7.7 Fourier Transform Theorems, Part II We have already covered four theorems. The following three theorems will be covered in this section • shift theorem • derivative theorem • convolution theorem The autocorrelation theorem will be covered under electronics. The derivative/ convolution theorem will not be covered. 7.7 : 1/9 Shift Theorem The Fourier transform of a shifted variable is the transform of the un-shifted variable multiplied by a complex harmonic. Given, then, F (t ) ↔ Φ ( f ) F ( t ± t ′ ) ↔ Φ ( f ) e± i 2π ft ′ where t' is a constant. Proof: Start with the integral for the forward transform. Multiply the integrand by e+i2πft'e-i2πft'. ∞ ∫ F ( t − t ′ ) e−i 2π ft dt −∞ ∞ = ∫ F ( t − t′) e −i 2π f ( t −t ′ ) −i 2π ft ′ e dt −∞ Since dt = d(t-t') the previous integral can be written in the form of a forward transform. =e −i 2π ft ′ ∞ ∫ F ( t − t′) e −∞ = e−i 2π ft′Φ ( f ) 7.7 : 2/9 −i 2π f ( t −t ′ ) d ( t − t′) Shift Theorem Example 2A The Fourier transform of a single impulse at f = f 0 with amplitude, A, can be determined by the shift theorem. A First write the transform pair for the single impulse function δ(f=0). δ(f=0) ↔ C(t) = A -f 0 Now write the transform of the impulse at f 0 using the shift theorem. δ(f-f 0=0) ↔ Aexp(-i2πf 0t) = Acos(2πf 0t)-iAsin(2πf 0t) The temporal result can be written as a phase shifted cosine. R = A2 + A2 = 2 A θ = tan −1 ( − A A ) = −π 4 ( F ( t ) = 2 A cos 2π f 0t − π 4 7.7 : 3/9 ) f0 Derivative Theorem F (t ) ↔ Φ ( f ) Given, then, dF ( t ) ↔ i 2π f Φ ( f ) dt dΦ ( f ) ↔ −i 2π tF ( t ) df The theorem can be extended to multiple levels of differentiation. d n F (t ) dt n ↔ ( i 2π f ) Φ ( f ) n Proof: F (t ) = ∞ ∫ d nΦ ( f ) df n ↔ ( −i 2π t ) F ( t ) Φ ( f ) ei 2π ft df −∞ dF ( t ) = i 2π dt 7.7 : 4/9 ∞ ∫ −∞ f Φ ( f ) ei 2π ft df n Derivative Theorem Example What is the Fourier transform of the derivative of a cosine, cos(2πt/t 0)? ( ) ( ) cos 2π t t 0 ↔ δδ + f 0 Given, ( d cos 2π t t 0 then, dt ) ↔ i2π f δδ + ( f 0) where, ( d cos 2π t t 0 dt ) = − 2π sin 2π t t 0 ( ) t0 i2πf 0 7.7 : 5/9 0 f0 ( ) iπf 0 1/2 -f 0 -i2πf 0 ( ) and i 2π f δδ + f 0 = −i 2π f 0δδ − f 0 → -1/2 -f 0 f0 -iπf 0 Convolution Theorem Consider the following two Fourier transform pairs. F1 (t ) ↔ Φ1 ( f ) and F2 (t ) ↔ Φ 2 ( f ) Let a new function, C(t) be the convolution of F1(t) and F2(t). C (t ) ≡ F1 ⊗ F2 = ∫ +∞ F (t ′) F2 (t − t ′) dt ′ −∞ 1 The convolution theorem gives the following relationships between the convolution and multiplication operators. F1 (t ) ⊗ F2 (t ) ↔ Φ1 ( f ) ⋅ Φ 2 ( f ) F1 (t ) ⋅ F2 (t ) ↔ Φ1 ( f ) ⊗ Φ 2 ( f ) This is the most important and useful theorem - the convolution of two functions in the time domain has a transform given by multiplication in the frequency domain. The theorem can eliminate the need to evaluate convolution integrals. 7.7 : 6/9 Theorem Proof Start by writing out the Fourier transform of the convolved function. ΦC ( f ) = ∫ +∞ −∞ C (t )e−i 2π ft dt Substitute the convolution integral for C(t). ΦC ( f ) = ∫ +∞ +∞ ∫ −∞ −∞ F1 (t ′) F2 (t − t ′) dt ′e −i 2π ft dt Let t - t' = T, and dt = dT. ΦC ( f ) = ∫ +∞ +∞ ∫ −∞ _ ∞ F1 (t ′) F2 (T )e −i 2π f (t′+T ) dt ′dT Finally, separate the double integral into a product of integrals. ΦC ( f ) = ∫ +∞ −∞ F1 (t ′)e −i 2π ft′dt ′∫ Φ C ( f ) = Φ1 ( f ) ⋅ Φ 2 ( f ) 7.7 : 7/9 +∞ −∞ F2 (T )e−i 2π fT dT Properties of Convolution Commutation: Distribution: Association: F1 (t ) ⊗ F2 (t ) = F2 (t ) ⊗ F1 (t ) F1 (t ) ⊗ [ F2 (t ) + F3 (t ) ] = F1(t ) ⊗ F2 (t ) + F1(t ) ⊗ F3 (t ) F1 ( t ) ⊗ ⎣⎡ F2 ( t ) ⊗ F3 ( t ) ⎤⎦ = ⎡⎣ F1 ( t ) ⊗ F2 ( t ) ⎤⎦ ⊗ F3 ( t ) Combinations with multiplication: multiplication and convolution do not commute! ⎡ ⎤ ⎢ F (t ) ⊗ F (t )⎥ ⋅ F (t ) ⎣ 1 2 ⎦ 3 ↔ Φ ( f ) ⋅ ⎡⎢Φ ( f ) ⊗Φ ( f )⎤⎥ 1 ⎡ ⎤ ⎡ ⎢ F (t ) ⊗ F (t )⎥ ⋅ F (t ) ↔ ⎢Φ ( f ⎣ 1 2 ⎦ 3 ⎣ 1 ⎤ ⎡ ⎤ ⎡ ⎡ ⎢ F (t ) ⊗ F (t )⎥ ⋅ ⎢ F (t ) ⊗ F (t ) ⎥ ↔ ⎢Φ ( f 4 ⎦ ⎣ 1 2 ⎦ ⎣ 3 ⎣ 1 ⎣ 2 3 ⎦ ) ⋅Φ ( f )⎤⎥ ⊗Φ ( f ) 2 ⎦ 3 ) ⋅Φ ( f )⎤⎥ ⊗ ⎡⎢Φ ( f ) ⋅Φ ( f )⎤⎥ 4 ⎦ 2 ⎦ ⎣ 3 A more complicated example: [ F1(t ) ⊗ F2 (t ) + F3 (t )i F4 (t )] ⋅ F5 (t ) ↔ [Φ1( f ) ⋅ Φ 2 ( f ) + Φ3 ( f ) ⊗ Φ 4 ( f )] ⊗ Φ5 ( f ) 7.7 : 8/9 Convolution Examples Gaussian: The convolution of two Gaussian functions is a Gaussian function, gauss ( ) ⊗ gauss ( ) t10 t20 ⎛ 0 = gauss ⎜ t3 = ⎜ ⎝ ( ) +( ) t10 2 t20 2 ⎞ ⎟⎟ ⎠ where the variance of the two convolved functions adds to give the variance of the result. In some cases it is more convenient to use the FWHM, Γ32 = Γ12 + Γ22. Impulse: The convolution of an impulse with any other function, replicates the function and centers it at the position of the impulse. For this reason, the impulse function is called a replicator. Comb: The convolution of a comb with any function with a size smaller than the comb spacing, replicates the function at the center of each comb impulse. Thus a comb function is a multiple copy replicator. 7.7 : 9/9
© Copyright 2026 Paperzz