผ
1โˆ’๐›ผ
(
)
๐›ฝ
๐›ฝ
๐›ฝ
2
If ๐‘— is given by (2) then ๐œˆ๐‘— โ‰ค ๐›ผ๐‘– ๐œˆ โˆ’ 1โˆ’๐›ผ
+ 1โˆ’๐›ผ
โ‰ค 1โˆ’๐›ผ
+ 1โˆ’๐›ผ
=
(
=๐›พ ๐œˆโˆ’
2+๐›ฝ
1โˆ’๐›ผ ,
and
๐‘—
โˆ‘
(
)
(
)
1 โˆ’ ๐›ผ๐‘—
๐›ฝ
๐›พ๐›ฝ
๐‘ ๐‘– โ‰ค
โ‹…๐›พ ๐œˆโˆ’
+๐‘—
โˆ’๐›ฟ
1โˆ’๐›ผ
1โˆ’๐›ผ
1โˆ’๐›ผ
๐‘–=1
)
(
)
(
โˆฃ๐‘‡ โˆฃ
๐›ฝ
=2 ๐œˆโˆ’
.
โ‰ค2 ๐œˆโˆ’
1โˆ’๐›ผ
โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜
โŠ”
โŠ“
We now ๏ฌnish the proof of
Lemma
) 6. At each one of (the )๏ฌrst ๐‘— iterations
( ๐‘˜) (
๐‘˜
we out-cover at least ๐œˆ โ„ฑ๐ผ 1 โˆ’ โˆฃ๐‘‡ โˆฃ โˆ’ 1 members of ๐’ž โ„ฑ๐ผ๐‘˜ , by Lemmas 7.
( )
In each one of the consequent iterations, we can reduce ๐œˆ โ„ฑ๐ผ๐‘˜ by at least one,
( )
if we choose the center of the star in ๐ถ for some ๐ถห† โˆˆ ๐’ž โ„ฑ๐ผ๐‘˜ . Thus using
Lemma 8, performing the necessary computations, and substituting the values
of the parameters, we obtain that the number of stars in ๐’ฎ is bounded by
โŒ‹
(
)
ln 21 ๐œˆ(1 โˆ’ ๐›ผ)
5โˆฃ๐‘‡ โˆฃ
โˆฃ๐‘‡ โˆฃ
+
=๐‘‚
ln min{๐œˆ, โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜} .
๐‘— + ๐œˆ๐‘— โ‰ค
ln(1/๐›ผ)
โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜
โˆฃ๐‘‡ โˆฃ โˆ’ ๐‘˜
โŒŠ
Now we discuss a variation of this algorithm that produces ๐’ฎ with a small
number
of)leaves. Here at each one of the ๏ฌrst ๐‘— iterations we out-cover exactly
(
ห†๐ถ ,
๐œˆ 1 โˆ’ โˆฃ๐‘‡๐‘˜ โˆฃ โˆ’ 1 min-cores. For that, we need be able to compute the bisets ๐‘ˆ
and such a procedure can be found(in [14]. The
) number of edges in the stars at
โˆฃ๐‘‡ โˆฃ
โˆฃ
the end of this phase is at most 2 ๐œˆ โˆ’ โˆฃ๐‘‡ โˆฃโˆ’๐‘˜ and ๐œˆ๐‘— โ‰ค โˆฃ๐‘‡5โˆฃ๐‘‡
โˆฃโˆ’๐‘˜ . In the case of
non-symmetric โ„ฑ and/or directed edges, we apply the same algorithm on โ„ฑฬ„ ๐‘˜ .
At this point, we apply Phase 2 of the algorithm from the
section.
)
( previous
โˆฃ
, the size of
Since the number of cores of each one of โ„ฑ๐ผ๐‘˜ , โ„ฑฬ„๐ผ๐‘˜ is now ๐‘‚ โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
(
)
โˆฃ
โˆฃ
the transversal ๐‘‡ โ€ฒ computed is bounded by โˆฃ๐‘‡ โ€ฒ โˆฃ = ๐‘‚ โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
โ‹… log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
. The
number of stars is at most the size โˆฃ๐‘‡ โ€ฒ โˆฃ, while the number of edges in the stars
(
)
( ) ( โˆฃ )2
โˆฃ
is at most โˆฃ๐‘‡ โ€ฒ โˆฃ โ‹… ๐œˆ โ„ฑฬ„๐ผ = โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
โ‹… ๐‘‚ log โˆฃ๐‘‡โˆฃ๐‘‡โˆฃโˆ’๐‘˜
.
This concludes the proof of Theorem 3.
References
1. V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm
for ๏ฌnding an optimum 3-vertex-connected spanning subgraph. J. Algorithms,
32(1):21โ€“30, 1999.
2. J. Cheriyan and A. Vetta. Approximation algorithms for network design with
metric costs. SIAM J. Discrete Mathematics, 21(3):612โ€“636, 2007.
3. J. Chuzhoy and S. Khanna. An ๐‘‚(๐‘˜3 log ๐‘›)-approximation algorithm for vertexconnectivity survivable network design. In FOCS, pages 437โ€“441, 2009.
4. Y. Dinitz and Z. Nutov. A 3-approximation algorithm for ๏ฌnding optimum 4,5vertex-connected spanning subgraphs. J. Algorithms, 32(1):31โ€“40, 1999.
5. A. Frank and T. Jordaฬn. Minimal edge-coverings of pairs of sets. J. Combinatorial
Theory, Ser. B, 65(1):73โ€“110, 1995.
6. A. Frank and E. Tardos. An application of submodular ๏ฌ‚ows. Linear Algebra and
its Applications, 114/115:329โ€“348, 1989.
7. T. Jordaฬn. On the optimal vertex-connectivity augmentation. J. Combinatorial
Theory, Ser. B, 63(1):8โ€“20, 1995.
8. S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform
connectivity problems. J. Algorithms, 21(2):434โ€“450, 1996.
9. G. Kortsarz, R. Krauthgamer, and J. Lee. Hardness of approximation for vertexconnectivity network design problems. SIAM J. Computing, 33(3):704โ€“720, 2004.
10. G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set
covers. Algorithmica, 37:75โ€“92, 2003.
11. G. Kortsarz and Z. Nutov. Approximating ๐‘˜-node connected subgraphs via critical
graphs. SIAM J. on Computing, 35(1):247โ€“257, 2005.
12. G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems,
Ch. 58 in Approximation algorithms and Metaheuristics, Editor T. F. Gonzalez.
Chapman & Hall/CRC, 2007.
13. G. Kortsarz and Z. Nutov. Tight approximation algorithm for connectivity augmentation problems. J. Computer and System Sciences, 74(5):662โ€“670, 2008.
14. B. Laekhamukit. An improved approximation algorithm for minimum-cost subset
๐‘˜-connectivity. In ICALP, 2011. To appear.
15. Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theoretical
Computer Science, 410(21-23):2122โ€“2125, 2009.
16. L. Lovaฬsz. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383โ€“390, 1975.
17. Z. Nutov. Approximating minimum-cost edge-covers of crossing biset families. Manuscript. Preliminary version: An almost ๐‘‚(log ๐‘˜)-approximation for ๐‘˜connected subgraphs, SODA 2009, 912โ€“921.
18. Z. Nutov. Approximating rooted connectivity augmentation problems. Algorithmica, 44:213โ€“231, 2006.
19. Z. Nutov. Approximating minimum cost connectivity problems via uncrossable
bifamilies and spider-cover decompositions. In FOCS, pages 417โ€“426, 2009.
20. Z. Nutov. Approximating node-connectivity augmentation problems. In APPROX,
pages 286โ€“297, 2009.