KEEE 325-02 Signals and Systems JUNE 2006 Spring 2006 Homework #5 Solution Fourier Transform 1. a. x( ) is aperiodic signal. t R : x t 1 2 1 5 e jt d 2 2 j 5 t 1 2 j t 2 5 e j 5t 1 e e , is not rational number. 2 2 / 5 X e jt dw 1 1 e j t 2 b. y ( ) is periodic signal. t R : y t x t h t 1 2 1 2 1 1 e j e j 5 u t u t 2 d 2 u t u t 2 u t u t 2 e u t u t 2 e d j j5 t t 2 t t t 2 t 2 d e j d e j 5 d 1 1 j t 1 j 5t j 2 j10 2 e 1 e e 1 e 2 j j5 1 j j10 1 j j10 j 5 t 2 / 5 j 5t 2 e 1 e 2 e 1 e y t 2 / 5 y t T 2 5 5 2 c. We can see that the convolution of two aperiodic signals is periodic with upper problem. 2. a. False Let x( ) jxodd ( ) , where xodd ( ) is an odd and pure real-valued function. X ( ) x(t )e jt dt jxodd (t )e jt dt jxodd (t )e jt dt ,where t t jxodd (t )e jt dt j ( xodd (t ))e jt dt xodd ( ) is an odd function jxodd (t )e jt dt X ( ) Korea Univ. -1/9- NGITL KEEE 325-02 Signals and Systems X ( ) is an odd Fourier Transform. JUNE 2006 Spring 2006 X ( ) ( x(t )e jt dt ) x (t )(e jt ) dt ( jxodd (t ))e jt dt ( jxodd (t ))e jt dt xodd ( ) is a real-valued function ,where t t ( jxodd (t ))e jt dt jxodd (t ))e jt dt xodd ( ) is an odd function X( ) X ( ) is a real-valued Fourier Transform. b. True Let FT [ x1 ( )] X1 ( ) , where X 1 ( ) is an odd and real-valued function, FT [ x2 ( )] X 2 ( ) , where X 2 ( ) is an even an odd and real-valued function. x( ) x1 ( ) x2 ( ) IFT X 1 ( ) X 2 ( ) 1 X 1 ( w) X 2 ( w)e jw dw 2 1 X 1 ( w) X 2 ( w)(cos( w ) j sin( w )dw 2 1 X 1 ( w) X 2 ( w) j sin( w )dw ( X 1 ( ) X 2 ( ) cos( w ) is an odd function) 2 1 j X 1 ( w) X 2 ( w) sin( w )dw 2 Here, integration value of real function is real-value. x( ) is always a pure imaginary-valued signal. Korea Univ. -2/9- NGITL KEEE 325-02 Signals and Systems 3. JUNE 2006 Spring 2006 f ( ) (1/ 2 )e F 2 ( is constant value.) / 2 2 2 2 1 f t e j t dt e t / 2 e j t dt 2 1 2 1 2 e t2 2 j 2 e 1 e 2 2 1 t j 2 j 1 e 2 2 1 e 2 2 2 e 2 e e 2 j 2 1 dt 2 2 2 2 2 t 1 2 2 1 2 2 1 2 2 4 2 2 4 dt e 1 2 2 t j 2 2 dt , where u t 2 j du du e e 1 2 t j 2 2 2 u2 1 dt e 2 2 u2 2 Cauchy Integral Theorem 2 2 Two-dimensional Fourier Transform 4. The technique of Fourier analysis can be extended to signals having two independent variables. The two-dimensional Fourier Transform of x( 1 , 2 ) is defined as X ( 1 , 2 ) such that: 1 , 2 : X ( 1 , 2 ) x(t1 , t2 )e j (1t1 2t2 ) dt1dt2 . a. This two-dimensional Fourier Transform of x( 1 , 2 ) can be performed as two successive one-dimensional Fourier Transforms. With t 2 regarded as fixed, we can perform integral with respect to t1 first. Hence we can write X ( 1, 2 ) x(t1 , t2 )e j ( 1 t1 2 t2 ) dt1dt2 x(t1 , t2 )e j 1 t1 dt1 e j 2 t2 dt2 Then, we can see that the integration with respect to t1 in the bracket means performing the one-dimensional Fourier transform of x(t1 , t 2 ) in t1 . Letting x(t1 , t2 )e j 1 t1 dt1 ( 1 , t2 ) , we can have X ( 1 , 2 ) ( 1 , t2 )e j 2 t2 dt2 . Korea Univ. -3/9- NGITL KEEE 325-02 JUNE 2006 Signals and Systems Spring 2006 This equation is also one-dimensional Fourier Transform of ( 1 , t2 ) in t 2 . So using the one-dimensional inverse Fourier Transform formula, we can write ( 1, 2 ) 1 2 x( 1 , 2 ) 1 2 X ( 1 , 2 )e j2 2 d2 . And also (1 , 2 )e j d1 . 1 1 Combining the above two equations, we can have x( 1 , 2 ) 1 2 (1 , 2 )e j d1 1 1 1 1 X (1 , 2 )e j2 2 d 2 e j1 1 d 1 2 2 1 X (1 , 2 )e j (1 1 2 2 ) d 1d 2 2 (2 ) X ( 1, 2 ) b. i) x(t 1 , t2 )e j ( 1 t1 2 t2 ) dt1dt2 2 1 e t1 2t2 u (t1 1)u (2 t2 )e j ( 1 t1 2 t2 ) dt1dt2 e t1 2t2 e j ( 1 t1 2 t2 ) dt1dt2 2 e 2t2 e t1 e j 1 t1 dt1 e j 2 t2 dt2 1 2 e 2 t2 e (1 j 1 ) 1 j 1 1 e (1 j 1 )t1 e j 2 t2 dt2 1 j1 1 2 e(2 j 2 )t2 dt2 2 e (1 j 1 ) 1 e(2 j 2 )t2 1 j 1 2 j 2 Korea Univ. e (1 j 1 ) e 2(2 j 2 ) (1 j 1 )(2 j 2 ) -4/9- NGITL KEEE 325-02 Signals and Systems ii) X ( 1, 2 ) JUNE 2006 Spring 2006 t1 t1 0 e 2t1 e j ( 1 t1 2 t2 ) dt2 dt1 0 t2 t2 2 2 0 2 1 0 t1 t1 2 0 1 e 2t2 e j ( 1 t1 2 t2 ) dt1dt2 e 2t2 e j ( 1 t1 2 t2 ) dt1dt2 e (2 j 1 )t1 sin 2 t1 dt1 0 t2 t2 0 e(2 j 2 )t2 sin 1 t2 dt2 2 1 2 2 (2 j 1 ) 2 2 e (2 j 2 )t2 sin 1 t2 dt1 0 2 1 (2 j 2 ) 2 e 2t1 e j ( 1 t1 2 t2 ) dt2 dt1 2 1 e(2 j 1 ) t1 sin 2 t1 dt1 1 (2 j 2 ) 2 2 1 (2 j 1 ) 1 2 t2 e 2t1 2t2 e x(t1 , t2 ) 2t 2 e e 2t1 t1 t2 0, t1 t2 0 (a ) t1 t2 0, t1 t2 0 (b) t1 t2 0, t1 t2 0 (c ) t1 t2 0, t1 t2 0 (d ) 2 2 t 2 t1 (b) (d ) (a ) t1 (c) t 2 t 1 c. The properties of two-dimensional Fourier Transform according to all the properties of one-dimensional Fourier Transform given in our textbook are: i) Time Shifting: t1 , t2 : If FT x( 1 , 2 ) X ( 1 , 2 ), then FT x( 1 T1 , 2 T2 ) x(t1 T1 , t2 T2 )e j ( 1 t1 2 t2 ) dt1dt2 x(t1 ', t2 ')e j ( 1 (t1 ' T1 ) 2 (t2 ' T2 )) dt1 ' dt2 ' e j ( 1 T1 2 T2 ) x(t1 ', t2 ')e j ( 1 t1 ' 2 t2 ') dt1 ' dt2 ' e j ( 1 T1 2 T2 ) X ( 1 , 2 ) Korea Univ. -5/9- NGITL KEEE 325-02 Signals and Systems ii) Time Scaling: t1 , t2 JUNE 2006 Spring 2006 : If FT x( 1 , 2) X ( ,1 ),2 then FT x(a 1 , b 2 ) x(at1 , bt2 )e j ( 1 t 1 t2 ) 2 dt 1dt2 1 1 (( 1 / a ) 1 ( /2b ) ) 2 d 1d 2 a b x( 1 , 2 )e 1 1 (( 1 / a ) 1 ( /2b ) ) 2 d 1d 2 ( a ) b x( 1 , 2 )e 1 ( 1 ) x( , )e (( 1 / a )1 ( 2 / b ) 2 ) d d 1 2 a b 1 2 ( 1 )( 1 ) x( 1 , 2 )e (( 1 / a )1 ( 2 / b ) 2 ) d 1d 2 a b 1 1 X( 1 , 2) a b a b iii) Linearity: t1 , t2 a 0, b 0 a 0, b 0 a 0, b 0 a 0, b 0 : If FT x1 ( 1 , 2 ) X 1 ( 1 , 2 ) & FT x2 ( 1 , 2 ) X 2 ( 1 , 2 ), then FT ax1 ( 1 , 2 ) bx2 ( 1 , 2 ) ax1 (t1 , t2 ) bx2 (t1 , t2 ) e j ( x (t , t ) e b x (t , t ) e a j ( 1 t1 2 t2 ) 1 1 2 2 1 dt1dt2 dt1dt2 j ( 1 t1 2 t2 ) 2 1 t1 2 t2 ) dt1dt2 aX 1 ( 1 , 2 ) bX 2 ( 1 , 2 ) iv) Symmetry: t1 , t2 : If x( 1 , 2 ) is a real valued signal, then X * ( 1 , 2 ) x(t1 , t2 )e j ( 1 t1 2 t2 ) dt1dt2 * x(t1 , t2 )e j 1 t1 dt1 e j 2 t2 dt2 * x(t1 , t2 )e j 1 t1 dt1 e j 2 t2 dt2 x(t1 , t2 )e j ( 1 ) t1 dt1 e j ( 2 ) t2 dt2 X ( 1 , 2 ) Korea Univ. -6/9- NGITL KEEE 325-02 Signals and Systems v) Differentiation: t1 , t2 , 1 , 2 : JUNE 2006 Spring 2006 If FT x( 1 , 2 ) X ( 1 , 2 ), then 2 x(t1 , t2 ) 2 1 t1t2 t1t2 4 2 1 t1 4 2 1 4 2 X (1 , 2 ) j2 e j (1t1 2t2 ) d 1d 2 X (1 , 2 )e j (1t1 2t2 ) d 1d 2 X (1 , 2 ) j1 j2 e j (1t1 2t2 ) d 1d 2 x(t , t ) 2 1 2 FT j1 j2 X (1 , 2 ) t1t2 vi) Energy of Aperiodic Signals: t1 , t2 , 1 , 2 : E x(t1 , t2 ) x* (t1 , t2 )dt1dt2 1 x(t1 , t2 ) 2 (2 ) 1 x(t1 , t2 ) 2 (2 ) 1 (2 ) 1 (2 ) 2 1 (2 ) 2 Korea Univ. | x(t1 , t2 ) |2 dt1dt2 2 X * (1 , 2 ) * X (1 , 2 )e j (1t1 2t2 ) d 1d 2 dt1dt2 X * (1 , 2 )e j (1t1 2t2 ) d 1d 2 dt1dt2 x(t1 , t2 )e j (1t1 2t2 ) dt1dt2 d 1d 2 X * (1 , 2 ) X (1 , 2 )d 1d 2 | X (1 , 2 ) |2 d 1d 2 -7/9- NGITL KEEE 325-02 Signals and Systems vii) Convolution: JUNE 2006 Spring 2006 If FT x( 1 , 2 ) X ( 1 , 2 ) & FT h( 1 , 2 ) H ( 1 , 2 ), then FT x( 1 , 2 ) h( 1 , 2 ) x( 1 , 2 ) h( 1 , 2 ) e j (1t1 2t2 ) dt1dt2 h( , ) h( 1 , 2 ) 1 x(t1 1 , t2 2 )h( 1 , 2 )d 1d 2 e j ( 1 t1 2 t2 ) dt1dt2 2 dt dt d d x(t1 1 , t2 2 )e j ( 1 t1 2 t2 ) dt1dt2 d 1d 2 x(t1 1 , t2 2 )e j ( 1 t1 2 t2 ) 1 2 1 2 h( 1 , 2 ) X ( 1 , 2 )e j ( 11 2 2 ) d 1d 2 X ( 1, 2 ) h( 1 , 2 )e j ( 11 2 2 ) d 1d 2 X ( 1, 2 )H ( 1, 2 ) viii) Duality: If FT x( 1 , 2 ) X ( 1 , 2 ), then x( 1 , 2 ) 1 (2 ) x( 1 , 2 ) 2 1 (2 ) X (1 , 2 )e j (1 1 2 2 ) d 1d 2 2 (2 ) 2 x( 1 , 2 ) X (t1 , t2 )e j ( 1 t1 2 t2 ) dt1dt2 X (t1 , t2 )e j ( 1 t1 2 t2 ) dt1dt2 FT X ( 1 , 2 ) (2 ) 2 x( 1 , 2 ) ix) Modulation: If FT x( 1 , 2) X ( ,1 )2& FT m( , 1 ) 2 M ( , ),1 then 2 using duality property, FT X ( 1 , 2) (2 ) 2 x( ,1 )2 FT M ( 1 , 2) (2 ) 2 m( ,1 )2 using convolution property, FT X ( 1 , 2 ) M ( 1 , 2 ) (2 ) 2 x( 1 , 2 )(2 ) 2 m( 1 , 2 ) using duality property again, FT (2 ) 2 x( 1 , 2 )(2 ) 2 m( 1 , 2 ) (2 ) 2 X ( 1 , 2 ) M ( 1 , 2 ) FT x( 1 , 2 )m( 1 , 2 ) 1 (2 ) 2 X ( 1, 2 ) M ( 1, 2 ) Having given above benign treatment of 2-D Fourier Transform, I must now ask you Korea Univ. -8/9- NGITL KEEE 325-02 JUNE 2006 Signals and Systems Spring 2006 this question: “Do YOU have a vision of what is going on? For instance, do you see in your mind orthogonal vectors? Do you have the MICRO, MACRO, EQUATION, PRIOR ART, GEOMETRICAL, e.t.c. vision of what is going on? In particular, can you propose the notion of LTI System for which the basic signal e j (1 1 2 2 ) becomes an eigen signal? Korea Univ. -9/9- NGITL
© Copyright 2026 Paperzz