10957_2014_557_MOESM1_ESM

On-Line Electronic Supplementary Material A: Supporting Discussions
Instrumental Variables
The inverse demand function in an imperfectly competitive market depends on the output levels
of all firms. However, in some cases other factors influence the price. Three cases are discussed
below. In the body of the paper we assume the simplest case, (1) estimating the inverse demand
function with no omitted variables, 𝑃𝑖 = 𝑃0 βˆ’ 𝛼𝒴𝑖 + πœ€π‘– , and 𝐸(𝒴𝑖 πœ€π‘– ) = 0, πœ€π‘– ~𝑁(0, πœŽπœ€2 ) i.i.d. and
a regression using Ordinary Least Squares (OLS) and 𝐸(𝑃𝑖 |𝒴𝑖 = π‘Œπ‘– ) = 𝑃0 βˆ’ π›Όπ‘Œπ‘– . However, if
there exist omitted variables π‘Šπ‘– which affect price 𝑃𝑖 , such that 𝑃𝑖 = 𝑃0 βˆ’ 𝛼𝒴𝑖 + π›½π‘Šπ‘– + πœ‚π‘– ,
where πœ‚π‘– ~𝑁(0, πœŽπœ‚2 ), alternative cases need to be considered.1 In case (2), OLS can still provide
consistent estimates when 𝐸(𝒴𝑖 πœ‚π‘– ) = 0 , 𝐸(π‘Šπ‘– πœ‚π‘– ) = 0 and the quantity variable 𝒴𝑖 is
uncorrelated with the omitted variable, i.e., 𝐸(𝒴𝑖 π‘Šπ‘– ) = 0 . Thus, the regression generates
0
0
𝐸(𝑃𝑖 |𝒴𝑖 = π‘Œπ‘– ) = π‘ƒπ‘Š
βˆ’ π›Όπ‘Œπ‘– , where π‘ƒπ‘Š
= 𝑃0 + 𝛽𝐸(π‘Šπ‘– ). In case (3), if 𝒴𝑖 is correlated with the
omitted variable 𝐸(𝒴𝑖 π‘Šπ‘– ) β‰  0, let πœ€π‘– = π›½π‘Šπ‘– + πœ‚π‘– , which results in 𝐸(𝒴𝑖 πœ€π‘– ) β‰  0.
Case (3) is termed endogeneity in econometrics; OLS provides inconsistent, biased, and
inefficient estimates for the 𝛼 parameters of interest (Greene, 2011). To address this issue, we use
an instrumental variable 𝑍𝑖 that is highly correlated with 𝒴𝑖 but independent of π‘Šπ‘– and πœ‚π‘– ,
specifically 𝐸(𝑍𝑖 π‘Šπ‘– ) = 0, 𝐸(𝑍𝑖 πœ‚π‘– ) = 0. The linear regression model can be rewritten as 𝑃𝑖 =
𝑃0 βˆ’ 𝛼𝑍𝑖 + π›½π‘Šπ‘– + πœ‚π‘– , and OLS can provide consistent estimates and the expected value
0
𝐸(𝑃𝑖 |𝑍𝑖 = 𝑧𝑖 ) = π‘ƒπ‘Š
βˆ’ 𝛼𝑧𝑖 . As described in Section 3.1, our paper focuses on an inverse demand
function expressed and estimated by a linear function 𝑃(π‘Œ) = 𝑃0 βˆ’ π›Όπ‘Œ, where 𝑃0 is the intercept
corresponding to case 1. However, if endogeneity exists in the inverse demand model, we can
identify instrumental variables using the methods described in Goldberger (1972), Morgan
(1990), and Angrist and Krueger (2001). Note that, when output quantity changes, we assume a
change in supply curve rather than a change in quantity supplied.
The omitted variable could be the price or quantity of substitute products or other contextual factors that could
affect the price of output q.
1
Weak, Moderate, and Strong Dominance Properties
Lemma A1: In the two-output product case, if matrix 𝜢 satisfies MDD and symmetric
properties, then matrix 𝜢 satisfies SDD.
Proof: If matrix 𝜢 satisfies MDD and symmetric properties, then the transitivity property follows
(i.e., If π›Όπ‘žπ‘ž β‰₯ π›Όπ‘žβ„Ž and π›Όπ‘žβ„Ž β‰₯ π›Όβ„Žπ‘ž , then π›Όπ‘žπ‘ž β‰₯ π›Όβ„Žπ‘ž , for all π‘ž β‰  β„Ž), which implies that the main
effect of each product dominates the minor effect of the other products, i.e., the SDD property.
β–‘
Lemma A2: If price sensitivity matrix 𝜢 satisfies the SDD property, then solving MiCP (5)
Μ‚ π‘ž ) β‰₯ 0, where βˆ€(π‘‹π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃.
generates a solution such that π‘¦π‘Ÿπ‘ž β‰₯ 0 and π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’ πœ‡1π‘Ÿπ‘ž = 0 , we can obtain the inequality
Proof: Let π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) β‰₯ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž + βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž . We enumerate all combinations of π‘¦π‘Ÿπ‘ž and π‘¦π‘Ÿβ„Ž being either
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) β‰₯ 0 and the revenue function is
non-negative or positive. If π‘¦π‘Ÿπ‘ž , π‘¦π‘Ÿβ„Ž β‰₯ 0, π‘ž β‰  β„Ž, then π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
non-negative. The case π‘¦π‘Ÿπ‘ž β‰₯ 0, π‘¦π‘Ÿβ„Ž < 0, π‘ž β‰  β„Ž will not happen because, given function
Μ‚ π‘ž ) = π‘ƒπ‘ž0 βˆ’ π›Όπ‘žπ‘ž π‘Œπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž , the increase in revenue due to the increase in price
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) β‰₯ 0 cannot exceed the decrease of revenue through the increase of price
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ β„Ž ) β‰₯ 0. Price π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) is not sensitive with respect to π‘¦π‘Ÿβ„Ž due to the symmetry of 𝜢
π‘ƒβ„Ž (π‘Œβ„Ž , 𝒀
and π›Όπ‘žπ‘ž ≫ π›Όπ‘žβ„Ž for all π‘ž, as π‘¦π‘Ÿβ„Ž becomes more negative and π‘¦π‘Ÿβ„Ž < 0. Thus, the solution for
revenue maximization problem is π‘¦π‘Ÿβ„Ž = 0. Similarly π‘¦π‘Ÿπ‘ž < 0, π‘¦π‘Ÿβ„Ž β‰₯ 0 for all π‘ž β‰  β„Ž, by the
Μ‚ π‘ž ) β‰₯ 0, which will cause π‘¦π‘Ÿπ‘ž = 0 to maximize revenue. If π‘¦π‘Ÿπ‘ž <
SDD property we have π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) > 0. Similar to Lemma 3.1, we have solution π‘¦π‘Ÿπ‘ž =
0, π‘¦π‘Ÿβ„Ž < 0, π‘ž β‰  β„Ž, then we have π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž )π‘¦π‘Ÿπ‘ž > 0 . Therefore, the case π‘¦π‘Ÿπ‘ž <
π‘¦π‘Ÿβ„Ž = 0 to maximize the revenue function βˆ‘π‘ž π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
0, π‘¦π‘Ÿβ„Ž < 0 will not happen. Moreover, if price sensitivity matrix 𝜢 is symmetric and satisfies the
WDD property, and π›Όπ‘žπ‘ž ≫ π›Όπ‘žβ„Ž for all q, then, as shown in Lemma A1, solving MiCP (5) will
Μ‚ π‘ž ) β‰₯ 0, where βˆ€(π‘‹π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃
automatically generate π‘¦π‘Ÿπ‘ž β‰₯ 0 and π‘ƒπ‘ž (π‘Œ, 𝒀
β–‘
Lemma A2 shows a case of SDD of sensitivity matrix 𝜢. The WDD or MDD properties
are not enough to ensure π‘¦π‘Ÿπ‘ž β‰₯ 0 in MiCP (5). That is, if 𝜢 is not symmetric or violates MDD,
then, for some π‘¦π‘Ÿπ‘ž , a Nash equilibrium solution may set π‘¦π‘Ÿπ‘ž < 0. We illustrate this in two cases
below.
Case 1: If price sensitivity matrix 𝜢 satisfies MDD but not symmetry, and given π‘¦π‘Ÿπ‘ž β‰  0 ,
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’ πœ‡1π‘Ÿπ‘ž = 0
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
then
Μ‚ π‘ž )βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
π‘ƒπ‘ž (π‘Œπ‘ž ,𝒀
π›Όπ‘žπ‘ž
βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž
2
=
.
π‘ƒπ‘ž0 βˆ’π›Όπ‘žπ‘ž π‘Œπ‘ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
π›Όπ‘žπ‘ž
𝛼
𝛼
πœ‡1π‘Ÿπ‘ž
βˆ’ βˆ‘β„Žβ‰ π‘ž 2π›Όπ‘žβ„Ž π‘Œβ„Ž βˆ’ βˆ‘β„Žβ‰ π‘ž 2π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’ 2𝛼
π‘žπ‘ž
π‘žπ‘ž
We
have
π‘¦π‘Ÿπ‘ž =
π‘ƒπ‘ž0
. Finally, we have π‘¦π‘Ÿπ‘ž = 2𝛼 βˆ’
π‘žπ‘ž
. Thus, π‘¦π‘Ÿπ‘ž might be less than zero and
π‘žπ‘ž
Μ‚ π‘ž ) < 0 for the revenue maximization problem as π›Όβ„Žπ‘ž ≫ π›Όπ‘žπ‘ž and π‘¦π‘Ÿβ„Ž > 0.
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Case 2: If price sensitivity matrix 𝜢 satisfies WDD and symmetric properties, in an extreme case:
𝛼
for any one product π‘ž, then π›Όπ‘žβ„Ž β†’ 1βˆ’ , where this notation means the ratio approaches 1 from the
π‘žπ‘ž
left-hand side. We know π‘¦π‘Ÿπ‘ž =
𝑃0
Then, π‘¦π‘Ÿπ‘ž β‰ˆ 2π›Όπ‘ž βˆ’
βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž
2
π‘žπ‘ž
βˆ’
Μ‚ π‘ž )βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
π‘ƒπ‘ž (π‘Œπ‘ž ,𝒀
π›Όπ‘žπ‘ž
βˆ‘β„Žβ‰ π‘ž π‘Œβ„Ž
2
βˆ’
βˆ‘β„Žβ‰ π‘ž π‘¦π‘Ÿβ„Ž
2
=
π‘ƒπ‘ž0 βˆ’π›Όπ‘žπ‘ž π‘Œπ‘ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
π›Όπ‘žπ‘ž
.
πœ‡1π‘Ÿπ‘ž
βˆ’ 2𝛼 . Thus, π‘¦π‘Ÿπ‘ž might be less than zero and
π‘žπ‘ž
Μ‚ π‘ž ) > 0 for the revenue maximization problem since π›Όπ‘žπ‘ž and π›Όβ„Žβ„Ž are large, and
π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
π›Όπ‘žπ‘ž > π›Όβ„Žβ„Ž and π‘¦π‘Ÿβ„Ž > 0.
Therefore, to ensure π‘¦π‘Ÿπ‘ž β‰₯ 0 from formulation (5), the SDD property provides a
sufficient condition based on Lemma A2. If matrix 𝜢 satisfies SDD and given an extreme case:
for all π‘ž,
π‘ π‘’π‘š(𝜢)βˆ’π‘‘π‘Ÿ(𝜢)
π›Όπ‘žπ‘ž
If we know π‘¦π‘Ÿπ‘ž =
β†’ 0+ , this notation means the ratio approaches 0 from the right-hand side.
Μ‚ π‘ž )βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
π‘ƒπ‘ž (π‘Œπ‘ž ,𝒀
π›Όπ‘žπ‘ž
π‘ƒπ‘ž0 βˆ’π›Όπ‘žπ‘ž βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’πœ‡1π‘Ÿπ‘ž
2π›Όπ‘žπ‘ž
maximization problem.
β‰ˆ
, then we can obtain an estimate of π‘¦π‘Ÿπ‘ž =
π‘ƒπ‘ž0 βˆ’π›Όπ‘žπ‘ž βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž βˆ’πœ‡1π‘Ÿπ‘ž
2π›Όπ‘žπ‘ž
>0
for
the
revenue
Cost minimization case
In the case of a single fixed input and a single variable input and a given output level, Fig.A1
illustrates the Nash equilibrium solution obtained by minimizing costs. Each firm attempts to
adjust its variable input to reach the isoquant, holding a fixed input constant in the short run.
Fig.A1 Adjusted variable input in Nash equilibrium
We construct a multi-input cost model to identify a Nash equilibrium solution using MiCP. The
result shows that the Nash equilibrium solution is on the production frontier, regardless of the 𝜷
matrix selected. In particular, to formulate the MiCP with multiple variable inputs, first we define
the Lagrangian function as:
𝑉
𝑉
𝑉
̂𝑗𝑉 )π‘₯π‘Ÿπ‘—
πΏπ‘Ÿ (π‘₯π‘Ÿπ‘—
, πœ†π‘Ÿπ‘˜ , πœ‡1π‘Ÿ , πœ‡2π‘Ÿπ‘– , πœ‡3π‘Ÿπ‘— , πœ‡4π‘Ÿ ) ∢= βˆ’ βˆ‘π‘— 𝑃𝑗𝑋 (𝑋𝑗𝑉 , 𝑿
βˆ’ βˆ‘π‘ž πœ‡1π‘Ÿπ‘ž (π‘Œπ‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ) βˆ’
𝑉
𝑉
𝐹
𝐹
βˆ‘π‘– πœ‡2π‘Ÿπ‘– (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘– βˆ’ π‘‹π‘Ÿπ‘– ) βˆ’ βˆ‘π‘— πœ‡3π‘Ÿπ‘— (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘— βˆ’ π‘₯π‘Ÿπ‘— ) βˆ’ πœ‡4π‘Ÿ (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ βˆ’ 1).
Then, the resulting MiCP problem is:
𝑉
πœ•πΏ
𝑉
𝑉
𝑉
̂𝑗𝑉 ) βˆ’ 𝛽𝑗𝑗 π‘₯π‘Ÿπ‘—
0 β‰₯ πœ•π‘₯ π‘‰π‘Ÿ = (βˆ’π‘ƒπ‘—π‘‹ (𝑋𝑗𝑉 , 𝑿
βˆ’ βˆ‘π‘™β‰ π‘— 𝛽𝑙𝑗 π‘₯π‘Ÿπ‘™
+ πœ‡3π‘Ÿπ‘— ) βŠ₯ π‘₯π‘Ÿπ‘—
β‰₯ 0, βˆ€π‘Ÿ, 𝑗
π‘Ÿπ‘—
πœ•πΏπ‘Ÿ
0 β‰₯ πœ•πœ†
π‘Ÿπ‘˜
𝑉
𝐹
= (βˆ‘π‘ž πœ‡1π‘Ÿπ‘ž π‘Œπ‘˜π‘ž βˆ’ βˆ‘π‘– πœ‡2π‘Ÿπ‘– π‘‹π‘˜π‘–
βˆ’ βˆ‘π‘— πœ‡3π‘Ÿπ‘— π‘‹π‘˜π‘—
βˆ’ πœ‡4π‘Ÿ ) βŠ₯ πœ†π‘Ÿπ‘˜ β‰₯ 0, βˆ€π‘Ÿ, π‘˜
0 β‰₯ (π‘Œπ‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ) βŠ₯ πœ‡1π‘Ÿπ‘ž β‰₯ 0, βˆ€π‘Ÿ, π‘ž
𝐹
𝐹
) βŠ₯ πœ‡2π‘Ÿπ‘– β‰₯ 0, βˆ€π‘Ÿ, 𝑖
0 β‰₯ (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘–
βˆ’ π‘‹π‘Ÿπ‘–
𝑉
𝑉
0 β‰₯ (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘— βˆ’ π‘₯π‘Ÿπ‘— ) βŠ₯ πœ‡3π‘Ÿπ‘— β‰₯ 0, βˆ€π‘Ÿ, 𝑗
0 = (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ βˆ’ 1), βˆ€π‘Ÿ.
(A1)
Theorem A1: In the cost minimization case, a Nash equilibrium generated from MiCP (A1)
exists on the production frontier, given an arbitrary 𝜷 matrix with all non-negative components
satisfying WDD.
Proof: Proving the existence of a Nash equilibrium is similar to Theorem 4.2. The Nash
equilibrium generated from MiCP will stay on the production frontier, given an arbitrary 𝜷
𝑉
matrix satisfying WDD. If an equilibrium output vector exists and π‘₯π‘Ÿπ‘—
> 0 , then it must satisfy
the first order condition of MiCP as the complementary condition:
𝑉
𝑉
𝑉
̂𝑗𝑉 ) βˆ’ 𝛽𝑗𝑗 π‘₯π‘Ÿπ‘—
βˆ’π‘ƒπ‘—π‘‹ (𝑋𝑗𝑉 , 𝑿
βˆ’ βˆ‘π‘™β‰ π‘— 𝛽𝑙𝑗 π‘₯π‘Ÿπ‘™
+ πœ‡3π‘Ÿπ‘— = 0, βˆ€π‘Ÿ, 𝑗,
which can be expressed in matrix notation as:
𝑉
βˆ’π‘· 𝑋0 βˆ’ πœ·π’™π‘‰ 𝒆 βˆ’ πœ·π‘‡ π’™π‘‰π‘Ÿ + ππŸ‘π‘Ÿ = 𝟎, βˆ€π‘Ÿ,
𝑉
𝑉 𝑇
where 𝒙𝑉 is a matrix with ( 𝒙1𝑉 , … , 𝒙𝑉𝐾 ) and each vector π’™π‘‰π‘˜ = (π‘₯π‘˜1
, … , π‘₯π‘˜π½
) . 𝒆 is a vector
𝑉
(1, … ,1)𝑇 with K elements. 𝑷 𝑋0 is a price vector with elements 𝑃𝑗
𝑋0𝑉
. ππŸ‘π‘Ÿ is a vector of the
Lagrangian multiplier with elements πœ‡3π‘Ÿπ‘— . If π’™π‘‰βˆ— is the solution obtained from the first order
𝑉
Μ‚π‘—π‘‰βˆ— ) = 𝑃
condition, then we need to show that 𝑃𝑗𝑋 (π‘‹π‘—π‘‰βˆ— , 𝑿
𝑗
𝑋0𝑉
+ 𝛽𝑗𝑗 π‘‹π‘—π‘‰βˆ— + βˆ‘π‘™β‰ π‘— 𝛽𝑗𝑙 π‘‹π‘™π‘‰βˆ— β‰₯ 0 for all
𝑉
𝑗. We express this equation in the matrix notation 𝑷 𝑋0 + πœ·π’™π‘‰βˆ— 𝒆. Obviously, the first order
𝑉
𝑉
𝑋0
condition gives 𝑷 𝑋0 + πœ·π’™π‘‰βˆ— 𝒆 + πœ·π‘‡ π’™π‘‰βˆ—
> 0 and 𝜷 have non-negative
π‘Ÿ = ππŸ‘π‘Ÿ > 𝟎 if 𝑷
𝑉
𝑉
elements. This implies that it is necessary to set (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
βˆ’ π‘₯π‘Ÿπ‘—
) = 0 in terms of MiCP; the
upper bound of input level is characterized by the least value at the free disposability hull of
inputs, and the lower bound is the input level described by the free disposability hull of outputs
𝑉
𝑉
shown in Theorem 4.1. Because (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
βˆ’ π‘₯π‘Ÿπ‘—
) = 0, that is, for cost minimization, the
whole quantity of supply market would be minimized to reach a lower price at the inverse supply
function, a firm’s best strategy is to reduce its input level and to produce on the production
frontier.
β–‘
Generalized profit model as revenue maximization case
In a special case of the revenue model, we assume that the output level directly follows the
variable input, namely, the level of variable input determines and controls the level of output. For
example, in the semiconductor manufacturing industry raw silicon wafers are released into the
production line to generate the actual die output. If the yield is 100%, the output level is a linear
function of the variable input level. Assuming a constant unit cost of the variable input, we
formulate the profit maximization model as:
βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž β‰₯ π‘¦π‘Ÿπ‘ž βˆ€π‘ž;
𝐹
𝐹
βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘–
≀ π‘‹π‘Ÿπ‘–
βˆ€π‘–;
|
π‘ƒπΉπ‘Ÿβˆ— = max
,
|
𝑉
𝑋
π‘¦π‘Ÿπ‘ž
Μ‚ π‘ž )π‘¦π‘Ÿπ‘ž
βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ = 1;
βˆ’ βˆ‘π‘ž π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
{
}
πœ†π‘Ÿπ‘˜ β‰₯ 0 βˆ€π‘˜;
Μ‚ π‘ž )π‘¦π‘Ÿπ‘ž
βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘Œπ‘ž , 𝒀
(A2)
𝑉
𝑉
Μ‚ π‘ž ) becomes a constant and presents a unit cost of variable input π‘₯π‘Ÿπ‘—
where π‘ƒπ‘žπ‘‹ (π‘Œπ‘ž , 𝒀
= πœŒπ‘¦π‘Ÿπ‘ž , and
𝜌 is a coefficient to change the units to a linear function. Intuitively, model (A2) is quite similar
to formulation (4), the revenue maximization model. The profit function of firm π‘Ÿ
𝑉
𝑉
Μ‚ π‘ž ) βˆ’ π‘ƒπ‘žπ‘‹ (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž )]π‘¦π‘Ÿπ‘ž is a concave function because π‘ƒπ‘žπ‘‹ (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) is a constant and
βˆ‘π‘ž[π‘ƒπ‘žπ‘Œ (π‘Œπ‘ž , 𝒀
𝑉
Μ‚ π‘ž )π‘¦π‘Ÿπ‘ž is a linear function. Thus, a Nash equilibrium exists and is unique. See Sections
π‘ƒπ‘žπ‘‹ (π‘Œπ‘ž , 𝒀
3 and 4 in the paper for the theorems proving existence and uniqueness.
Price Sensitivity and Returns to Scale
It is necessary to understand the relationship between the price sensitivity matrices 𝜢 and 𝜷 and
the returns to scale (RTS) properties of the Nash equilibrium benchmarks. To address RTS
properties, we must first identify the most productive scale size (MPSS). The production frontier
is characterized by three regions: constant returns to scale (CRS), increasing returns to scale
(IRS), and decreasing returns to scale (DRS). The MPSS can be identified for firm π‘Ÿβ€™s input and
output mix using the input-oriented CRS DEA technique formulated in (A3). If the sum of
2
βˆ‘π‘˜ πœ†πΆπ‘…π‘†
π‘Ÿπ‘˜ = 1 in the input-oriented CRS DEA , then we can identify such observations as
operating at the MPSS (Banker, 1984):
min
πœƒπ‘Ÿ ,πœ†πΆπ‘…π‘†
π‘Ÿπ‘˜
βˆ‘π‘˜ πœ†πΆπ‘…π‘†
π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž β‰₯ π‘Œπ‘Ÿπ‘ž , βˆ€π‘ž, π‘Ÿ;
𝐹
𝐹
βˆ‘ πœ†πΆπ‘…π‘†
π‘Ÿπ‘˜ π‘‹π‘˜π‘– ≀ π‘‹π‘Ÿπ‘– , βˆ€π‘–, π‘Ÿ;
βˆ‘π‘Ÿ πœƒπ‘Ÿ || π‘˜ 𝐢𝑅𝑆
.
𝑉
𝑉
βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
≀ πœƒπ‘Ÿ π‘‹π‘Ÿπ‘—
, βˆ€π‘—, π‘Ÿ;
{
πœ†πΆπ‘…π‘†
π‘Ÿπ‘˜ β‰₯ 0, βˆ€π‘˜, π‘Ÿ;
(A3)
}
Let π‘˜ 𝑀𝑃𝑆𝑆 denote the set of observations having the MPSS property, one for each firm π‘Ÿ in the
π‘‰βˆ—
βˆ—
dataset, and let π‘¦π‘Ÿπ‘ž
and π‘₯π‘Ÿπ‘—
be the Nash equilibrium solutions obtained from MiCP (9). Using
these additional observations as the reference set, optimization problem (A4) can be used to
identify the returns to scale property for each production plan in the Nash solution.
βˆ—
βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†
π‘Œ
β‰₯ π‘¦π‘Ÿπ‘ž
, βˆ€π‘ž, π‘Ÿ;
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆 π‘˜ 𝑀𝑃𝑆𝑆 π‘ž
βˆ‘π‘Ÿ πœƒπ‘Ÿ
min
πœƒπ‘Ÿ ,πœ†πΆπ‘…π‘†
𝑀𝑃𝑆𝑆
π‘Ÿπ‘˜
{
𝐢𝑅𝑆
𝐹
𝐹
, βˆ€π‘–, π‘Ÿ;
| βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆 π‘‹π‘˜ 𝑀𝑃𝑆𝑆 𝑖 ≀ π‘‹π‘Ÿπ‘–
𝐢𝑅𝑆
𝑉
π‘‰βˆ—
, βˆ€π‘—, π‘Ÿ;
|βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆 π‘‹π‘˜ 𝑀𝑃𝑆𝑆 𝑗 ≀ πœƒπ‘Ÿ π‘₯π‘Ÿπ‘—
πœ†πΆπ‘…π‘†
β‰₯ 0, βˆ€π‘˜, π‘Ÿ;
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
.
(A4)
}
For each Nash solution of firm π‘Ÿ, if βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†βˆ—
< 1, then firm π‘Ÿ operates under increasing
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
returns to scale; if βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†βˆ—
> 1, then firm π‘Ÿ operates under decreasing returns to scale;
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
or, if βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†βˆ—
= 1, then firm π‘Ÿ operates under constant returns to scale.3 The equation
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†βˆ—
is termed the RTS index (RTSI).
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
Note there are potential multiple optimal solutions. See Zhu (2000) for additional details.
In (9) note that both inputs and outputs are defined as adjustable; thus, all Nash equilibria are located on the
production frontier. If this is not the case, for example if there are adjustment costs when changing input levels (Choi
et al., 2006), then some equilibria may not be on the frontier as shown in Fig.3. For these equilibria RTS are not
defined because RTS is a frontier property. In (A4), if πœƒπ‘Ÿ is not equal to 1, then RTS is not defined for that
production possibility; see, for example, Seiford and Zhu (1999) or Ray (2010).
2
3
For a one-input one-output production process, Fig.A2 depicts the true production
function as a solid curve, the CRS estimated frontier as a straight dashed line, the VRS estimated
frontier as a piece-wise linear bold dashed line, and the MPSS as Point B. In particular, based on
Theorem 4.1, the Nash equilibrium generated from MiCP (9) should be located on the bold
dashed lines. 𝑋𝐴 and 𝑋𝐸 are the upper and lower bounds for the variable input level.
Y (Output)
CRS estimated frontier
True Production Function
MPSS
B
IRS
DRS
VRS estimated frontier
A
F
C
D
E
XE
XA
X (Input)
Fig.A2 Nash equilibrium on bold dashed lines
Corollary A1: Assume all input and output variables are normalized to eliminate unit
dependence, and the price of outputs dominates the price of inputs to ensure a positive marginal
profit. Given a production frontier including three portions: IRS, CRS, and DRS, the MiCP (9)
generates a Nash equilibrium solution that is characterized by DRS when the inverse demand and
supply functions are less sensitive, or the Nash equilibrium is characterized by IRS when the
inverse demand and supply functions are more sensitive.
Proof: Intuitively, for one-variable-input one-output production process, if the inverse demand
and supply functions are less sensitive, this is illustrated in a special case where both price
sensitivity matrix 𝜢 and 𝜷 are equal to zero; the profit function 𝑃𝐹 can be written as maximizing
𝑉
𝑃𝐹 = π‘ƒπ‘Œ0 𝑦 βˆ’ 𝑃 𝑋0 π‘₯ 𝑉 . Let 𝑃𝐹 βˆ— denote the optimal value of profit function. Thus, we can express
𝑉
the function 𝑦 =
𝑃𝐹 βˆ— +𝑃 𝑋0 π‘₯ 𝑉
𝑃 π‘Œ0
𝑉
, where
𝑃 𝑋0
𝑃 π‘Œ0
indicates the slope of profit function. Given the price of
𝑉
outputs dominating the price of inputs, in a special case the slope
𝑃 𝑋0
𝑃 π‘Œ0
β†’ 0+ , the optimal solution
to the firm specific profit maximization problem will result in a profit line tangent to the
𝑉
production possibility set. Since
𝑃 𝑋0
𝑃 π‘Œ0
β†’ 0+ , a firm would like to generate a Nash solution on the
DRS frontier for profit maximization based on Theorems 3.3 and 4.1, i.e., in extreme case, the
input level of the Nash solution has to be on the upper bound defined by the least value of the
free disposability hull of inputs (see firm A in Fig.A2). DRS is associated with the insensitive
inverse demand and supply function. Therefore, the Nash equilibrium solution generated from
MiCP (9) presents the DRS with respect to MPSS and βˆ‘π‘˜ 𝑀𝑃𝑆𝑆 πœ†πΆπ‘…π‘†βˆ—
= βˆ‘π‘˜ πœ†πΆπ‘…π‘†βˆ—
> βˆ‘π‘˜ πœ†βˆ—π‘Ÿπ‘˜ =
π‘Ÿπ‘˜
π‘Ÿπ‘˜ 𝑀𝑃𝑆𝑆
1. Similarly, we can show that the Nash solutions present the IRS when more sensitive inverse
demand and supply functions occur, i.e., a profit function with larger slope. The result can be
extended to the multiple-input multiple-output case.
β–‘
Extending the illustrative example in Section 2, we use formulation (A4) to identify the
RTS property of the Nash equilibrium solution shown in Table 3; DCs 3, 10, 12, 15, and 19 are
identified as operating at MPSS. Table A1 shows the RTS associated with the Nash solutions for
Cases 1 through 5 in Table 3. Based on corollary A1, the sensitivity of output and sensitivity of
input are the two oppositional forces in terms of scale. Case 1 represents a baseline and the Nash
solutions present CRS or DRS properties. The sensitivity parameter of the supply function in
Case 2 increases relative to Case 1, which encourages firms to hold back on the consumption of
inputs, i.e., more DCs operate at MPSS in Case 2. If we further increase the sensitivity parameter
of the supply function, then all DCs operate at MPSS in Case 3. Case 4 results in all firms
operating at MPSS or IRS, by increasing the sensitivity parameter of the demand function and
leaving the sensitivity parameter of the supply function parameter the same as in Case 1. Case 5
shows that all firms operate at IRS and on the weakly efficient portion of the frontier. This
demonstrates the concept of rational inefficiency.
Table A1 Returns to scale of Nash equilibrium
Case
1
π‘ž1
π‘ž2
2
𝑗1
𝑗2
π‘ž1
π‘ž2
3
𝑗1
𝑗2
π‘ž1
π‘ž2
4
𝑗1
𝑗2
0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02
𝜢 or 𝜷
0.02 0.04 0.02 0.04 0.02 0.04 0.02
Returns to scale
RTSI
1
π‘ž1
π‘ž2
1
5
𝑗1
𝑗2
0.02 0.05 0.02
π‘ž1
1
π‘ž2
RTSI
RTS
RTSI
RTS
𝑗2
0.02 0.05 0.02
0.02 0.04 0.02 10 0.02 0.04 0.02 0.04 0.02
RTS
𝑗1
1
0.02 0.04
RTSI
RTS
RTSI
RTS
DC1
1
C
1
C
1
C
1
C
0.104
I
DC2
1.5
D
1
C
1
C
0.916
I
0.104
I
DC3
1
C
1
C
1
C
0.685
I
0.104
I
DC4
1.167
D
1
C
1
C
0.937
I
0.104
I
DC5
1.333
D
1
C
1
C
0.873
I
0.104
I
DC6
1
C
1
C
1
C
1
C
0.104
I
DC7
1.556
D
1.084
D
1
C
1
C
0.104
I
DC8
1.167
D
1
C
1
C
0.937
I
0.104
I
DC9
1.167
D
1
C
1
C
0.937
I
0.104
I
DC10
1
C
1
C
1
C
1
C
0.104
I
DC11
1.333
D
1
C
1
C
0.873
I
0.104
I
DC12
1.556
D
1.084
D
1
C
1
C
0.104
I
DC13
1.5
D
1
C
1
C
0.916
I
0.104
I
DC14
1
C
1
C
1
C
1
C
0.104
I
DC15
1.556
D
1.084
D
1
C
1
C
0.104
I
DC16
1.167
D
1
C
1
C
0.937
I
0.104
I
DC17
1.333
D
1
C
1
C
0.873
I
0.104
I
DC18
1.556
D
1.084
D
1
C
1
C
0.104
I
DC19
1
C
1
C
1
C
1
C
0.104
I
DC20
1.556
D
1.084
D
1
C
1
C
0.104
I
Returns to Scale
CRS or DRS
CRS or DRS
CRS
CRS or IRS
* C, D and I indicate constant, decreasing, and increasing returns to scale respectively.
IRS
Allocative Efficiency and Directional Distance Function
The Nash equilibrium identified by using (9) is an economically efficient solution, as shown in
Theorem 4.1. Zofio and Prieto (2006) suggest choosing the direction in the direction distance
function (DDF) to move towards the economically efficient point. Lee (2014) suggests the
direction towards marginal profit maximization. We extend their suggestion to the case of
imperfectly competitive markets and suggest that each firm should select the direction for
improvement in the DDF to move towards its Nash equilibrium benchmark.
The DDF, as defined by Chambers et al. (1996; 1998), is the simultaneous contraction of
inputs and expansion of outputs:
βƒ— 𝑇 (𝑿𝐹 , 𝑿𝑉 , 𝒀; π’ˆπ‘₯ 𝑉 , π’ˆπ‘¦ ) = max{𝛿 ∈ β„›: (𝑿𝐹 , 𝑿𝑉 + π›Ώπ’ˆπ‘₯ 𝑉 , 𝒀 + π›Ώπ’ˆπ‘¦ ) ∈ 𝑇},
𝐷
(A5)
𝑉
where 𝛿 is the distance measure and π’ˆπ‘₯ , π’ˆπ‘¦ are the direction vectors for variable inputs and
outputs, respectively. Recall that, since we do not change the fixed inputs in the short run, no
direction is associated with them. We estimate the DDF for firm π‘Ÿ as:
βˆ‘π‘˜ πœ†π‘˜ π‘Œπ‘˜π‘ž β‰₯ π‘Œπ‘Ÿπ‘ž + π›Ώπ‘Ÿ π‘”π‘žπ‘¦ , βˆ€π‘ž;
𝐹
𝐹
βˆ‘π‘˜ πœ†π‘˜ π‘‹π‘˜π‘–
≀ π‘‹π‘Ÿπ‘–
, βˆ€π‘–;
|
⃗𝐷 𝑇̃ (π‘ΏπΉπ‘Ÿ , π‘Ώπ‘‰π‘Ÿ , π’€π‘Ÿ ; π’ˆ , π’ˆπ‘¦ ) = max π›Ώπ‘Ÿ βˆ‘
𝑉
𝑉
π‘₯𝑉
.
π‘˜ πœ†π‘˜ π‘‹π‘˜π‘— ≀ π‘‹π‘Ÿπ‘— + π›Ώπ‘Ÿ 𝑔𝑗 , βˆ€π‘—;
π›Ώπ‘Ÿ ,πœ†π‘˜
|
βˆ‘π‘˜ πœ†π‘˜ = 1;
{
πœ†π‘˜ β‰₯ 0, βˆ€π‘˜;
}
π‘₯𝑉
(A6)
𝑉
Because the method for selecting a direction (π’ˆπ‘₯ , π’ˆπ‘¦ ) is an open issue, the direction (βˆ’πŸ, 𝟏) is
usually chosen for simplicity. Alternatively, Frei and Harker (1999) determine the least-norm
projection from an inefficient firm to the frontier, but this direction is non-proportional and is not
unit-invariant. Färe et al. (2013) estimate an endogenous direction, but it is void of economic
meaning. Therefore, we propose that firms’ direction for improvement move towards the
allocatively efficient benchmark, identified by the Nash equilibrium. Thus, the direction is firmspecific and can be calculated by following the equation for firm π‘Ÿ:
𝑉
𝑦
(π’™π‘‰βˆ— βˆ’π‘Ώπ‘‰ ,π’šβˆ— βˆ’π’€ )
(π’ˆπ‘Ÿπ‘₯ , π’ˆπ‘Ÿ ) = β€–(π’™π‘Ÿπ‘‰βˆ—βˆ’π‘Ώπ‘Ÿπ‘‰,π’šπ‘Ÿβˆ— βˆ’π’€π‘Ÿ )β€–,
π‘Ÿ
π‘Ÿ
π‘Ÿ
π‘Ÿ
(A7)
βˆ—
𝑉
where π’™π‘‰βˆ—
π‘Ÿ and π’šπ‘Ÿ are the benchmarks determined by the Nash equilibrium, π‘Ώπ‘Ÿ and π’€π‘Ÿ are the
vectors of the current variable input and output production, and β€–βˆ™β€– is the Euclidean norm. This
𝑉
ratio imposes (π’ˆπ‘₯ , π’ˆπ‘¦ ) is a unit vector.4
Extending the example in Table 3, Case 1, we calculate the direction of improvement
associated with this example, as shown in Table A2. The results indicate that, when trying to
maximize overall economic efficiency5 using formulation (8), it is not necessary to contract the
variable inputs and expand the outputs. To maintain higher price and profit maximization, firm π‘Ÿ
may achieve economic efficiency by changing its mix to become allocatively efficient. However,
no firm takes a direction which increases all variable inputs and decreases all output levels as this
would lead to a loss in profit.
Table A2 Direction determination
𝑉
Direction (π’ˆπ‘₯ , π’ˆπ‘¦ )
Case 1
DC1
DC2
DC3
DC4
DC5
DC6
DC7
DC8
DC9
DC10
DC11
DC12
DC13
DC14
DC15
DC16
DC17
DC18
DC19
DC20
𝑗1
𝑗2
π‘ž1
π‘ž2
0.0467
0.0697
0.0000
-0.0445
0.0547
0.0445
-0.0478
0.0118
0.0427
0.0000
0.0000
0.1010
0.0000
0.0305
0.0532
0.0617
-0.0503
0.0213
0.0405
0.0000
0.0467
0.0697
0.0000
0.0000
0.0710
0.0222
-0.0717
0.0118
0.0427
0.0000
0.0000
0.1010
0.0000
0.0914
0.0710
0.0309
-0.1006
0.0213
0.0607
0.0265
0.7000
0.6970
0.0000
0.9785
0.8516
0.9783
-0.2390
0.8865
0.5341
0.0000
0.5255
0.8416
0.9955
0.9753
0.8875
0.9878
0.0503
0.9575
0.5059
0.3440
-0.7111
-0.7103
-1.0000
0.2012
-0.5165
0.2012
-0.9672
-0.4625
-0.8433
-1.0000
-0.8508
-0.5210
-0.0948
0.1988
-0.4522
0.1396
-0.9924
-0.2867
-0.8595
-0.9386
The length of the directional vector influences the efficiency estimates in the DDF; the use of a unit vector has also
been used in Fare et al. (2013).
5
Economic efficiency is the product of allocative efficiency and technical efficiency, see, for example, Fried et al.
(2008).
4
On-Line Electronic Supplementary Material B: Proofs
Lemma 2.1: Define π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž as a concave function of π‘¦π‘Ÿπ‘ž and assume that the inverse
demand function π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž ) is a non-increasing. Thus, for π‘ŒΜ‚π‘Ÿπ‘ž > 0, π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž + π‘ŒΜ‚π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž is a concave
function of π‘¦π‘Ÿπ‘ž for π‘¦π‘Ÿπ‘ž β‰₯ 0, where π‘ŒΜ‚π‘Ÿπ‘ž = βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž . Similarly, let 𝑃𝑖𝑋 (π‘₯π‘Ÿπ‘– + π‘‹Μ‚π‘Ÿπ‘– )π‘₯π‘Ÿπ‘– be a convex
function of π‘₯π‘Ÿπ‘– for π‘₯π‘Ÿπ‘– β‰₯ 0, where π‘‹Μ‚π‘Ÿπ‘– = βˆ‘π‘˜β‰ π‘Ÿ π‘₯π‘˜π‘– and 𝑃𝑖𝑋 (π‘₯π‘Ÿπ‘– ) is an inverse supply function.
Furthermore, if either π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž ) is strictly decreasing or is strictly convex, then π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž + π‘ŒΜ‚π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž
is a strictly concave function on the non-negative π‘¦π‘Ÿπ‘ž β‰₯ 0 and βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž + π‘ŒΜ‚π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž βˆ’
βˆ‘π‘– 𝑃𝑖𝑋 (π‘₯π‘Ÿπ‘– + π‘‹Μ‚π‘Ÿπ‘– )π‘₯π‘Ÿπ‘– is concave on (π‘₯π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃.
Proof: Murphy et al. (1982) prove the single output product case that when π‘¦π‘Ÿ β‰₯ 0 and π‘ŒΜ‚π‘Ÿ > 0,
the revenue function π‘…π‘Ÿ = π‘ƒπ‘Œ (π‘¦π‘Ÿ + π‘ŒΜ‚π‘Ÿ )π‘¦π‘Ÿ is a concave function of π‘¦π‘Ÿ for π‘¦π‘Ÿ β‰₯ 0 on the nonnegative real line since
πœ•2 π‘…π‘Ÿ
πœ•π‘¦π‘Ÿ2
< 0. In our special case, as Murphy et al. proved in their Lemma 1,
the production possibility set (𝒙, π’š) is a convex set and the boundary is a piece-wise linear
concave function. Thus, π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž + π‘ŒΜ‚π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž is a concave function of π‘¦π‘Ÿπ‘ž for π‘¦π‘Ÿπ‘ž β‰₯ 0 and
(π‘₯π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃ since, given fixed input levels, firm π‘Ÿ can expand output only by increasing π‘¦π‘Ÿπ‘ž .
Similarly, we can prove a convex cost function 𝑃𝑖𝑋 (π‘₯π‘Ÿπ‘– + π‘‹Μ‚π‘Ÿπ‘– )π‘₯π‘Ÿπ‘– of 𝑖 π‘‘β„Ž input resource, and also a
concave profit function βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘¦π‘Ÿπ‘ž + π‘ŒΜ‚π‘Ÿπ‘ž )π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘– 𝑃𝑖𝑋 (π‘₯π‘Ÿπ‘– + π‘‹Μ‚π‘Ÿπ‘– )π‘₯π‘Ÿπ‘– .
β–‘
Theorem 2.1: If the profit function of firm π‘Ÿ , πœƒπ‘Ÿ (π’™π‘Ÿ , π’šπ‘Ÿ ) = βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘Œπ‘ž )π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘– 𝑃𝑖𝑋 (𝑋𝑖 )π‘₯π‘Ÿπ‘– is
concave with respect to (π‘₯π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) and continuously differentiable almost everywhere, where
π‘Œπ‘ž = βˆ‘π‘˜ π‘¦π‘˜π‘ž and 𝑋𝑖 = βˆ‘π‘˜ π‘₯π‘˜π‘– , then (π’™βˆ— , π’šβˆ— ) ∈ 𝑇̃ is a Nash imperfectly competitive market
equilibrium if and only if it satisfies the set of VI
〈𝐹((π’™βˆ— , π’šβˆ— )), (𝒙, π’š) βˆ’ (π’™βˆ— , π’šβˆ— )βŒͺ β‰₯ 0, βˆ€(𝒙, π’š) ∈ 𝑇̃ . That is,
βˆ‘π‘˜ πΉπ‘˜ ((π’™βˆ— , π’šβˆ— ))((π’™π‘˜ , π’šπ‘˜ ) βˆ’ (π’™βˆ—π‘˜ , π’šβˆ—π’Œ )) β‰₯ 0, βˆ€(π’™π‘˜ , π’šπ‘˜ ) ∈ 𝑇̃,
where πΉπ‘˜ ((𝒙, π’š)) = (βˆ’βˆ‡π’™π‘˜ πœƒπ‘˜ (𝒙, π’š), βˆ’βˆ‡π’šπ‘˜ πœƒπ‘˜ (𝒙, π’š)), βˆ‡π’™π‘˜ πœƒπ‘˜ (𝒙, π’š) = (
βˆ‡π’šπ‘˜ πœƒπ‘˜ (𝒙, π’š) = (
πœ•πœƒπ‘˜ (𝒙,π’š)
πœ•π‘¦π‘˜1
,…,
πœ•πœƒπ‘˜ (𝒙,π’š)
πœ•π‘₯π‘˜1
,…,
πœ•πœƒπ‘˜ (𝒙,π’š)
πœ•π‘₯π‘˜πΌ
) and
πœ•πœƒπ‘˜ (𝒙,π’š)
πœ•π‘¦π‘˜π‘„
).
Proof: First we focus on revenue function with a single output. If the revenue function 𝑃(π‘Œ)π‘¦π‘Ÿ is
concave with respect to π‘¦π‘Ÿ and continuously differentiable almost everywhere, then (𝑋𝑖 , 𝑦 βˆ— ) ∈ 𝑇̃
is a Nash-Cournot imperfectly competitive market equilibrium if and only if it satisfies the set of
VI 〈𝐹(π’šβˆ— ), 𝑦 βˆ’ 𝑦 βˆ— βŒͺ β‰₯ 0, βˆ€(π‘‹π‘˜π‘– , π‘¦π‘˜ ) ∈ 𝑇̃ . That is, βˆ‘π‘˜ πΉπ‘˜ (π’šβˆ— )(π‘¦π‘˜ βˆ’ π‘¦π‘˜βˆ— ) β‰₯ 0 βˆ€(π‘‹π‘˜π‘– , π‘¦π‘˜ ) ∈ 𝑇̃;
πΉπ‘˜ (π’šβˆ— ) = βˆ’π‘ƒ(π‘Œ βˆ— ) βˆ’ π‘¦π‘˜βˆ— 𝑃′ (π‘Œ βˆ— ) . Since the revenue function 𝑃(π‘Œ)π‘¦π‘Ÿ is a continuously
differentiable almost everywhere and concave with respect to π‘¦π‘Ÿ , for a fixed π‘Ÿ , the Nash
equilibrium condition 𝑃(π‘¦π‘Ÿβˆ— , π‘¦Μ‚π‘Ÿβˆ— )π‘¦π‘Ÿβˆ— βˆ’ 𝑃(π‘¦π‘Ÿ , π‘¦Μ‚π‘Ÿβˆ— )π‘¦π‘Ÿ β‰₯ 0 , βˆ€(π‘‹π‘Ÿπ‘– , π‘¦π‘Ÿ ) ∈ 𝑇̃ is equivalent to the
variational inequality πΉπ‘Ÿ (π’šβˆ— )(π‘¦π‘Ÿ βˆ’ π‘¦π‘Ÿβˆ— ) β‰₯ 0 , i.e., βŒ©πΉπ‘Ÿ (π’šβˆ— ), π‘¦π‘Ÿ βˆ’ π‘¦π‘Ÿβˆ— βŒͺ β‰₯ 0 , βˆ€(π‘‹π‘Ÿπ‘– , π‘¦π‘Ÿ ) ∈ 𝑇̃ . Then,
summing over all firms π‘˜ generates 〈𝐹(π’šβˆ— ), 𝑦 βˆ’ 𝑦 βˆ— βŒͺ β‰₯ 0, βˆ€(π‘‹π‘˜π‘– , π‘¦π‘˜ ) ∈ 𝑇̃ . This result can be
extended to prove the VI of multi-output revenue function, the VI of multi-input cost function,
and then the VI of profit function.
β–‘
Theorem 2.2: Consider an imperfectly competitive market with 𝐾 firms, an inverse demand
function π‘ƒπ‘Œ (βˆ™) that is strictly decreasing and continuously differentiable in 𝑦, and an inverse
supply function 𝑃 𝑋 (βˆ™) that is strictly increasing and continuously differentiable in π‘₯ . Since
Lemma 2.1 shows that the profit function πœƒπ‘˜ (π‘₯π‘˜ , π‘¦π‘˜ ) is concave and the variables π‘₯π‘˜ , π‘¦π‘˜ β‰₯ 0,
then (π’™βˆ— , π’šβˆ— ) = ((𝒙1βˆ— , π’š1βˆ— ), (π’™βˆ—2 , π’šβˆ—2 ), … , (π’™βˆ—πΎ , π’šβˆ—πΎ )) is a Nash equilibrium solution if and only if
βˆ‡π’™π‘˜ πœƒπ‘˜ (π’™βˆ— , π’šβˆ— ) ≀ 0 and βˆ‡π’šπ‘˜ πœƒπ‘˜ (π’™βˆ— , π’šβˆ— ) ≀ 0, βˆ€π‘˜;
π’™βˆ—π‘˜ [βˆ‡π’™π‘˜ πœƒπ‘˜ (π’™βˆ— , π’šβˆ— )] = 0 and π’šβˆ—π‘˜ [βˆ‡π’šπ‘˜ πœƒπ‘˜ (π’™βˆ— , π’šβˆ— )] = 0, βˆ€π‘˜,
where (π’™βˆ—π‘˜ , π’šβˆ—π‘˜ ) ∈ 𝑇̃.
Proof: We derive the formulas above based on the KKT conditions. Note that the KKT
conditions are both necessary and sufficient conditions for a unique global optimum since the
model maximizes a strictly concave profit function over a convex polyhedral set (the production
possibility set). The detail of existence and uniqueness of a Nash equilibrium is addressed in
Section 4 of the paper.
β–‘
Lemma 3.1: A Nash solution to MiCP problem (3) will satisfy π‘¦π‘Ÿ β‰₯ 0 and 𝑃(π‘Œ) β‰₯ 0.
Proof: 𝑃(π‘Œ) βˆ’ π›Όπ‘¦π‘Ÿ βˆ’ πœ‡1π‘Ÿ = 0, that is 𝑃(π‘Œ) β‰₯ π›Όπ‘¦π‘Ÿ since πœ‡1π‘Ÿ β‰₯ 0. If π‘¦π‘Ÿ β‰₯ 0, then 𝑃(π‘Œ) β‰₯ 0 and
the revenue function is non-negative. If π‘¦π‘Ÿ ≀ 0 and 𝑃(π‘Œ) β‰₯ 0, a firm’s best strategy to maximize
the revenue function is to make π‘¦π‘Ÿ = 0. The case π‘¦π‘Ÿ ≀ 0 and 𝑃(π‘Œ) < 0 will not happen because
if (π‘Œ) < 0 , then there exists at least one firm generating π‘¦π‘˜ > 0, π‘˜ β‰  π‘Ÿ such that the function
𝑃(π‘Œ) = 𝑃0 βˆ’ π›Όπ‘Œ < 0. However, to maximize its revenue, firm π‘˜ prefers to produce π‘¦π‘˜ = 0. In
other words, 𝑃(π‘Œ) = 𝑃0 βˆ’ π›Όπ‘Œ β‰₯ 0 if π‘¦π‘Ÿ ≀ 0. In addition, if 𝛼 is a large positive number, π‘¦π‘Ÿ can
be very small but positive to ensure a positive revenue function. Thus, any solution to this MiCP
(3) model enforces that π‘¦π‘Ÿ and 𝑃(π‘Œ) are non-negative.
β–‘
Theorem 3.1: If 𝑃(π‘Œ) = 𝑃0 βˆ’ π›Όπ‘Œ β‰₯ 0 and Ξ± is a small enough positive parameter, then the Nash
equilibrium solution is for all firms to produce on the production frontier.
πœ•πΏ
Proof: In MiCP, πœ•π‘¦π‘Ÿ = (𝑃(π‘Œ) βˆ’ π›Όπ‘¦π‘Ÿ βˆ’ πœ‡1π‘Ÿ ) = 0, βˆ€π‘Ÿ; where Ξ± is small enough, then we have
π‘Ÿ
𝑃(π‘Œ) βˆ’ π›Όπ‘¦π‘Ÿ = πœ‡1π‘Ÿ β‰₯ 0. In the extreme case, 𝛼 = 0, then 𝑃(π‘Œ) = 𝑃0 = πœ‡1π‘Ÿ > 0. By MiCP, 0 β‰₯
(π‘¦π‘Ÿ βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜ ) βŠ₯ πœ‡1π‘Ÿ > 0, βˆ€π‘Ÿ , which gives π‘¦π‘Ÿ βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜ = 0 . Once again, a firm’s best
strategy is to produce on the production frontier.
β–‘
Theorem 3.2: If 𝑃(π‘Œ) = 𝑃0 βˆ’ π›Όπ‘Œ β‰₯ 0 and Ξ± is a large enough positive parameter, then the
MiCP will lead to a benchmark output level with π‘¦π‘Ÿ = π‘¦Μ…π‘Ÿ close to zero, where π‘¦Μ…π‘Ÿ defines a
truncated output level.
Proof: Since 𝑃0 βˆ’ π›Όπ‘Œ β‰₯ 0 from Lemma 3.1 and 𝑃0 is a constant, then ≀
𝑃0
𝛼
, meaning that a
larger 𝛼 will result in a smaller π‘Œ. In the MiCP, 0 β‰₯ (π‘¦π‘Ÿ βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜ ) βŠ₯ πœ‡1π‘Ÿ β‰₯ 0, βˆ€π‘Ÿ. If π‘Œ is
small, then (π‘¦π‘Ÿ βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜ ) < 0, i.e., πœ‡1π‘Ÿ = 0. In other words, we can increase Ξ± until no firm
would choose to produce on the production frontier in a Nash equilibrium solution, and then all
πœ‡1π‘Ÿ = 0, βˆ€π‘Ÿ. Proving this results for a truncated benchmark output level requires us to show that,
if Ξ± increases, then π‘¦π‘Ÿ decreases and approaches zero. Since πœ‡1π‘Ÿ = 0 and we know π‘¦π‘Ÿ β‰₯ 0 by
lemma 3.1, 𝑃(π‘Œ) βˆ’ π›Όπ‘¦π‘Ÿ = 0 in the MiCP and π‘¦π‘Ÿ =
𝑃(π‘Œ)
𝑃(π‘Œ)
𝛼
𝛼
. In addition, π‘¦π‘Ÿ =
0
there are only two firms in the market, 𝑦1 =
(𝑃 ⁄𝛼)βˆ’π‘¦2
2
and 𝑦2 =
0
(𝑃 ⁄𝛼)βˆ’π‘¦1
2
=
𝑃 0 βˆ’π›Ό βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜
2𝛼
. If
𝑃0
, then 𝑦1 = 𝑦2 = 3𝛼 .
𝑃0
This constant 3𝛼 identifies the truncation output level for production. If there are 𝐾 firms in the
market, π‘¦π‘Ÿ =
𝑃 0 βˆ’π›Ό βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜
2𝛼
and π‘¦π‘Ÿ =
𝑃0
2
𝑃0
𝑃0
πΎβˆ’1
πΎβˆ’2
)βˆ’(πΎβˆ’1)( )+(
)π‘¦π‘Ÿ +(
) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜
𝛼
2𝛼
2
2
(
2
𝑃0
πΎβˆ’1
βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜ =
(2π‘¦π‘Ÿ βˆ’ ( 𝛼 ) + (𝐾 βˆ’ 1) (2𝛼) βˆ’ (
πΎβˆ’2
replace βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜ in equation π‘¦π‘Ÿ , thus π‘¦π‘Ÿ =
2
2
5βˆ’πΎ
) π‘¦π‘Ÿ ) = πΎβˆ’2 ((
𝑃 0 βˆ’π›Ό βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜
2𝛼
=
2
𝑃0 (πΎβˆ’3)𝑃0
βˆ’
𝛼
(πΎβˆ’2)𝛼
5βˆ’πΎ
2+
πΎβˆ’2
, then we obtain
𝑃0
) π‘¦π‘Ÿ + (2𝛼) (𝐾 βˆ’ 3)). We
𝑃0
= (𝐾+1)𝛼 . Therefore, for 𝐾
𝑃0
firms π‘¦π‘Ÿ = (𝐾+1)𝛼 = π‘¦Μ…π‘Ÿ , and this constant π‘¦Μ…π‘Ÿ identifies the benchmark output level. As Ξ± goes to
𝑃0
infinity, π‘¦Μ…π‘Ÿ = (𝐾+1)𝛼 β†’ 0.
β–‘
Theorem 3.3: If the price sensitivity matrix 𝜢 satisfies WDD but is not necessarily symmetric,
then the MiCP (6) generates (π‘‹π‘Ÿπ‘– , π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃ , where π‘¦π‘Ÿπ‘ž will approach the efficient frontier for
small enough values of π›Όπ‘žπ‘ž ; π‘¦π‘Ÿπ‘ž = π‘¦Μ…π‘Ÿπ‘ž is the truncated benchmark output level that approaches
zero as π›Όπ‘žπ‘ž approaches infinity.
Proof: This is similar to theorems 3.1 and 3.2. We know
πœ•πΏπ‘Ÿ
πœ•π‘¦π‘Ÿ
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž ≀ πœ‡1π‘Ÿπ‘ž , βˆ€π‘Ÿ. If the π›Όπ‘žπ‘ž value is small enough and we
= π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
consider a special case π›Όπ‘žπ‘ž = 0, and the 𝜢 matrix is diagonally dominant, then
Μ‚ π‘ž ) = π‘ƒπ‘ž0 ≀ πœ‡1π‘Ÿ . Referring to the MiCP, 0 β‰₯ (π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ) βŠ₯ πœ‡1π‘Ÿπ‘ž > 0 ,
0 < π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
βˆ€π‘Ÿ, π‘ž, meaning π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž = 0, or a firm’s best strategy is to produce on the production
frontier except for the portion associated with positive slacks and dual variables equal to zero on
the output constraints since increasing output does not affect the price reduction.
Μ‚ π‘ž ) = π‘ƒπ‘ž0 βˆ’ π›Όπ‘žπ‘ž π‘Œπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž β‰₯ 0
On the other hand, if the π›Όπ‘žπ‘ž value is large enough, π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
and π‘ƒπ‘ž0 is a constant, then π‘Œπ‘ž ≀
π‘ƒπ‘ž0 βˆ’βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž
π›Όπ‘žπ‘ž
. As π›Όπ‘žπ‘ž becomes larger, π‘Œπ‘ž approaches zero.
Referring to the MiCP, 0 β‰₯ (π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ) βŠ₯ πœ‡1π‘Ÿπ‘ž β‰₯ 0 , for all π‘Ÿ, π‘ž . If π‘Œπ‘ž is small, then
(π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ) < 0 and πœ‡1π‘Ÿπ‘ž = 0. In other words, we can increase π›Όπ‘žπ‘ž until no firm would
choose to produce on the production frontier in a Nash equilibrium solution, and then all πœ‡1π‘Ÿπ‘ž =
0, βˆ€π‘Ÿ, π‘ž. Now we show as π›Όπ‘žπ‘ž increases, then the truncated output level π‘¦π‘Ÿπ‘ž becomes smaller and
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’ πœ‡1π‘Ÿπ‘ž ≀ 0 , and we
approaches zero. Since we derive π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž = 0 in MiCP (6) and
know πœ‡1π‘Ÿπ‘ž = 0 and π‘¦π‘Ÿπ‘ž β‰₯ 0, thus π‘ƒπ‘ž (π‘Œπ‘ž , 𝒀
π‘ƒπ‘ž0 βˆ’π›Όπ‘žπ‘ž βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜π‘ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Ž βˆ’βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž
0 ≀ π‘¦π‘Ÿπ‘ž =
π‘¦π‘Ÿ1 =
2π›Όπ‘žπ‘ž
𝑃10
βˆ’
2𝛼11
π‘¦π‘Ÿ1 = (1 βˆ’
βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜1
2
βˆ’
𝛼12
2𝛼11
π‘Œ2 βˆ’
2 βˆ’1
𝛼12 𝛼21 +𝛼21
𝑃10
)
[(
4𝛼11 𝛼22
2𝛼11
𝛼21
2𝛼11
𝛼
. Considering a two-output products example,
π‘¦π‘Ÿ2 and π‘¦π‘Ÿ2 =
𝑃20
1
) βˆ’ (2
11 2𝛼22
βˆ’ 2𝛼21
𝑃20
2𝛼22
βˆ’
βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜2
2
2
𝛼21
) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜1
11 𝛼22
βˆ’ 4𝛼
βˆ’
𝛼21
π‘Œ
2𝛼22 1
βˆ’
𝛼
𝛼12
2𝛼22
π‘¦π‘Ÿ1 ;
𝛼
βˆ’ 2𝛼12 π‘Œ2 + 4𝛼21 βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜2 ]
11
11
can
be derived. Furthermore, π‘Œ2 = π‘¦π‘Ÿ2 + βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜2 finally gives
π‘¦π‘Ÿ1 = (1 βˆ’
2
2
2𝛼12 𝛼21 +𝛼12
+𝛼21
4𝛼11 𝛼22
βˆ’1
)
[(
𝑃10
2𝛼11
βˆ’
𝑃0
(𝛼12 +𝛼21 )𝑃20
4𝛼11 𝛼22
1
1
2
𝛼21
2
4𝛼11 𝛼22
)βˆ’( βˆ’
βˆ’
𝛼12 𝛼21
4𝛼11 𝛼22
) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜1 + (
𝛼12
4𝛼11
+
𝛼21
4𝛼11
βˆ’
𝛼12
2𝛼11
) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜2 ].
𝛼
Based on WDD, π‘¦π‘Ÿ1 β‰ˆ (2𝛼1 ) βˆ’ (2) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜1 + (4𝛼21 ) βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜2 . This result shows that π‘¦π‘Ÿ1 is a
11
11
function of π‘¦π‘˜1 and π‘¦π‘˜2 , not a variable of index π‘Ÿ. Thus, π‘¦π‘Ÿ1 is limited by a truncated level π‘¦Μ…π‘Ÿ1
for all firms, since for all firms π‘Ÿ the same equation applies as does π‘¦π‘Ÿ1 for revenue
maximization. Similar equation can be derived for π‘¦π‘Ÿ2 . In addition, as 𝛼11 approaches infinity,
π‘¦π‘Ÿ1 β‰ˆ
βˆ’ βˆ‘π‘˜β‰ π‘Ÿ π‘¦π‘˜1
2
. That is, π‘¦π‘Ÿ1 = π‘¦Μ…π‘Ÿ1 equals to zero. We can extend this result to outputs of more
than two. Therefore, the truncation point approaches zero as π›Όπ‘žπ‘ž becomes large.
β–‘
Corollary 3.1: If the price sensitivity matrix 𝜢 satisfies the MDD property and π›Όπ‘žπ‘ž ≫ π›Όβ„Žβ„Ž , π‘ž β‰ 
β„Ž, then the solution to the MiCP (6) will satisfy π‘¦π‘Ÿπ‘ž < π‘¦π‘Ÿβ„Ž βˆ€π‘Ÿ, π‘ž.
Proof: Corollary 3.1. is proven in the proof of Theorem 3.3
β–‘
Theorem 4.1: Given arbitrary price sensitivity matrices 𝜢 and 𝜷 that satisfy WDD, MiCP (9)
π‘‰βˆ— βˆ—
𝐹
generates all allocatively efficient Nash solutions (π‘‹π‘Ÿπ‘–
, π‘₯π‘Ÿπ‘—
, π‘¦π‘Ÿπ‘ž ) ∈ 𝑇̃. These solutions are on the
frontier including the weakly efficient frontier, but excluding the portion of the frontier
associated with positive slacks and dual variables equal to zero on the input constraints.
𝑉
Proof: Based on Theorem 3.3, if π‘¦π‘Ÿπ‘ž > 0, then π‘₯π‘Ÿπ‘—
> 0 based on the no free lunch axiom (Färe et
𝑉
𝑉
𝑉
̂𝑗𝑉 ) βˆ’ 𝛽𝑗𝑗 π‘₯π‘Ÿπ‘—
al., 1985). According to (A4) βˆ’π‘ƒπ‘—π‘‹ (𝑋𝑗𝑉 , 𝑿
βˆ’ βˆ‘π‘™β‰ π‘— 𝛽𝑙𝑗 π‘₯π‘Ÿπ‘™
+ πœ‡3π‘Ÿπ‘— = 0 , that is,
𝑉
𝑉
𝑉
̂𝑗𝑉 ) + 𝛽𝑗𝑗 π‘₯π‘Ÿπ‘—
𝑃𝑗𝑋 (𝑋𝑗𝑉 , 𝑿
+ βˆ‘π‘™β‰ π‘— 𝛽𝑙𝑗 π‘₯π‘Ÿπ‘™
= πœ‡3π‘Ÿπ‘— . Consider that 𝛽𝑗𝑙 β‰₯ 0, 𝑃𝑗
𝑋0𝑉
> 0 and the 𝜷 matrix is
𝑉
𝑉
diagonally dominant; then πœ‡3π‘Ÿπ‘— > 0. In MiCP (9), 0 β‰₯ (βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
βˆ’ π‘₯π‘Ÿπ‘—
) βŠ₯ πœ‡3π‘Ÿπ‘— > 0, βˆ€π‘Ÿ, 𝑗,
𝑉
𝑉
which gives βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
βˆ’ π‘₯π‘Ÿπ‘—
= 0. Based on Theorem 3.3 we know that πœ‡1π‘Ÿπ‘ž is determined
based on the sensitivity matrix 𝜢, i.e., π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘Œπ‘˜π‘ž ≀ 0. Thus, a firm’s best strategy is to
adjust its variable input and output levels moving towards the production frontier. The solution is
allocatively efficient because the Nash solution accounts for prices. Furthermore, the equation
𝑉
𝑉
βˆ‘π‘˜ πœ†π‘Ÿπ‘˜ π‘‹π‘˜π‘—
βˆ’ π‘₯π‘Ÿπ‘—
= 0 implies that the slacks of the input constraints are equal to zero and the
feasible region of the Nash solution is the production possibility set 𝑇̃ excluding the region for
which the input levels is larger than an anchor points that have dual variables equal to zero on the
inputs’ constraints. This restriction on the production possibility set implies an upper bound of
π‘‰βˆ— βˆ—
𝐹
adjustable input level. Therefore, all Nash equilibrium solutions (π‘‹π‘Ÿπ‘–
, π‘₯π‘Ÿπ‘—
, π‘¦π‘Ÿπ‘ž ) belong to 𝑇̃
excluding with this restriction.
Theorem 4.2: MiCP (9) generates a Nash equilibrium solution (𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ) ∈ 𝑇̃ .
β–‘
Proof: If an equilibrium output vector exists and π‘₯π‘Ÿπ‘— > 0, π‘¦π‘Ÿπ‘ž > 0 , it must satisfy the first order
condition of MiCP (9). The complementary condition gives the following first order condition on
the output side:
Μ‚ π‘ž ) βˆ’ π›Όπ‘žπ‘ž π‘¦π‘Ÿπ‘ž βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όβ„Žπ‘ž π‘¦π‘Ÿβ„Ž βˆ’ πœ‡1π‘Ÿπ‘ž = 0, βˆ€π‘Ÿ, π‘ž.
π‘ƒπ‘žπ‘Œ (π‘Œπ‘ž , 𝒀
This condition can be expressed in matrix notation as:
π‘·π‘Œ0 βˆ’ πœΆπ’šπ’† βˆ’ πœΆπ‘‡ π’šπ‘Ÿ βˆ’ ππŸπ‘Ÿ = 𝟎, βˆ€π‘Ÿ,
where π’š is a matrix with ( π’š1 , … , π’šπΎ ) and each vector π’šπ‘˜ = (π‘¦π‘˜1 , … , π‘¦π‘˜π‘„ )𝑇 . 𝒆 is a vector
π‘Œ
(1, … ,1)𝑇 with K elements. π‘·π‘Œ0 is a price vector with elements π‘ƒπ‘ž 0 . ππŸπ‘Ÿ is a vector of the
Lagrangian multiplier with elements πœ‡1π‘Ÿπ‘ž . If π’šβˆ— is the solution obtained from the first order
Μ‚ βˆ—π‘ž ) = π‘ƒπ‘žπ‘Œ0 βˆ’ π›Όπ‘žπ‘ž π‘Œπ‘žβˆ— βˆ’ βˆ‘β„Žβ‰ π‘ž π›Όπ‘žβ„Ž π‘Œβ„Žβˆ— β‰₯ 0 for all π‘ž.
condition, then we need to show that π‘ƒπ‘žπ‘Œ (π‘Œπ‘žβˆ— , 𝒀
This equation can be expressed in matrix notation as π‘·π‘Œ0 βˆ’ πœΆπ’šβˆ— 𝒆. Obviously, the first order
condition gives π‘·π‘Œ0 βˆ’ πœΆπ’šβˆ— 𝒆 = πœΆπ‘‡ π’šβˆ—π’“ + ππŸπ‘Ÿ β‰₯ 𝟎 if π’šβˆ—π’“ β‰₯ 𝟎 for all π‘Ÿ by Lemma 3.1.
Similar to the first order condition on the variable input side
𝑉
βˆ’π‘· 𝑋0 βˆ’ πœ·π’™π‘½ 𝒆 βˆ’ πœ·π‘‡ 𝒙𝑽𝒓 + ππŸ‘π‘Ÿ = 𝟎, βˆ€π‘Ÿ,
𝑉
𝑉
𝑉 𝑇
where 𝒙𝑉 is a matrix with (𝒙1𝑉 , … , 𝒙𝑉𝐾 ) and each vector π’™π‘‰π‘˜ = (π‘₯π‘˜1
, … , π‘₯π‘˜π½
) . 𝑷 𝑋0 is a price vector
with elements 𝑃𝑗
𝑋0𝑉
. ππŸ‘π‘Ÿ is a vector of the Lagrangian multiplier with elements πœ‡3π‘Ÿπ‘— . If π’™π‘‰βˆ— is the
solution obtained from the first order condition, then we need to show the equation
𝑉
Μ‚π‘—π‘‰βˆ— ) = 𝑃
𝑃𝑗𝑋 (π‘‹π‘—π‘‰βˆ— , 𝑿
𝑗
𝑋0𝑉
+ 𝛽𝑗𝑗 π‘‹π‘—π‘‰βˆ— + βˆ‘π‘™β‰ π‘— 𝛽𝑗𝑙 π‘‹π‘™π‘‰βˆ— β‰₯ 0 for all 𝑗. This equation can be expressed in
𝑉
matrix notation as 𝑷 𝑋0 + πœ·π’™π‘‰ 𝒆 . Obviously, the first order condition derives the results
𝑉
βˆ’πœ·π‘‡ 𝒙𝑉𝒓 + ππŸ‘π‘Ÿ = 𝑷 𝑋0 + πœ·π’™π‘‰ 𝒆 β‰₯ 𝟎 if π’™π‘‰βˆ—
𝒓 β‰₯ 𝟎 for all π‘Ÿ by the estimated production possibility
set 𝑇̃ describing a positive lower bound of input level. Therefore, if an equilibrium vector exists,
it must equal (π’™π‘‰βˆ— , π’šβˆ— ).
To show that (π’™π‘‰βˆ— , π’šβˆ— ) is indeed an equilibrium vector, for any non-negative vector
(𝑿𝐹 , 𝒙𝑉′ , π’šβ€²) ∈ 𝑇̃, where (𝑿𝐹 , 𝒙𝑉′ , π’šβ€²) β‰  (𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ), we consider (𝑿𝐹 , 𝒙𝑉′ , π’šβ€²) in which all the
elements are equal to (𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ) except for some π’™π‘‰π‘Ÿ , π’šπ‘Ÿ columns. We need to show that
𝑉
𝑉′
β€²
Μ‚ β€²π‘ž )π‘¦π‘Ÿπ‘ž
̂𝑗𝑉′ )π‘₯π‘Ÿπ‘—
βˆ‘ βˆ‘ π‘ƒπ‘žπ‘Œ (π‘Œπ‘žβ€² , 𝒀
βˆ’ βˆ‘ βˆ‘ 𝑃𝑗𝑋 (𝑋𝑗𝑉′ , 𝑿
π‘Ÿ
π‘ž
π‘Ÿ
𝑗
𝑉
π‘‰βˆ—
βˆ—
Μ‚ βˆ—π‘ž )π‘¦π‘Ÿπ‘ž
Μ‚π‘—π‘‰βˆ— )π‘₯π‘Ÿπ‘—
≀ βˆ‘ βˆ‘ π‘ƒπ‘žπ‘Œ (π‘Œπ‘žβˆ— , 𝒀
βˆ’ βˆ‘ βˆ‘ 𝑃𝑗𝑋 (π‘‹π‘—π‘‰βˆ— , 𝑿
π‘Ÿ
π‘ž
π‘Ÿ
𝑗
for all π‘Ÿ. Since 𝑃𝐹 is a strictly concave function under concavity and differentiability almost
everywhere assumptions for the maximization problem, and (π’™π‘‰βˆ— , π’šβˆ— ) satisfies the first order
condition and the KKT condition, then (π’™π‘‰βˆ— , π’šβˆ— ) must be a global optimum, i.e., the
complementary condition provides a Nash equilibrium solution:
𝑉
𝑉
𝑉′
π‘‰βˆ—
β€²
βˆ—
Μ‚ β€²π‘ž )π‘¦π‘Ÿπ‘ž
̂𝑗𝑉′ )π‘₯π‘Ÿπ‘—
Μ‚ βˆ—π‘ž )π‘¦π‘Ÿπ‘ž
Μ‚π‘—π‘‰βˆ— )π‘₯π‘Ÿπ‘—
βˆ‘π‘Ÿ βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘Œπ‘žβ€² , 𝒀
βˆ’ βˆ‘π‘Ÿ βˆ‘π‘— 𝑃𝑗𝑋 (𝑋𝑗𝑉′ , 𝑿
≀ βˆ‘π‘Ÿ βˆ‘π‘ž π‘ƒπ‘žπ‘Œ (π‘Œπ‘žβˆ— , 𝒀
βˆ’ βˆ‘π‘Ÿ βˆ‘π‘— 𝑃𝑗𝑋 (π‘‹π‘—π‘‰βˆ— , 𝑿
for all π‘Ÿ and (𝑿𝐹 , 𝒙𝑉′ , π’šβ€²) ∈ 𝑇̃.
β–‘
Theorem 4.3: If the profit function is a strictly concave function on (𝑿𝐹 , 𝒙𝑉 , π’š) ∈ 𝑇̃ , that is
continuous and differentiable almost everywhere and the price sensitivity matrices 𝜢 and 𝜷
satisfy the WDD property, then the Nash equilibrium solution found using MiCP (9) is unique if
a solution exists for the maximization problem.
Proof: To prove the uniqueness, let two vectors (𝑿𝐹 , 𝒙̇ 𝑉 , π’šΜ‡ ) and (𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ) ∈ 𝑇̃ be solutions
and (𝑿𝐹 , 𝒙̇ 𝑉 , π’šΜ‡ ) β‰  (𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ) satisfy the variational inequality:
β€²
𝐹 π‘‰βˆ— βˆ—
𝐹 𝑉′ β€²
Μƒ
βˆ‘π‘˜ πΉπ‘˜ ((𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— ))𝑇 βˆ™ ((π‘ΏπΉπ‘˜ , 𝒙𝑉′
π‘˜ , π’šπ‘˜ ) βˆ’ (π‘Ώπ‘˜ , π’™π‘˜ , π’šπ‘˜ )) β‰₯ 0, βˆ€(π‘Ώπ‘˜ , π’™π‘˜ , π’šπ‘˜ ) ∈ 𝑇 ;
(A8)
β€²
𝐹 𝑉
𝐹 𝑉′ β€²
Μƒ
βˆ‘π‘˜ πΉπ‘˜ ((𝑿𝐹 , 𝒙̇ 𝑉 , π’šΜ‡ ))𝑇 βˆ™ ((π‘ΏπΉπ‘˜ , 𝒙𝑉′
π‘˜ , π’šπ‘˜ ) βˆ’ (π‘Ώπ‘˜ , 𝒙̇ π‘˜ , π’šΜ‡ π‘˜ )) β‰₯ 0, βˆ€(π‘Ώπ‘˜ , π’™π‘˜ , π’šπ‘˜ ) ∈ 𝑇 .
(A9)
π‘‰βˆ— βˆ—
𝑉′ β€²
β€²
Substituting 𝒙̇ π‘‰π‘˜ , π’šΜ‡ π‘˜ for 𝒙𝑉′
π‘˜ , π’šπ‘˜ in (A8) and π’™π‘˜ , π’šπ‘˜ for π’™π‘˜ , π’šπ‘˜ in (A9) and adding the resulting
inequalities gives
βˆ—
βˆ‘π‘˜(πΉπ‘˜ ((𝑿𝐹 , π’™π‘‰βˆ— , π’šβˆ— )) βˆ’ πΉπ‘˜ ((𝑿𝐹 , 𝒙̇ 𝑉 , π’šΜ‡ )))𝑇 βˆ™ ((π‘ΏπΉπ‘˜ , 𝒙̇ π‘‰π‘˜ , π’šΜ‡ π‘˜ ) βˆ’ (π‘ΏπΉπ‘˜ , π’™π‘‰βˆ—
π‘˜ , π’šπ‘˜ ) β‰₯0.
However, this inequality does not satisfy the definition of strict monotonicity.
Thus, 𝒙̇ 𝑉 = π’™π‘‰βˆ— , π’šΜ‡ = π’šβˆ— and the solution is unique.
β–‘
References of On-Line Electronic Supplementary Material
Angrist, J.D., Krueger, A.B.: Instrumental variables and the search for identification: from supply and demand to
natural experiments. Journal of Economic Perspectives 15 (4), 69–85 (2001)
Banker, R.D.: Estimating most productive scale size using data envelopment analysis. European Journal of
Operational Research 17, 35–44 (1984)
Chambers, R.G., Chung, Y., Färe, R.: Benefit and distance functions. Journal of Economic Theory 70, 407–419
(1996).
Chambers, R.G., Chung, Y., Färe, R.: Profit, directional distance functions, and Nerlovian efficiency. Journal of
Optimization Theory and Applications 98 (2), 351–364 (1998)
Choi O., Stefanou S.E., Stokes J.R.: The dynamics of efficiency improving input allocation. Journal of Productivity
Analysis 25, 159-171 (2006)
Färe, R., Grosskopf, S., Whittaker, G.: Directional output distance functions: endogenous directions based on
exogenous normalization constraints. Journal of Productivity Analysis 40 (3), 267–269 (2013)
Färe, R., Grosskopf, S., Lovell, C.A.K.: The Measurement of Efficiency of Production. Kluwer Academic
Publishers, Boston (1985)
Frei, F.X., Harker, P.T.: Projections onto efficient frontiers: theoretical and computational extensions to DEA.
Journal of Productivity Analysis 11, 275–300 (1999)
Fried, H.O., Lovell, C.A.K., Schmidt, S.S.: The Measurement of Productive Efficiency and Productivity Growth.
Oxford University Press (2008)
Goldberger, A.S.: Structural equation methods in the social sciences. Econometrics, 40 (6), 979–1001 (1972)
Greene, W.H.: Econometric Analysis. 7th edition, Upper Saddle River, NJ: Prentice Hall (2011)
Lee, C.-Y.: Meta-data envelopment analysis: finding a direction towards marginal profit maximization. European
Journal of Operational Research (2014) (forthcoming)
Morgan, M.S.: The History of Econometric Ideas, Cambridge: Cambridge University Press (1990)
Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining oligopolistic
market equilibrium. Mathematical Programming 24, 92–106 (1982)
Ray, S.C. A one-step procedure for returns to scale classification of decision making units in data envelopment
analysis. working papers, Department of Economics, University of Connecticut (2010)
Seiford, L.M., Zhu, J.: An investigation of returns to scale in data envelopment analysis. Omega 27 (1), 1–11 (1999)
Zhu, J.: Setting scale efficient targets in DEA via returns to scale estimation method. Journal of the Operational
Research Society 51 (3), 376-378 (2000)
Zofio, J.L., Prieto, A.M.: Return to dollar, generalized distance function and the Fisher productivity index. Spanish
Economic Review 8, 2, 113–138 (2006)