Approximating subset ๐-connectivity problems Zeev Nutov The Open University of Israel [email protected] Abstract. A subset ๐ โ ๐ of terminals is ๐-connected to a root ๐ in a directed/undirected graph ๐ฝ if ๐ฝ has ๐ internally-disjoint ๐ฃ๐ -paths for every ๐ฃ โ ๐ ; ๐ is ๐-connected in ๐ฝ if ๐ is ๐-connected to every ๐ โ ๐ . We consider the Subset ๐-Connectivity Augmentation problem: given a graph ๐บ = (๐, ๐ธ) with edge/node-costs, node subset ๐ โ ๐ , and a subgraph ๐ฝ = (๐, ๐ธ๐ฝ ) of ๐บ such that ๐ is ๐-connected in ๐ฝ, ๏ฌnd a minimum-cost augmenting edge-set ๐น โ ๐ธ โ ๐ธ๐ฝ such that ๐ is (๐ + 1)-connected in ๐ฝ โช ๐น . The problem admits trivial ratio ๐(โฃ๐ โฃ2 ). We consider the case โฃ๐ โฃ > ๐ and prove that for directed/undirected graphs and edge/nodecosts, a ๐-approximation for Rooted Subset ๐-Connectivity Augmentation implies the following ratios for Subset ๐-Connectivity Augmentation: ( )2 ( ) ( ) โฃ โฃ โฃ (i) ๐(๐ + ๐) + โฃ๐3โฃ๐ ๐ป โฃ๐3โฃ๐ and (ii) ๐ โ ๐ โฃ๐โฃ๐โฃโ๐ log ๐ , โฃโ๐ โฃโ๐ where ๐ = 1 for undirected graphs and ๐ = 2 for directed graphs, and ๐ป(๐) is the ๐th harmonic number. The best known values of ๐ on undirected graphs are min{โฃ๐ โฃ, ๐(๐)} for edge-costs and min{โฃ๐ โฃ, ๐(๐ log โฃ๐ โฃ)} for node-costs; for directed graphs ๐ = โฃ๐ โฃ for both versions. Our results imply that unless ๐ = โฃ๐ โฃ โ ๐(โฃ๐ โฃ), Subset ๐-Connectivity Augmentation admits the same ratios as the best known ones for the rooted version. This improves the ratios in [19, 14]. 1 Introduction In the Survivable Network problem we are given a graph ๐บ = (๐, ๐ธ) with edge/node-costs and pairwise connectivity requirements {๐(๐ข, ๐ฃ) : ๐ข, ๐ฃ โ ๐ โ ๐ } on a set ๐ of terminals. The goal is to ๏ฌnd a minimum-cost subgraph of ๐บ that contains ๐(๐ข, ๐ฃ) internally-disjoint ๐ข๐ฃ-paths for all ๐ข, ๐ฃ โ ๐ . In Rooted Subset ๐-Connectivity problem there is ๐ โ ๐ such that ๐(๐ , ๐ก) = ๐ for all ๐ก โ ๐ โ {๐ } and ๐(๐ข, ๐ฃ) = 0 otherwise. In Subset ๐-Connectivity problem ๐(๐ข, ๐ฃ) = ๐ for all ๐ข, ๐ฃ โ ๐ and ๐(๐ข, ๐ฃ) = 0 otherwise. In the augmentation versions, ๐บ contains a subgraph ๐ฝ of cost zero with ๐(๐ข, ๐ฃ) โ 1 internally disjoint paths for all ๐ข, ๐ฃ โ ๐ . A subset ๐ โ ๐ of terminals is ๐-connected to a root ๐ in a directed/undirected graph ๐ฝ if ๐ฝ has ๐ internally-disjoint ๐ฃ๐ -paths for every ๐ฃ โ ๐ ; ๐ is ๐-connected in ๐ฝ if ๐ is ๐-connected to every ๐ โ ๐ . Formally, the versions of Survivable Network we consider are as follows, where we revise our notation to ๐ โ ๐ + 1. Rooted Subset ๐-Connectivity Augmentation Instance: A graph ๐บ = (๐, ๐ธ) with edge/node-costs, a set ๐ โ ๐ of terminals, root ๐ โ ๐ , and a subgraph ๐ฝ = (๐, ๐ธ๐ฝ ) of ๐บ such that ๐ โ {๐ } is ๐-connected to ๐ in ๐ฝ. Objective: Find a minimum-cost augmenting edge-set ๐น โ ๐ธ โ ๐ธ๐ฝ such that ๐ โ {๐ } is (๐ + 1)-connected to ๐ in ๐ฝ โช ๐น . Subset ๐-Connectivity Augmentation Instance: A graph ๐บ = (๐, ๐ธ) with edge/node-costs, subset ๐ โ ๐ , and a subgraph ๐ฝ = (๐, ๐ธ๐ฝ ) of ๐บ such that ๐ is ๐-connected in ๐ฝ. Objective: Find a minimum-cost augmenting edge-set ๐น โ ๐ธ โ ๐ธ๐ฝ such that ๐ is (๐ + 1)-connected in ๐ฝ โช ๐น . The Subset ๐-Connectivity Augmentation is Label-Cover hard to approximate [9]. It is known and easy to see that for both edge-costs and node-costs, if Subset ๐-Connectivity Augmentation admits approximation ratio ๐(๐) such that ๐(๐) is a monotone increasing function, then Subset ๐-Connectivity admits ratio ๐ โ ๐(๐). Moreover, for edge costs, if in addition the approximation ๐(๐) is w.r.t. a standard setpair/biset LP-relaxation to the problem, then Subset ๐-Connectivity admits ratio ๐ป(๐) โ ๐(๐), where ๐ป(๐) denotes the ๐th harmonic number. For edge-costs, a standard LP-relaxation for Survivable Network (due to Frank and Jordaฬn [5]) is: โง โซ โจโ โฌ โ ๐๐ ๐ฅ๐ : ๐ฅ๐ โฅ ๐(๐, ๐ โ ), ๐, ๐ โ โ ๐, ๐ โฉ ๐ โ = โ , 0 โค ๐ฅ๐ โค 1 min โฉ โญ โ ๐โ๐ธ ๐โ๐ธ(๐,๐ ) where ๐(๐, ๐ โ ) = max{๐(๐ข, ๐ฃ) : ๐ข โ ๐, ๐ฃ โ ๐ โ } and ๐ธ(๐, ๐ โ ) is the set of edges in ๐ธ from ๐ to ๐ โ . The Subset ๐-Connectivity problem admits trivial ratios ๐(โฃ๐ โฃ2 ) for both edgecosts and node-costs, by computing for every ๐ข, ๐ฃ โ ๐ an optimal edge-set of ๐ internally-disjoint ๐ข๐ฃ-paths (this is essentially a Min-Cost ๐-Flow problem, that can be solved in polynomial time), and taking the union of the computed edgesets. We note that for metric edge-costs the problem admits an ๐(1) ratio [2]. For โฃ๐ โฃ โฅ ๐+1 the problem can also be decomposed into ๐ instances of Rooted Subset ๐-Connectivity problems, c.f. [11] for the case ๐ = ๐ , where it is also shown that for ๐ = ๐ the number( of of Rooted ) Subset ๐-Connectivity Augmentation instances โฃ๐ โฃ can be reduced to ๐ โฃ๐ โฃโ๐ log ๐ , which is ๐(log ๐) unless ๐ = โฃ๐ โฃ โ ๐(โฃ๐ โฃ). Recently, Laekhanukit [14] made an important observation that the method of [11] can be extended for the case of arbitrary ๐ โ ๐ . Speci๏ฌcally, he proved that if โฃ๐ โฃ โฅ 2๐, then ๐(log ๐) instances of Rooted Subset ๐-Connectivity Augmentation will su๏ฌce. Thus for โฃ๐ โฃ โฅ 2๐, the ๐(๐)-approximation algorithm of [19] for Rooted Subset ๐-Connectivity Augmentation leads to the ratio ๐(๐ log ๐) for Rooted Subset ๐-Connectivity Augmentation. By cleverly exploiting an additional property of the algorithm of [19] (see [14, Lemma 14]), he reduced the ratio to ๐(๐) in the case โฃ๐ โฃ โฅ ๐ 2 . However, using a di๏ฌerent approach, we will show that all this is not necessary, as for both directed and undirected graphs and edge-costs and node-costs, Subset ๐-Connectivity Augmentation can be reduced to solving one instance (or two instances, in the case of directed graphs) of Rooted Subset ๐-Connectivity )2 ( ) ( โฃ 3โฃ๐ โฃ Augmentation and ๐ โฃ๐3โฃ๐ ๐ป instances of Min-Cost ๐-Flow problem. โฃโ๐ โฃ๐ โฃโ๐ This leads to a much simpler algorithm, improves the result of Laekhanukit [14] for โฃ๐ โฃ < ๐ 2 , and applies also for node-costs and directed graphs. In addition, we give a more natural and much simpler extension of the ( ) algorithm of [11] for ๐ = ๐ , that also enables the same bound ๐ โฃ๐ โฃ โฃ๐ โฃโ๐ log ๐ as in [11] for arbitrary ๐ with โฃ๐ โฃ โฅ ๐ + 1, and in addition applies also for directed graphs, for nodecosts, and for an arbitrary type of edge-costs, e.g., metric costs, or uniform costs, or 0, 1-costs. When we say โ0, 1-edge-costsโ we mean that the input graph ๐บ is complete, and the goal is to add to the subgraph ๐ฝ of ๐บ formed by the zero-cost edges a minimum size edge-set ๐น (any edge is allowed) such that ๐ฝ โช ๐น satis๏ฌes the connectivity requirements. Formally, our result is the following. Theorem 1. For both directed and undirected graphs, and edge-costs and nodecosts the following holds. If Rooted Subset ๐-Connectivity Augmentation admits approximation ratio ๐ = ๐(๐, โฃ๐ โฃ), then for โฃ๐ โฃ โฅ ๐ + 1 Subset ๐-Connectivity Augmentation admits the following approximation ratios: )2 ( ) ( โฃ โฃ , where ๐ = 1 for undirected graphs and ๐ log โฃ๐โฃ๐โฃโ๐ (i) ๐(๐ + ๐) + โฃ๐โฃ๐โฃโ๐ ๐ = 2(for directed graphs. ) โฃ (ii) ๐ โ ๐ โฃ๐โฃ๐โฃโ๐ log min{๐, โฃ๐ โฃ โ ๐} , and this is so also for 0, 1-edge-costs. Furthermore, if for edge-costs the approximation ratio ๐ is w.r.t. a standard LPrelaxation for the problem, then so are the ratios in (i) and (ii). For โฃ๐ โฃ > ๐, the best known values of ๐ on undirected graphs are ๐(๐) for edge-costs and min{๐(๐ log โฃ๐ โฃ), โฃ๐ โฃ} for node-costs [19]; for directed graphs ๐ = โฃ๐ โฃ for both versions. For 0, 1-edge-costs ๐ = ๐(log ๐) [20] for undirected graphs and ๐ = ๐(log โฃ๐ โฃ) [18] for directed graphs. For edge-costs, these ratios are w.r.t. a standard LP-relaxation. Thus Theorem 1 implies the following. Corollary 1. For โฃ๐ โฃ โฅ ๐ + 1, Subset ๐-Connectivity Augmentation admits the following approximation ratios. ( )2 ( ) โฃ โฃ โ For undirected graphs, the ratios are ๐(๐) + โฃ๐โฃ๐โฃโ๐ ๐ log โฃ๐โฃ๐โฃโ๐ for edge( )2 ( ) ( ) โฃ โฃ โฃ costs, ๐(๐ log โฃ๐ โฃ)+ โฃ๐โฃ๐โฃโ๐ ๐ log โฃ๐โฃ๐โฃโ๐ for node-costs, and โฃ๐โฃ๐โฃโ๐ โ ๐ log2 ๐ for 0, 1-edge-costs. ( )2 ( ) โฃ โฃ โ For directed graphs, the ratio is 2(โฃ๐ โฃ + ๐) + โฃ๐โฃ๐โฃโ๐ ๐ log โฃ๐โฃ๐โฃโ๐ for both edge-costs and node-costs, and โฃ๐ โฃ โฃ๐ โฃโ๐ โ ๐ (log โฃ๐ โฃ log ๐) for 0, 1 edge-costs. For Subset ๐-Connecivity, the ratios are larger by a factor of ๐ป(๐) for edge-costs, and by a factor ๐ for node-costs. Note that except the case of 0, 1-edge-costs, Corollary 1 is deduced from part (i) of Theorem 1. However, part (ii) of Theorem 1 might become relevant if Rooted Subset ๐-Connectivity Augmentation admits ratio better than ๐(๐). In addition, part (ii) applies for any type of edge-costs, e.g. metric or 0, 1-edge-costs. We conclude this section by mentioning some additional related work. The case ๐ = ๐ of Rooted Subset ๐-Connectivity problem is the ๐-Outconnected Subgraph problem; this problem admits a polynomial time algorithm for directed graphs [6], which implies ratio 2 for undirected graphs. For arbitrary ๐ , the problem harder than Directed Steiner Tree [15]. The case ๐ = ๐ of Subset ๐Connectivity problem is the ๐-Connected Subgraph problem. ) This problem is NP( ๐ for both directed and hard, and the best known ratio for it is ๐ log ๐ log ๐โ๐ undirected graphs [17]; for the augmentation ( ) version of increasing the connectivity by one the ratio in [17] is ๐ log ๐ ๐โ๐ . For metric costs the problem admits ๐โ1 ๐ ratios 2 + for undirected graphs and 2 + ๐๐ for directed graphs [10]. For 0, 1-edge-costs the problem is solvable for directed graphs [5], which implies ratio 2 for undirected graphs. The Survivable Network problem is Label-Cover hard [9], and the currently best known non-trivial ratios for it on undirected graphs are: ๐(๐ 3 log โฃ๐ โฃ) for arbitrary edge-costs by Chuzhoy and Khanna [3], ๐(log { } ๐) for metric costs due to Cheriyan and Vetta [2], ๐(๐) โ min log2 ๐, log โฃ๐ โฃ for 0, 1-edge-costs [20, 13], and ๐(๐ 4 log2 โฃ๐ โฃ) for node-costs [19]. 2 Proof of Theorem 1 We start by proving the following essentially known statement. Proposition 1. Suppose that Rooted Subset ๐-Connectivity Augmentation admits an approximation ratio ๐. If for an instance of Subset ๐-Connectivity Augmentation we are given a set of ๐ edges (when any edge is allowed) and ๐ stars (directed to or from the root) on ๐ whose addition to ๐บ makes ๐ (๐ + 1)-connected, then we can compute a (๐๐+๐)-approximate solution ๐น to this instance in polynomial time. Furthermore, for edge-costs, if the ๐-approximation is w.r.t. a standard LP-relaxation, then ๐(๐น ) โค (๐๐ + ๐)๐ โ , where ๐ โ is an optimal standard LP-relaxation value for Subset ๐-Connectivity Augmentation. Proof. For every edge ๐ข๐ฃ among the ๐ edges compute a minimum-cost edge-set ๐น๐ข๐ฃ โ ๐ธ โ ๐ธ๐ฝ such that ๐ฝ โช ๐น๐ข๐ฃ contains ๐ internally-disjoint ๐ข๐ฃ-paths. This can be done in polynomial time for both edge and node costs, using a Min-Cost ๐-Flow algorithm. For edge-costs, it is known that ๐(๐น๐ข๐ฃ ) โค ๐ โ . Then replace ๐ข๐ฃ by ๐น๐ข๐ฃ , and note that ๐ remains ๐-connected. Similarly, for every star ๐ with center ๐ and leaf-set ๐ โฒ , compute an ๐ผ-approximate augmenting edge-set ๐น๐ โ ๐ธ โ ๐ธ๐ฝ such that ๐ฝ โช ๐น๐ contains ๐ internally-disjoint ๐ ๐ฃ-paths (or ๐ฃ๐ paths, in the case of directed graphs and ๐ being directed twords the root) for every ๐ฃ โ ๐ โฒ . Then replace ๐ by ๐น๐ , and note that ๐ remains ๐-connected. For edge-costs, it is known that if the ๐-approximation for the rooted version is w.r.t. a standard LP-relaxation, then ๐(๐น๐ ) โค (๐ผ๐ + ๐)๐ โ . The statement follows. โ โ Motivated by Proposition 1, we consider the following question: Given a ๐-connected subset ๐ in a graph ๐ฝ, how many edges and/or stars on ๐ one needs to add to ๐ฝ such that ๐ will become (๐ + 1)-connected? We emphasize that we are interested in obtaining absolute bounds on the number of edges in the question, expressed in certain parameters of the graph; namely we consider the extremal graph theory question and not the algorithmic problem. Indeed, the algorithmic problem of adding the minimum number of edges on ๐ such that ๐ will become (๐ + 1)-connected can be shown to admit a polynomial-time algorithm for directed graphs using the result of Frank and Jordaฬn [5]; this also implies a 2-approximation algorithm for undirected graphs. However, in terms of the parameters โฃ๐ โฃ, ๐, the result in [5] implies only the trivial bound ๐(โฃ๐ โฃ2 ) on the the number of edges one needs to add to ๐ฝ such that ๐ will become (๐ + 1)-connected. Our bounds will be derived in terms of the family of the โde๏ฌcientโ sets of the graph ๐ฝ. We need some de๏ฌnitions to state our results. ห = (๐, ๐ + ) of subsets of a groundset ๐ is De๏ฌnition 1. An ordered pair ๐ + ห called a biset if ๐ โ ๐ ; ๐ is the inner part and ๐ + is the outer part of ๐, + โ + ห ห ๐ค (๐) = ๐ โ ๐ is the boundary of ๐, and ๐ = ๐ โ ๐ is the complementary ห set of ๐. Given an instance of Subset ๐-Connectivity Augmentation we may assume that ๐ is an independent set in ๐ฝ. Otherwise, we obtain an equivalent instance by subdividing every edge ๐ข๐ฃ โ ๐ฝ with ๐ข, ๐ฃ โ ๐ by a new node. De๏ฌnition 2. Given a ๐-connected independent set ๐ in a graph ๐ฝ = (๐, ๐ธ๐ฝ ) ห on ๐ is (๐, ๐)-tight in ๐ฝ if ๐ โฉ ๐, ๐ โ โฉ ๐ โ= โ , ๐ + is let us say that a biset ๐ ห = ๐. the union of ๐ and the set of neighbors of ๐ in ๐ฝ, and โฃ๐ค (๐)โฃ ห if it goes from ๐ to ๐ โ . By Mengerโs Theorem, An edge covers a biset ๐ ๐น is a feasible solution to Subset ๐-Connectivity Augmentation if, and only if, ๐น covers the biset-family โฑ of tight bisets; see [12, 20]. Thus our question can be reformulated as follows: Given a ๐-connected independent set ๐ in a graph ๐ฝ, how many edges and/or stars on ๐ are needed to cover the family โฑ of (๐, ๐)-tight bisets? ห ๐ห is de๏ฌned by De๏ฌnition 3. The intersection and the union of two bisets ๐, + + + + ห ห ห ห ห ๐ห ๐ โฉ ๐ = (๐ โฉ ๐, ๐ โฉ ๐ ) and ๐ โช ๐ = (๐ โช ๐, ๐ โช ๐ ). Two bisets ๐, โ โ ห ห intersect if ๐ โฉ ๐ โ= โ ; if in addition ๐ โฉ ๐ โ= โ then ๐, ๐ cross. We say that a biset-family โฑ is: ห โฉ ๐ห , ๐ ห โช ๐ห โ โฑ for any ๐, ห ๐ห โ โฑ that cross. โ crossing if ๐ ห ห ห โฉ ๐ห , ๐ ห โช ๐ห โ โฑ for any โ ๐-regular if โฃ๐ค (๐)โฃ โค ๐ for every ๐ โ โฑ, and if ๐ ห ห intersecting ๐, ๐ โ โฑ with โฃ๐ โช ๐ โฃ โค โฃ๐ โฃ โ ๐ โ 1. The following statement is essentially known. Lemma 1. Let ๐ be a ๐-connected independent set in a graph ๐ฝ = (๐, ๐ธ๐ฝ ), and ห ๐ห be (๐, ๐)-tight bisets. If (๐ โฉ ๐, ๐ + โฉ ๐ ), (๐ โฉ ๐, ๐ + โฉ ๐ ) cross or if let ๐, ห โฉ ๐ห , ๐ ห โช ๐ห are both (๐, ๐)-tight. โฃ(๐ โช ๐ ) โฉ ๐ โฃ โค โฃ๐ โฃ โ ๐ โ 1 then ๐ Proof. The case (๐ โฉ ๐, ๐ + โฉ ๐ ), (๐ โฉ ๐, ๐ + โฉ ๐ ) was proved in [20] and [14]. The proof of the case โฃ(๐ โช ๐ ) โฉ ๐ โฃ โค โฃ๐ โฃ โ ๐ โ 1 is identical to the proof of [7, Lemma 1.2] where the case ๐ = ๐ is considered. โ โ Corollary 2. The biset-family โฑ = {(๐ โฉ ๐, ๐ + โฉ ๐ ) : (๐, ๐ + ) is a (๐, ๐)-tight biset in ๐ฝ} ห โ โฑ} is crossing and ๐-regular, and the reverse family โฑฬ = {(๐ โ ๐ + , ๐ โ ๐) : ๐ of โฑ is also crossing and ๐-regular. Furthermore, if ๐ฝ is undirected then โฑ is symmetric, namely, โฑ = โฑฬ. ห ๐ห we write ๐ ห โ ๐ห and say that ๐ห contains ๐ ห if ๐ โ ๐ Given two bisets ๐, ห โ ๐ห and ๐ห properly contains ๐ ห if ๐ โ ๐ or if or if ๐ = ๐ and ๐ + โ ๐ + ; ๐ ๐ = ๐ and ๐ + โ ๐ + . De๏ฌnition 4. A biset ๐ถห is a core of a biset-family โฑ if ๐ถห โ โฑ and ๐ถห contains ห namely, a core is an inclusion-minimal biset in โฑ. Let ๐(โฑ) no biset in โฑ โ {๐ถ}; be the family of cores of โฑ and let ๐(โฑ) = โฃ๐(โฑ)โฃ denote their number. Given a biset-family โฑ and an edge-set ๐ผ on ๐ , the residual biset-family โฑ๐ผ of โฑ consists of the members of โฑ uncovered by ๐ผ. We will assume that for any ๐ผ, the cores of โฑ๐ผ and of โฑฬ๐ผ can be computed in polynomial time. For โฑ being the family of (๐, ๐)-tight bisets this can be implemented in polynomial time using the Ford-Fulkerson Max-Flow Min-Cut algorithm, c.f. [20]. It is known and easy to see that if โฑ is crossing and/or ๐-regular, so is โฑ๐ผ , for any edge-set ๐ผ. De๏ฌnition 5. For a biset-family โฑ on ๐ let ๐(โฑ) be the maximum number of bisets in โฑ which inner parts are pairwise-disjoint. For an integer ๐ let โฑ ๐ = ห โ โฑ : โฃ๐โฃ โค (โฃ๐ โฃ โ ๐)/2}. {๐ ห ๐ห โ โฑ ๐ intersect. Lemma 2. Let โฑ be a ๐-regular biset-family on ๐ and let ๐, ๐ ห ห ห ห Then ๐ โฉ ๐ โ โฑ and ๐ โช ๐ โ โฑ. Proof. Since โฃ๐โฃ, โฃ๐ โฃ โค โฃ๐ โฃโ๐ 2 , we have โฃ๐ โช๐ โฃ = โฃ๐โฃ+โฃ๐ โฃโโฃ๐ โฉ๐ โฃ โค โฃ๐ โฃโ๐ โ1. ห ห ห ห ห โฉ ๐ห โ โฑ ๐ , since Thus ๐ โฉ ๐ , ๐ โฉ ๐ โ โฑ, by the ๐-regularity of โฑ. Moreover, ๐ โฃ๐ โฃโ๐ โฃ๐ โฉ ๐ โฃ โค โฃ๐โฃ โค 2 . โ โ We will prove the following two theorems that imply Theorem 1. Theorem 2. Let โฑ be a biset-family on ๐ such that both โฑ, โฑฬ are crossing and ๐-regular. Then there exists a polynomial-time algorithm that computes an edge)2 ( ) ( ) ( ) ( โฃ โฃ cover ๐ผ of โฑ of size โฃ๐ผโฃ = ๐ โฑ ๐ + ๐ โฑฬ ๐ + โฃ๐3โฃ๐ ๐ป โฃ๐3โฃ๐ โฃโ๐ โฃโ๐ . Furthermore, )2 ( ) ( ) ( โฃ โฃ if โฑ is symmetric then โฃ๐ผโฃ = ๐ โฑ ๐ + โฃ๐3โฃ๐ ๐ป โฃ๐3โฃ๐ โฃโ๐ โฃโ๐ . Theorem 3. Let โฑ be a biset-family ( on ๐ such that both โฑ and ) โฑฬ are ๐-regular. โฃ๐ โฃ Then there exists a collection of ๐ โฃ๐ โฃโ๐ lg min{๐, โฃ๐ โฃ โ ๐} stars on ๐ which union covers โฑ, and such a collection can be computed in polynomial ( ) time. ( Fur) thermore, the total number of edges in the stars is at most ๐ โฑ ๐ + ๐ โฑฬ ๐ + )2 ( ) ( โฃ โฃ๐ โฃ โ ๐ log โฃ๐โฃ๐โฃโ๐ . โฃ๐ โฃโ๐ Note that the second statement in Theorem 3 implies (up to constants) the bound in Theorem 2. However, the proof of Theorem 2 is much simpler than the proof of Theorem 3, and the proof of Theorem 2 is a part of the proof of the second statement in Theorem 3. Let us show that Theorems 2 and 3 imply Theorem 1. For that, all we need is to show that by applying one time the ๐ผ-approximation algorithm for the ๐-Connectivity Augmentation, we obtain an instance with ( Rooted ) ( Subset ) ๐ โฑ ๐ , ๐ โฑฬ ๐ โค ๐ + 1. This is achieved by the following procedure due to Khuller and Raghavachari [8] that originally considered the case ๐ = ๐ , see also [1, 4, 10]; the same procedure is also used by Laekhanukit in [14]. Choose an arbitrary subset ๐ โฒ โ ๐ of ๐ + 1 nodes, add a new node ๐ (the root) and all edges between ๐ and ๐ โฒ of cost zero each, both to ๐บ and to ๐ฝ. Then, using the ๐ผ-approximation algorithm for the Rooted Subset ๐-Connectivity Augmentation, compute an augmenting edge set ๐น such that ๐ฝ โช ๐น contains ๐ internally disjoint ๐ฃ๐ -paths and ๐ ๐ฃ-paths for every ๐ฃ โ ๐ โฒ . Now, add ๐น to ๐ฝ and remove ๐ from ๐ฝ. It is a routine to show that ๐(๐น ) โค ๐opt, and that for edge-costs ห is a tight biset of the obtained graph ๐ฝ, ๐(๐น ) โค ๐๐ โ . It is also known that if ๐ โฒ โ โฒ then ๐ โฉ ๐ , ๐ โฉ ๐ = โ โ , c.f. [1, 14]. Combined with Lemma 2 we obtain that ( ) ( ) ๐ โฑ ๐ , ๐ โฑฬ ๐ โค โฃ๐ โฒ โฃ โค ๐ + 1 for the obtained instance, as claimed. 3 Proof of Theorem 2 De๏ฌnition 6. Given a biset-family โฑ on ๐ , let ๐ฅ(โฑ) denote the maximum ห โ โฑ } of the inner parts of the bisets in degree in the hypergraph โฑ ๐๐ = {๐ : ๐ ๐๐ โฑ. We say that ๐ โฒ โ ๐ is a transversal of โฑ if ๐ โฒ โฉ ๐ โ= โ for โ every ๐ โ โฑ ; a function ๐ก : ๐ โ [0, 1] is a fractional transversal of โฑ if ๐ฃโ๐ ๐ก(๐ฃ) โฅ 1 for every ๐ โ โฑ ๐๐ . ( ) Lemma 3. Let โฑ be a crossing biset-family. Then ๐ฅ(๐(โฑ)) โค ๐ โฑฬ . Proof. Since โฑ is crossing, the members of ๐(โฑ) are pairwise non-crossing. Thus if โ is a subfamily of ๐(โฑ) such that the intersection of the inner parts of the bisets in โ is non-empty, then โฬ is a subfamily of ( โฑฬ) such that the inner parts of the bisets in โฬ are pairwise disjoint, so โฃโฬโฃ โค ๐ โฑฬ . The statement follows. โ โ Lemma 4. Let ๐ โฒ be a transversal of a biset-family โฑ โฒ on ๐ and let ๐ผ โฒ be an edge-set on ๐ obtained by picking for every ๐ โ ๐ โฒ an edge from ๐ to every ห โ โฑ โฒ , ๐ โ ๐}. Then ๐ผ โฒ covers โฑ โฒ . inclusion member of the set-family {๐ โ : ๐ โฒ โฒ โฒ Moreover, if โฑ is crossing then โฃ๐ผ โฃ โค โฃ๐ โฃ โ ๐(โฑฬ โฒ ). Proof. The statement that ๐ผ โฒ covers โฑ โฒ is obvious. If โฑ โฒ is crossing, then for every ห โ โฑ โฒ , ๐ โ ๐} are pairwise๐ โ ๐ the inclusion-minimal members of {๐ โ : ๐ โฒ disjoint, hence their number is at most ๐(โฑฬ ). The statement follows. โ โ Lemma 5. Let โฑ be a ๐-regular biset-family on ๐ . Then the following holds. ( ) โฃ (i) ๐(โฑ) โค ๐ โฑ ๐ + โฃ๐2โฃ๐ โฃโ๐ . ) ( ( ) ( ) โฃ ๐ = ๐ โฑ ๐ holds for every edge ๐ on ๐ then ๐ โฑ ๐ โค โฃ๐โฃ๐โฃโ๐ . (ii) If ๐ โฑ{๐} โฒ (iii) There exists a polynomial algorithm ( (time ) that ๏ฌnds a transversal ๐ of ๐(โฑ) ) 2โฃ๐ โฃ of size at most โฃ๐ โฒ โฃ โค ๐ โฑ ๐ + โฃ๐ โฃโ๐ โ ๐ป(๐ฅ(๐(โฑ))). Proof. Part (i) is immediate. ( ) ห๐ถ be the union of the bisets in โฑ ๐ We prove (ii). Let ๐ถห โ ๐ โฑ ๐ and let ๐ ( ) that contain ๐ถห and contain no other member of ๐ โฑ ๐( . If โฃ๐ ) ๐ถ โฃ โค( โฃ๐ โฃ)โ ๐ โ 1 ๐ ๐ ห๐ถ โ โฑ, by the ๐-regularity of โฑ. In this case ๐ โฑ then ๐ โ 1 for {๐} โค ๐ โฑ any edge from ๐ถ to ๐๐ถโ . Hence โฃ๐๐ถ โฃ โฅ โฃ๐ โฃ โ ๐ must hold for every ๐ถห โ ๐(โฑ). By Lemma 2, the sets in the set family {๐๐ถ : ๐ถห โ ๐(โฑ)} are pairwise disjoint. The statement follows. Let ๐ ๐ be an inclusion-minimal transversal of โฑ ๐ . By Lemma 2, ๐We prove ( (iii). ) ๐ = ๐ โฑ ๐ . Setting ๐ก(๐ฃ) = 1 if ๐ฃ โ ๐ ๐ and ๐ก(๐ฃ) = 2 otherwise, we obtain ( โฃ๐ )โฃโ๐ โฃ a fractional transversal of ๐(โฑ) of value at most ๐ โฑ ๐ + โฃ๐2โฃ๐ โฃโ๐ . Consequently, โฒ the greedy algorithm of Lovaฬsz [16] ๏ฌnds a transversal ๐ as claimed. โ โ The algorithm for computing ๐ผ as in Theorem 2 starts with ๐ผ = โ and then continues as follows. Phase 1 ( ) ( ) ๐ While there exists an edge ๐ on ๐ such that ๐ โฑ๐ผโช{๐} โค ๐ โฑ๐ผ๐ โ 1, or such ( ) ( ) ๐ that ๐ โฑฬ๐ผโช{๐} โค ๐ โฑฬ๐ผ๐ โ 1, add ๐ to ๐ผ. Phase 2 Find a transversal ๐ โฒ of ๐(โฑ โฒ ) as in Lemma 5(iii), where โฑ โฒ = โฑ๐ผ . Then ๏ฌnd an edge-cover ๐ผ โฒ of โฑ โฒ as in Lemma 4 and add ๐ผ โฒ to ๐ผ. The edge-set ๐ผ computed covers โฑ by( Lemma the number of ) (4. Clearly, ) ( edges ) in ๐ผ at the end of Phase 1 is at most ๐ โฑ ๐ + ๐ โฑฬ ๐ , and is at most ๐ โฑ ๐ if โฑ is symmetric. the size of ๐ผ โฒ . Note that at the 1 ( ๐ ) Now ( ๐we ) bound ( end ) of Phase โฃ๐ โฃ โฃ (by we have ๐ โฑ๐ผ , ๐ โฑฬ๐ผ โค โฃ๐ โฃโ๐ (by Lemma 5(ii)) and thus ๐ โฑฬ๐ผ โค โฃ๐3โฃ๐ โฃโ๐ ( ) ( ) โฃ 3โฃ๐ โฃ Lemma 5(i)) and ๐ฅ(๐(โฑ๐ผ )) โค ๐ โฑฬ๐ผ โค ๐ โฑฬ๐ผ๐ + โฃ๐2โฃ๐ โค (by Lemma 3). โฃโ๐ โฃ๐ โฃโ๐ ( ( ( ) ) ) 3โฃ๐ โฃ 3โฃ๐ โฃ 2โฃ๐ โฃ โฒ ๐ Consequently, โฃ๐ โฃ โค ๐ โฑ๐ผ + โฃ๐ โฃโ๐ โ ๐ป(๐ฅ(๐(โฑ๐ผ ))) โค โฃ๐ โฃโ๐ โ ๐ป โฃ๐ โฃโ๐ . From )2 ( ) ( ) ( โฃ โฃ this we get โฃ๐ผ โฒ โฃ โค โฃ๐ โฒ โฃ โ ๐ โฑฬ๐ผ โค โฃ๐3โฃ๐ โ ๐ป โฃ๐3โฃ๐ โฃโ๐ โฃโ๐ . The proof of Theorem 2 is now complete. 4 Proof of Theorem 3 We ( start ) by analyzing the performance of a natural Greedy Algorithm for covering ๐ โฑ ๐ , that starts with ๐ผ = โ and while ๐(โฑ๐ผ๐ ) โฅ 1 adds to ๐ผ a star ๐ for which ๐ ๐(โฑ๐ผโช๐ ) is minimal. It is easy to see that the algorithm terminates since any star with center ๐ in the inner part of some core of โฑ๐ผ๐ and edge set {๐ฃ๐ : ๐ฃ โ ๐ โ {๐ }} reduces the number of cores by one. The proof of the following statement is similar to the proof of the main result of [11]. Lemma 6. Let โฑ be a ๐-regular biset-family and let ๐ฎ be the collection of stars computed by the Greedy Algorithm. Then ) ( { ( ๐) } โฃ๐ โฃ ln min ๐ โฑ , โฃ๐ โฃ โ ๐ . โฃ๐ฎโฃ = ๐ โฃ๐ โฃ โ ๐ ( ) ห๐ถ the union of the bisets in โฑ ๐ Recall that given ๐ถห โ ๐ โฑ๐ผ๐ we denote by ๐ ๐ผ ( ) that contain ๐ถห and contain no other member of ๐ โฑ๐ผ๐ , and that by Lemma 2, the sets in the set-family {๐๐ถ : ๐ถห โ ๐(โฑ)} are pairwise disjoint. ( ) De๏ฌnition 7 ([11]). Let us say that ๐ โ ๐ out-covers ๐ถห โ ๐ โฑ ๐ if ๐ โ ๐๐ถโ . ( ) Lemma 7. Let โฑ be ๐-regular biset-family and let ๐ = ๐ โฑ ๐ . ) ( ( ) (i) There is ๐ โ ๐ that out-covers at least ๐ 1 โ โฃ๐๐ โฃ โ 1 members of ๐ โฑ ๐ . ( ) (ii) Let ๐ out-cover the members of ๐ โ ๐ โฑ ๐ and let ๐ be a star with one edge from ๐ to the inner part of each member of ๐. Then ๐(โฑ ๐ ) โค ๐(โฑ๐๐ ) โ โฃ๐โฃ/2. Consequently, there exists a star ๐ on ๐ such that ( ) 1 ๐ 1 ๐ ๐(โฑ๐ ) โค 1+ โ ๐+ =๐ผโ ๐+๐ฝ . (1) 2 โฃ๐ โฃ 2 { ( ) ( )} ห๐ถ : ๐ถห โ ๐ โฑ ๐ . Proof. We prove (i). Consider the hypergraph โ = ๐ โ ๐ค ๐ ( ) Note that the number of members of ๐ โฑ ๐ out-covered by any ๐ฃ โ ๐ is at least the degree of ๐ in โ minus 1. Thus all (we need)to prove is that there is a node ๐ โ ๐ whose degree in โ is at least ๐ 1 โ โฃ๐๐ โฃ . For every ๐ถ โ ๐(โฑ) we have ( ) ห๐ถ โฅ โฃ๐ โฃ โ ๐, by the ๐-regularity of โฑ. Hence the bipartite incidence ๐ โ ๐ค ๐ graph of ( โ has )at least ๐(โฃ๐ โฃ โ ๐) edges, and thus has a node ๐ โ ๐ of degree at least ๐ 1 โ โฃ๐๐ โฃ , which equals the degree of ๐ in โ. Part (i) follows. ( ) We prove (ii). It is su๏ฌcient to show that every ๐ถห โ ๐ โฑ๐๐ contains some ( ) ๐ถห โฒ โ ๐ โฑ ๐ โ ๐ or contains at least two members in ๐. Clearly, ๐ถห contains some ( ) ( ) ๐ถห โฒ โ ๐ โฑ ๐ . We claim that if ๐ถห โฒ โ ๐ then ๐ถห must contain some ๐ถห โฒโฒ โ ๐ โฑ ๐ distinct from ๐ถห โฒ . Otherwise, ๐ถห โ โฑ ๐ (๐ถ). But as ๐ covers all members of โฑ ๐ (๐ถ), ๐ถห โ / โฑ๐๐ . This is a contradiction. โ โ Let us use parameters ๐ผ, ๐ฝ, ๐พ, ๐ฟ and ๐ set to ( ) 1 ๐ 1 ๐ ๐ผ= 1+ ๐ฝ= ๐พ =1โ = 2(1 โ ๐ผ) ๐ฟ = 1, 2 โฃ๐ โฃ 2 โฃ๐ โฃ ( ) ๐ฝ 2 and ๐ is the minimum integer such that ๐ผ๐ ๐ โ 1โ๐ผ โค 1โ๐ผ (note that ๐ผ < 1), namely, โ 1 โ โ 1 โ ln 2 (๐(1 โ ๐ผ) โ ๐ฝ) ln 2 ๐(1 โ ๐ผ) ๐= โค . (2) ln(1/๐ผ) ln(1/๐ผ) We assume that ๐ โฅ ๐ฝ 1โ๐ผ = 2+๐ฝ 1โ๐ผ to have ๐ โฅ 0 (otherwise Lemma 6 follows). Note that โฃ๐ โฃ โฃ๐ โฃโ๐ . Lemma 8. Let 0 โค ๐ผ < 1, ๐ฝ โฅ 0, ๐0 = ๐, and for ๐ โฅ 1 let ๐๐+1 โค ๐ผ๐๐ + ๐ฝ ( Then ๐๐ โค ๐ผ๐ ๐ โ ๐ฝ 1โ๐ผ ) + ๐ฝ 1โ๐ผ and Moreover, if ๐ is given by (2) then ๐ ๐ = ๐พ๐๐โ1 โ ๐ฟ . ๐ โ ( ) ( ) ๐ฝ ๐พ๐ฝ โ ๐พ ๐ โ 1โ๐ผ โ๐ฟ . + ๐ 1โ๐ผ ) ( โ๐ โฃ โฃ๐ โฃ = โฃ๐5โฃ๐ ๐=1 ๐ ๐ โค 2 ๐ โ โฃ๐ โฃโ๐ . โฃโ๐ and ๐ ๐ โค ๐=1 2+๐ฝ ๐๐ โค 1โ๐ผ 1โ๐ผ๐ 1โ๐ผ Proof. Unraveling the recursive inequality ๐๐+1 โค ๐ผ๐๐ + ๐ฝ in the lemma we get: ( ) ( ) ๐ฝ 1 โ ๐ผ๐ ๐ฝ = ๐ผ๐ ๐ โ . ๐๐ โค ๐ผ๐ ๐ + ๐ฝ 1 + ๐ผ + โ โ โ + ๐ผ๐โ1 = ๐ผ๐ ๐ + ๐ฝ + 1โ๐ผ 1โ๐ผ 1โ๐ผ ( ) ๐ฝ ๐พ๐ฝ This implies ๐ ๐ โค ๐พ ๐ โ 1โ๐ผ ๐ผ๐โ1 + 1โ๐ผ โ ๐ฟ, and thus ๐ โ ( ๐ ๐ โค ๐พ ๐ โ ๐=1 ๐ฝ 1โ๐ผ )โ ๐ ๐=1 ๐ผ๐โ1 + ๐ ( ๐พ๐ฝ โ๐ฟ 1โ๐ผ ) ) ( ) ๐ฝ 1 โ ๐ผ๐ ๐พ๐ฝ โ +๐ โ๐ฟ 1โ๐ผ 1โ๐ผ 1โ๐ผ ( ) ๐ฝ ๐ฝ ๐ฝ 2 If ๐ is given by (2) then ๐๐ โค ๐ผ๐ ๐ โ 1โ๐ผ + 1โ๐ผ โค 1โ๐ผ + 1โ๐ผ = ( =๐พ ๐โ 2+๐ฝ 1โ๐ผ , and ๐ โ ( ) ( ) 1 โ ๐ผ๐ ๐ฝ ๐พ๐ฝ ๐ ๐ โค โ ๐พ ๐โ +๐ โ๐ฟ 1โ๐ผ 1โ๐ผ 1โ๐ผ ๐=1 ) ( ) ( โฃ๐ โฃ ๐ฝ =2 ๐โ . โค2 ๐โ 1โ๐ผ โฃ๐ โฃ โ ๐ โ โ We now ๏ฌnish the proof of Lemma ) 6. At each one of (the )๏ฌrst ๐ iterations ( ๐) ( ๐ we out-cover at least ๐ โฑ๐ผ 1 โ โฃ๐ โฃ โ 1 members of ๐ โฑ๐ผ๐ , by Lemmas 7. ( ) In each one of the consequent iterations, we can reduce ๐ โฑ๐ผ๐ by at least one, ( ) if we choose the center of the star in ๐ถ for some ๐ถห โ ๐ โฑ๐ผ๐ . Thus using Lemma 8, performing the necessary computations, and substituting the values of the parameters, we obtain that the number of stars in ๐ฎ is bounded by โ ( ) ln 21 ๐(1 โ ๐ผ) 5โฃ๐ โฃ โฃ๐ โฃ + =๐ ln min{๐, โฃ๐ โฃ โ ๐} . ๐ + ๐๐ โค ln(1/๐ผ) โฃ๐ โฃ โ ๐ โฃ๐ โฃ โ ๐ โ Now we discuss a variation of this algorithm that produces ๐ฎ with a small number of)leaves. Here at each one of the ๏ฌrst ๐ iterations we out-cover exactly ( ห๐ถ , ๐ 1 โ โฃ๐๐ โฃ โ 1 min-cores. For that, we need be able to compute the bisets ๐ and such a procedure can be found(in [14]. The ) number of edges in the stars at โฃ๐ โฃ โฃ the end of this phase is at most 2 ๐ โ โฃ๐ โฃโ๐ and ๐๐ โค โฃ๐5โฃ๐ โฃโ๐ . In the case of non-symmetric โฑ and/or directed edges, we apply the same algorithm on โฑฬ ๐ . At this point, we apply Phase 2 of the algorithm from the section. ) ( previous โฃ , the size of Since the number of cores of each one of โฑ๐ผ๐ , โฑฬ๐ผ๐ is now ๐ โฃ๐โฃ๐โฃโ๐ ( ) โฃ โฃ the transversal ๐ โฒ computed is bounded by โฃ๐ โฒ โฃ = ๐ โฃ๐โฃ๐โฃโ๐ โ log โฃ๐โฃ๐โฃโ๐ . The number of stars is at most the size โฃ๐ โฒ โฃ, while the number of edges in the stars ( ) ( ) ( โฃ )2 โฃ is at most โฃ๐ โฒ โฃ โ ๐ โฑฬ๐ผ = โฃ๐โฃ๐โฃโ๐ โ ๐ log โฃ๐โฃ๐โฃโ๐ . This concludes the proof of Theorem 3. References 1. V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for ๏ฌnding an optimum 3-vertex-connected spanning subgraph. J. Algorithms, 32(1):21โ30, 1999. 2. J. Cheriyan and A. Vetta. Approximation algorithms for network design with metric costs. SIAM J. Discrete Mathematics, 21(3):612โ636, 2007. 3. J. Chuzhoy and S. Khanna. An ๐(๐3 log ๐)-approximation algorithm for vertexconnectivity survivable network design. In FOCS, pages 437โ441, 2009. 4. Y. Dinitz and Z. Nutov. A 3-approximation algorithm for ๏ฌnding optimum 4,5vertex-connected spanning subgraphs. J. Algorithms, 32(1):31โ40, 1999. 5. A. Frank and T. Jordaฬn. Minimal edge-coverings of pairs of sets. J. Combinatorial Theory, Ser. B, 65(1):73โ110, 1995. 6. A. Frank and E. Tardos. An application of submodular ๏ฌows. Linear Algebra and its Applications, 114/115:329โ348, 1989. 7. T. Jordaฬn. On the optimal vertex-connectivity augmentation. J. Combinatorial Theory, Ser. B, 63(1):8โ20, 1995. 8. S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity problems. J. Algorithms, 21(2):434โ450, 1996. 9. G. Kortsarz, R. Krauthgamer, and J. Lee. Hardness of approximation for vertexconnectivity network design problems. SIAM J. Computing, 33(3):704โ720, 2004. 10. G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set covers. Algorithmica, 37:75โ92, 2003. 11. G. Kortsarz and Z. Nutov. Approximating ๐-node connected subgraphs via critical graphs. SIAM J. on Computing, 35(1):247โ257, 2005. 12. G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems, Ch. 58 in Approximation algorithms and Metaheuristics, Editor T. F. Gonzalez. Chapman & Hall/CRC, 2007. 13. G. Kortsarz and Z. Nutov. Tight approximation algorithm for connectivity augmentation problems. J. Computer and System Sciences, 74(5):662โ670, 2008. 14. B. Laekhamukit. An improved approximation algorithm for minimum-cost subset ๐-connectivity. In ICALP, 2011. To appear. 15. Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theoretical Computer Science, 410(21-23):2122โ2125, 2009. 16. L. Lovaฬsz. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13:383โ390, 1975. 17. Z. Nutov. Approximating minimum-cost edge-covers of crossing biset families. Manuscript. Preliminary version: An almost ๐(log ๐)-approximation for ๐connected subgraphs, SODA 2009, 912โ921. 18. Z. Nutov. Approximating rooted connectivity augmentation problems. Algorithmica, 44:213โ231, 2006. 19. Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-cover decompositions. In FOCS, pages 417โ426, 2009. 20. Z. Nutov. Approximating node-connectivity augmentation problems. In APPROX, pages 286โ297, 2009.
© Copyright 2026 Paperzz