Existence, Uniqueness and Smoothness of a Solution of the Problem Navier-Stokes for the Incompressible Fluid with Viscosity Taalaibek D.Omurov Doctor of Physics and Mathematics, professor of Z. Balasagyn Kyrgyz National University, Bishkek, Kyrgyzstan, E-mail: [email protected] Abstract. Existence, uniqueness and smoothness (or conditional-smoothness) of а solution of the Navier-Stokes equation is one of the most important problems in mathematics. The Problem is well-known as "Navier-Stokes Millennium Problem". In this paper we offer the analytical methods of solutions of the Navier-Stokes equations for viscous incompressible fluid with Cauchy condition. Therefore in this work are offered methods of analytical solutions of equations Navier-Stokes for fluid with viscosity, which meet the requirements of the specified problem of a millenium [1]. Key words: 6th millennium problem, Navier-Stokes equations, viscous fluid, incompressible fluid, uniqueness and smoothness of solution, Beale-Kato-Majda, Reynolds number Preface The research is devoted to the development of a method for solving 3D and nD Navier-Stokes equations that describe the flow of a viscous incompressible fluid. The study includes a requirements "Navier-Stokes Millennium Problem", as developed method of solution contains a proof of the existence and smoothness (conditional smoothness) of solutions of the Navier-Stokes equations, where laminar flow is separated from the turbulent flow when the critical Reynolds number: Re = 2300. The decision is obtained for the velocity and pressure in an analytical form, as required by the "Navier-Stokes problem Millennium". The method of solution is supported by examples for different viscosity ranges corresponding applications. In sections 4.3, 4.4, 7.3 and paragraphs 5, 6 new law of the pressure distribution has been found. This law is derived from the equation of Poisson type and differs from the known laws of Bernoulli, Darcy at all. Most importantly, the author has opened a special space for the study of the existence and smoothness (including conditional smoothness) equations Navier-Stokes for viscous incompressible fluid. For brevity, these spaces can be called Omurov's spaces with different metrics: a) in the case of smoothness a space with the norms of Chebyshev type has been obtained, b) the weighted space arises in the case of conditional-smoothness, for example the weighted space of Sobolev type: Wn2 3; ( D0 ) . K. Jumaliev, Academician, Director of the Institute of Physics NAS Kyrgyz Republic August 1, 2014 1. Introduction The difficulty of study of the 3D and nD Navier-Stokes equations is caused by nonlinear nature of the equation and by the necessity to find the speed and pressure for any values of parameter viscosity [1]. If to designate components of vectors of speed and external force, as v( x ,t ) [1( x ,t ),2 ( x ,t ),3 ( x ,t )], f ( x ,t ) [f1 ( x ,t ), f 2 ( x ,t ), f 3 ( x ,t )], that corresponding problem Navier-Stokes is represented in a kind 3 it jix fi j 1 j 1 Pxi i ,( i 1,3 ), (1.1) div 0, ( x, t ) T R 3 [0, T0 ], (1.2) i (1.3) t 0 i0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R 3 , 0 is kinematic viscosity, is density, is Laplace operator. Here, the condition incompressibility (1.2) fluid it's a the additional equation. Unknown are speed and pressure P. To answer this question, in this article the following way proposed to solve for the Navier-Stokes equations. For this purpose (1.1) we will transform to a kind [7, 10]: 1 1 Pxi Qxi i ,( i 1,3 ), 2 it i fi 3 1 2 (1.4) i ( jix Qx ), j 1 j (1.5) i where i t 0 i0 ( x1 ,x2 ,x3 ),( x1 ,x2 ,x3 ) R 3 , 3 3 3 2 0 Q( x ,x ,x ,t ) ( x ,x ,x ,t ); Q 2 ; Q 2 j0 j0 xi ,( i 1,3 ), 1 2 3 i 1 2 3 x j jx x i i i i 1 j 1 j 1 without breaking equivalence of system (1.1) and (1.4), (1.5). The received systems (1.4), (1.5) contain unknown functions i , i and pressure P. Here i0 – known functions because are known j0 , j0 x . i The developed method of the decision of systems (1.4) and (1.5) connected with functions i ,( i 1,3 ) , i.e. A1) rot 0, [ ( 1, 2, 3 ); i x i, i 1,3 ] ; rot 0, or А2) div 0, rot 0, or А3) i ,(i 1,3) is any functions if, accordingly, as necessary conditions, take place: а01) rot 0 0, 0 ( 10 , 20 , 30 ), а02) div 0 0, а03) 0 is any functions. To study of many problems of theoretical and mathematical physics lead us to find solutions in various special weight spaces. In the papers [7, 9] have been offered the methods which give solution of 3D problem Navier-Stokes in Gn2 3; ( D0 ), T0 1 3 3 2 k 2 Gn23; ( D0 ) i G2 ( D0 ) { D i C( T ) [sup ( t ) it ( x1 ,x2 ,x3 ,t ) dt ] }, R3 0 i 1 i 1 0 k 3 T0 1 3 0 (1.61) D0 R ( 0,T0 ); 0 ( t ) : ( t ) dt q0 const ; k 0 : D i i , t 0 k 3 i k 0 : D ki ; k i , ( i 0,3; i0 C 3 ( R 3 ); i 1,3 ). 3 1 2 x1 x2 x3 i 1 Note, by lemma K. Friedrichs [15], the suitable solutions of Navier-Stokes problem in space Wn2 3; ( D0 ) were constructed in [8]. Here the norm of this space is defined by the following 3 Wn23; ( D0 ) i i 1 3 2 W { T0 T0 1 sup [D i ( x1 ,x2 ,x3 ,t )] dt sup ( t ) it ( x1 ,x2 ,x3 ,t ) dt}2 . k 3 i 1 0 k 3 R 2 2 R3 0 (1.62) 0 The work purpose. The main aim of this work is to prove the existence, uniqueness and smoothness solution of the 3D Navier-Stokes problem in the space Cn3,13 (T ) for a viscous incompressible fluid, where the norm of this space is defined by the following 3 Cn3,13 i i 1 3 C 3 ,1 { i 1 0 k 3 D ki C 3,3,3,1 it C }, [Cn3,1 3 (T ) Cn3,3,3,1 3 (T ) Cn 3 (T )]. (1.63) But in the case of a conditional smoothness the solution we will consider in the space Gn1 3 ( D0 ) : 3 Gn13 ( D0 ) i i 1 3 G1 ( D0 ) { i 1 0 k 3 D i T0 k C( T ) sup it ( x1 ,x2 ,x3 ,t )dt}. R3 (1.64) 0 Since i0 C 3 ( R3 ) , then the solution of 3D Navier-Stokes problem can be found also in the weight space of Sobolev’s type Wn2 3; ( D0 ). It is known that from uniform convergence of sequence continuous functions on [a, b] is followed by its convergence on the average on [a, b]. Therefore, so as norm: Cn3,13 Wn23; it is subordinated to norm , that is natural describe an analytical solution in Cn3,13 (T ) . Hence, gives also feasibility to construct the decision in Wn23; ( D0 ) , the converse is not true. The scientific value. The offered analytical methods of solution 3D Navier-Stokes problem transforms this problem to inhomogeneous linear equations of heat conductivity type under Cauchy condition with enough smooth initial conditions, without attraction of any additional conditions. The analytical solutions of transformed equations are regular with respect to viscosity factor 0 and simplify analysis of the initial problem in mathematical and physical sense [6, 11 and 12]. The important addition to study of Navier-Stokes problem is the research of fluid with very small viscosity (Reynolds number is great: Re ≥ 2300). In this case the obtained results of paper give the analytical solution of Navier-Stokes problem and allow us to get full understanding of turbulence [4,12]. In the paper, fluid with average viscosity are also studied, in which all inertia members are preserved. Note, that in the above fluids, if convective acceleration is not equal to zero then there are problems to integrate the equations of Navier-Stokes in general [12]. Further we will show that at certain mathematical transformations nonlinear problem Navier-Stokes will be transformed to linear a problem of conductivity of high temperature [13], when v R n ,( x R n ;t [0,T0 ] ) . The obtained results allow us to solve nD Navier-Stokes problem for incompressible fluid with any viscosity factor and our problem does not include a derivation of an equation in a physical meaning, since there is a big amount of works reflecting these questions [3-6, 11 and 12]. 2. Fluid with Very Small Viscosity by Condition (A1) In this paragraph and in the subsequent points with the specified restrictions at the entrance data, the strict substantiation of compatibility of systems (1.4), (1.5) will be given with very small viscosity 0 1 (for large Reynolds numbers). Note that the solution of Navier-Stokes equation has the property that the flow can be divided in two parties. In the inner part there is a thin layer in which friction forces are appeared. In the outer part the flow does not depend on friction forces, that is, it is free from rotation of the particles, and hence, it is described by Euler equation [12]. In the paper [9], the behaviour of the solution on the 3D Navier-Stokes equation in CN2 3, ( D0 ), where the viscosity aspires to a zero has been studied. Here we Let study the behaviour of the solution on the 3D Navier-Stokes equation in where the viscosity aspires to a zero. 2.1. Fluid with the Condition (A1) Let functions i0 ,( i 1,3 ) satisfy to a condition (a01). Then relatively i ,( i 1,3 ) we suppose a condition (A1) and d i fv 0 , (2.1) where from system (1.4) and (1.5), accordingly we will receive following systems 1 2 it x Qx fi i i 1 Pxi i ,( i 1,3 ), (2.2) 3 1 2 i x : x ( jix Qx ),( i 1,3 ). i i j 1 j (2.3) i Theorem 1. Let conditions (1.2), (1.3), (A1) and (2.1) are satisfied. Then systems (2.2) and (2.3) equivalent will be transformed to a kind 3 1 1 J F , [ F ( x ,x ,x ,t ) f ixi ; J( x1 ,x2 ,x3 ,t ) P Q ], 0 0 1 2 3 2 i 1 it fi i J x ,( i 1,3 ), i 3 0 0 , [ ( x ,x ,x ,t ) ixi ], 1 2 3 i 1 3 1 1 1 ds1ds2 ds3 F ( s ,s ,s ,t ) ,( r ( xi si )2 ). P Q 0 1 2 3 2 4 r i 1 R3 (2.4) Thereby the problem (1.1) - (1.3) has the only solution which satisfies to a condition (1.2). Proof of the theorem 1 consists of four stages. 1) For this we take the partial derivations of the system (2.2) at xi ,( i 1,2,3 ), that is, the 1-equation (2.2, i=1) is differentiated on x1 , 2-equation on x2 (2.2, i=2), 3-equation on x3 (2.2, i=3) and summarizing the obtained equations, and by based on the formula: 3 3 3 2 (2.2) ; div 0 : ( ) 0; ( 1x1 2 x2 3 x3 ) 0, ix 2 t i1 i i1 xi i 1 xi 3 3 1 1 1 1 [ P Q ] [ P Q ] ; F f ixi , xi xi x 0 2 i 2 i 1 xi i 1 from here we will receive the equation of Poisson [13]: [ (2.5) 1 1 P Q] F0 , i.e. 2 J F0 , J 1 F0 ( s1 ,s2 ,s3 ;t ) ds1ds2 ds3 , 4 R3 r 1 i Jx F0 ( x1 1 ,x2 2 ,x3 3 ;t ) d 1d 2 d 3 , i 4 R3 ( 12 2 2 32 )3 si xi i ,( i 1,3 ), (2.6) so as 1 1 P Q J. 2 (2.7) The algorithm for getting the Poisson equation (2.6) we call "algorithm poissonization system", shortly APS [8]. Therefore, if J – the decision of the equation (2.6), then substituting 1 1 Pxi Qxi xi J xi ,( i 1,3 ), 2 (2.8) in (2.2), we have it i i ,( i 1,3 ), 3 (2.9) ( x ,x ,x ,t ) f J ,( i 1,3 ); F J 0, ( x ,x ,x ,t ) T , i 1 2 3 i xi ixi 0 1 2 3 i 1 i.e. system (2.2) it is equivalent by (2.9). This means that the system (2.2) is converted in inhomogeneous linear equations of heat conduction. Here the equations (2.6), (2.9) is there are first and second equations of system (2.4). 2) From the received results follows that the system (1.1) is transformed in the linear equations of heat conductivity with a condition of Cauchy. Consequently, Cauchy problem with sufficiently smooth initial data t 0 in the class of bounded functions is solvable [13, 14]. Accordingly, the problem of the Navier-Stokes equations has a unique, conditional smooth solution in the space Gn1 3 ( D0 ). Really from system (2.9), follows r2 1 i exp( )i0 ( s1 ,s2 ,s3 )ds1ds2 ds3 3 4 t 8( t ) R3 8 3 1 i ( s1 ,s2 ,s3 ,s )ds1ds2 ds3ds 2 3 t )d 1d 2 d 3 3 exp( ( 3 exp( ( 0 R 2 1 r2 1 0 3 exp( 4 ( t s ) ) ( ( t s ))3 R 22 32 ))i0 ( x1 2 1 t ,x2 2 2 t ,x3 R3 t 1 1 t 2 1 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ), (2.10) 3 x3 2 3 ( t s );s )d 1d 2 d 3ds H i ( x1 ,x2 ,x3 ,t ), si xi 2 i t ;si xi 2 i ( t s ),( i 1,3 ), where H i is known functions. The found decision (2.10) satisfies system (2.9). Really, considering partial derivative systems (2.10): ( 0,1 ) ; h j x j 2 j t ; l j x j 2 j ( t s ), ( j 1,3 ),( x1 ,x1 ,x1 ,t ) T : 1 exp( ( 12 22 32 ))i0h j ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d 3 ix j 3 R3 t 1 exp( ( 12 22 32 )) il j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 R3 ( t s );s )d 1d 2 d 3ds, 1 ix2 exp( ( 12 22 32 ))i0h2 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d 3 + 3 j j R3 1 t exp( ( 12 22 32 )) il 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 j 0 R3 ( t s );s )d 1d 2 d 3 ds, ( x ,x ,x ) R 3 ; t ( 0,T ] : 1 2 3 0 3 1 2 2 2 exp ( ( )) ( j i0 h j ( x1 2 1 t ,x2 2 2 t ,x3 1 2 3 it t j 1 3 R3 t 3 j 1 2 2 2 2 3 t )d 1d 2 d 3 i exp ( ( )) il ( x1 1 2 3 3 ts j j 1 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds, ( i 1,3 ) (2.11) and substituting (2.11) in (2.10), we have i t 0 i0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R 3 ; ( 0,1 ) ; ( x1 ,x2 ,x3 ) R 3 ; t ( 0,T0 ] : 3 1 2 2 2 0 exp ( ( )) ( j i0 h j ( x1 2 1 t ,x2 2 2 t ,x3 it i i 1 2 3 t j 1 3 R3 t 3 j 1 2 2 2 2 3 t ))d 1d 2 d 3 i exp ( ( ) )( il ( x1 2 1 1 2 3 ts j j 1 3 0 R3 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2 d 3ds i { 1 exp( ( 12 22 32 ))i0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d 3 3 R3 t 1 exp( ( 12 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 R3 3 1 2 2 2 ( t s );s )d 1d 2 d 3 ds} exp ( ( ))( j i0 h j ( x1 2 1 t ,x2 1 2 3 t j 1 3 R3 t 3 j 2 2 2 2 t ,x 2 t ))d d d 1 exp ( ( ))( il ( x1 2 3 3 1 2 3 1 2 3 ts j j 1 3 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2 d 3 ds 1 1 1 2 2 2 2 { 3 exp( ( 1 2 3 )) t i0 h12 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ) R3 1 1 exp( ( 12 22 32 )) i0 h2 ( x1 2 1 t ,x2 2 2 t ,x3 d( x1 t )d 2 d 3 3 2 t R3 1 2 t )d d( x 2 t )d d 1 exp( ( 12 22 32 )) i0 h2 ( x1 2 1 t , 3 1 2 2 2 3 3 3 t R3 t 1 1 x 2 t ,x 2 t )d d d( x 2 t ) [ exp( ( 12 22 32 )) 2 2 3 3 1 2 3 3 3 0 t s R3 ( x 2 ( t s ),x 2 ( t s ),x 2 ( t s );s )d( x 2 ( t s ) ) 1 2 2 3 3 1 1 il12 1 d 2 d 3 exp( ( 12 22 32 )) 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 il2 R3 2 2 2 ( t s );s )d 1d( x2 2 2 ( t s ) )d 3 exp( ( 1 2 3 )) il32 ( x1 2 1 ( t s ), R3 x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d( x3 2 3 ( t s ) )]ds} 3 2 2 2 1 exp ( ( ))( j i0 h j ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )) 1 2 3 3 t j 1 R3 t 3 j 2 2 2 d 1d 2 d 3 1 exp ( ( ))( il ( x1 2 1 ( t s ),x2 2 2 1 2 3 ts j j 1 3 0 R3 3 j 1 2 2 2 ( t s ),x 2 ( t s ) ; s ))d d d ds exp ( ( ))( 3 3 1 2 3 1 2 3 3 t 3 j 1 R t 1 exp( ( 12 22 32 )) i0 h j ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ))d 1d 2 d 3 3 0 R3 3 ( j ( x 2 ( t s ),x 2 ( t s ),x 2 ( t s );s ))d d d ds} 0, il 1 1 2 2 3 3 1 2 3 (*) j 1 ts j on the right side integrals of the formula (*) the integration method in parts is used. That it was required to prove. Further we will show that (2.10) satisfies (1.2). For this purpose considering partial derivatives of 1st order and summarizing, with taking into account (1.2), we have 3 3 1 2 2 2 0 ( x ,x ,x ,t ) exp ( ( )) i0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 xi 1 2 3 1 2 3 3 x 3 i 1 i 1 i R t 3 1 2 2 2 t )d 1d 2 d 3 exp[ ( ) ] i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 1 2 3 3 i 1 xi 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds 0, 3 3 i0 0; i F0 J 0. i 1 xi i 1 xi The system (2.10) satisfies to the equation (1.2). The limiting case in Gn1 3 ( D0 ) , when the decision of system (1.1) is representing in the form of (2.10) with conditions (1.2), (1.3), (A 1), (2.1) and ( x1 ,x2 ,x3 ,t ) T ; f i ;i0 : sup D ki0 1 ; sup D k i 1 ,( i 1,3;k 0,3 ), T R3 t 1 exp( ( 12 22 32 )) D k i ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3ds 1T0 2 , sup 3 T 0 R3 t 3 1 2 2 2 sup 1 exp ( ( )) j il j ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3ds 3 1 2T0 3 , 1 2 3 T 3 0 R3 t s j 1 (2.12) T0 1 exp( ( 12 22 32 ) )d 1d 2 d 3 1, sup i ( x1 ,x2 ,x3 ,s )ds 1T0 2 , ( i 1,3 ); 3 3 R3 R 0 3 1 1 2 2 2 sup exp ( ( ))( j i0 l j ( l1 ,l2 ,l3 ) )d 1d 2 d 3 1 1 2 3 R3 3 3 i 1 3 R 1 1 3 1 { ( i2 exp( ( 12 22 32 ) )d 1d 2 d 3 ) 2 ( exp( ( 12 22 32 ) )d 1d 2 d 3 ) 2 } 3 1 , 2 3 i 1 R3 R i ; 0 ( 3 2 T0 1 T0 ). li xi 2 i ( t s ); li xi 2 i t , ( i 1,3 ); max 1 i 3 Really, estimating (2.10) in Gn1 3 ( D0 ) , we have 3 v Gn13 ( D0 ) [ i C 3 ,0 ( T ) it L1 ] 3[N1 0 ] M*, i 1 i 3 ,0 D ki N1 40 , ( i C( T ) 2 ; i 1,3 ), C( T ) C ( T ) 0 k 3 T0 sup it L1 it ( x1 ,x2 ,x3 ,t )dt ( 3 2 T0 1 T0 ) 0 ,( i 1,3 ), R3 0 1 sup exp( ( 12 22 32 )) i0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ) i 3 T R3 t 1 d 1d 2 d 3 sup exp( ( 12 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 3 T 0 R3 ( t s ),x3 2 3 ( t s );s ) d 1d 2 d 3 ds 1 2 2 ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). The uniqueness of the solution i C 3,0 ( T ) the system (2.10) is obvious on the basis of proof by contradiction [13]. Results (2.10) with a condition ((A1), (2.1)) are received where smoothness of functions is required only on xi as the derivative of 1st order is in time has t>0. Remark 1. Alternatively, we can consider, e.g., a class of suitable solutions constructed in Wn2 3; ( D0 ). Let the solution of system (1.1) is representing in the form of (2.10) with conditions (1.2), (1.3), (A1), (2.12) and ( x1 ,x2 ,x3 ,t ) T : sup D k i 1 , ( i 1,3;k 0,3 ), T T0 T0 1 2 1 2 ( s ) i ( x1 ,x2 ,x3 ,s ) ds ) 1 q1 4 ; 0 ( t ) : ( t ) dt q0 ; ( sup 3 t 0 R 0 max( , ); ( 3 q 1 q ), 4 0 * 0 1 * T0 ( t )dt q , 1 0 that solution (2.10) of problem Navier-Stokes (1.1) - (1.3) belongs in Wn2 3; ( D0 ) . (2.13) Really, estimating (2.10) in Wn2 3; ( D0 ) , we have [8]: 3 3[N1 T0 0 ] 3M*, ( D0 R 3 ( 0,T0 ), ( 1 ,2 ,3 )), 2 W i W 2 ( i , ) i 1 N1 T0 0 M*, ( N1 40 ; i 1,3 ), i W 2 ( i , ) 1 T0 2 ( sup ( t ) ( x ,x ,x ,t ) 2 dt ) 2 ( 3 q 1 q ) ,( i 1,3 ). it 1 2 3 * 0 1 0 it L R3 0 Let's notice that in work [8] similar results in case of (2.10) also are received in the weight space Gn23; ( D0 ) . 3) The essence of this subparagraph to define the solution (2.9) in Cn3,1 3 (T ). For this purpose of problem (2.9), (1.3) it is possible to solve differently if conditions are satisfied: i0 0; i0 C 3 ( R 3 ); i : sup D ki0 1 ; sup D k i ( x1 ,x2 ,x3 ,t ) 1 , T R3 t sup 1 exp( ( 12 22 32 )) D k i ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3 ds 1T0 2 ,( i 1,3 ), 3 T 0 R3 t 3 1 1 2 2 2 exp( ( 1 2 3 ) ) j il( kk ) ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3 ds sup 3 j t s j 1 T 0 R3 t 1 3 1 1 2 2 2 2 2 sup { ( exp ( ( ) )d d d ) j 1 2 3 1 2 3 1 3 T t s 3 j 1 0 R t 1 1 1 sup ds 3 1 2T0 3 , ( exp( ( 12 22 32 ) )d 1d 2 d 3 ) 2 }ds 3 1 2 [0 ,T0 ] 0 t s R3 ( i ; 1 ), 0 ( 1 ). l j x j 2 j ( t s ),( j 1,3; k 0,3 ), max 1 i 3 (2.12)* Then speed components are defined by a rule i i0 ( x1 ,x2 ,x3 ) Vi ( x1 ,x2 ,x3 ,t ), ( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Vi t 0 0, ( x1 ,x2 ,x3 ) R . (2.14) Then the system (2.9) will be transformed referring to Vit i Vi ,( i 1,3 ), (2.15) where Vi ,( i 1,3 ) new unknown functions which defines the solution of problem Navier-Stokes. Hence Vi t 1 8 3 exp( 0 R3 ds ds ds ds r2 1 ) i ( s1 ,s2 ,s3 ,s ) 1 2 3 4 ( t s ) ( ( t s ))3 3 t exp( ( 0 R3 2 1 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds (2.16) H i ( x1 ,x2 ,x3 ,t ), ( si xi 2 i ( t s );i 1,3 ). The found solution (2.16) satisfies system (2.15). Really, having calculated partial derivative of system (2.16): ( 0,1 ) ; ( x ,x ,x ,t ) T : 1 2 3 t 3 j 1 2 2 2 V ( x ,x ,x ,t ) exp ( ( )) il j ( x1 2 1 ( t s ),x2 it i 1 2 3 1 2 3 3 t s 3 j 1 0 R 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3 ds, t 1 V exp( ( 12 22 32 )) il j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 ix j 3 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds, t 1 Vix2 exp( ( 12 22 32 )) il 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 3 j j 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds, (l j x j 2 j ( t s ); i 1,3; j 1,3 ) (2.17) and substituting (2.17) in (2.15), we have (see (*)): Vi t 0 0, ( x1 ,x2 ,x3 ) R 3 ; ( 0,1 ) ; ( x1 ,x2 ,x3 ,t ) T : t 3 j 1 2 2 2 0 V V exp ( ( )) ( il j ( x1 2 1 ( t s ), it i i i 1 2 3 3 t s 3 j 1 0 R t 1 x2 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2 d 3ds i { exp( ( 12 22 32 )) 3 0 R3 3 ( 2 ( x 2 ( t s ),x 2 ( t s ),x 2 ( t s );s ))d d d ds}= 1 2 2 3 3 1 2 3 j 1 il j 1 t 3 j 1 2 2 2 exp ( ( )) ( il ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 1 2 3 ts j j 1 3 0 R3 t 1 1 1 2 ( t s ) ; s ))d d d ds { [ exp( ( 12 22 32 )) il 2 ( x1 2 1 3 1 2 3 3 1 2 0 t s R3 ( t s ),x 2 ( t s ),x 2 ( t s );s )d( x 2 ( t s ) )d d 2 2 3 3 1 1 2 3 2 2 2 exp( ( )) 2 ( x 2 ( t s ),x 2 ( t s ),x 2 ( t s );s ) 1 2 3 1 1 2 2 3 3 il2 3 R d 1d( x2 2 2 ( t s ) )d 3 exp( ( 12 22 32 )) 2 ( x1 2 1 ( t s ),x2 2 2 il3 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d( x3 2 3 ( t s ) )]ds} t 3 j 1 2 2 2 exp ( ( ))( il j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 1 2 3 3 t s 3 j 1 0 R t 3 1 1 2 2 2 exp ( ( )) ( j il j ( x1 2 3 ( t s );s ))d 1d 2 d 3 ds { 3 1 2 3 j 1 0 t s R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2d 3 ds 0. (2.18) That it was required to prove. Therefore on the basis of (2.14), (2.16) we will receive t 1 H exp( ( 12 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 i i0 i i0 3 0 R3 (2.19) 2 3 ( t s );s )d 1d 2 d 3 ds H i ,( i 1,3 ), 3 3 i0 0; i0 C 3 ( R 3 ); x H ix 0,( i 1,3 ). i i i 1 i 1 Limitation of functions ( 1 ,2 ,3 ) in Cn3,1 3 (T ). The limiting case which we will consider concern results of the theorem 1. Then the solution of system (1.1) is representing in the form of (2.19) with conditions (1.2), (1.3), (A1), (2.1) and (2.12)*. Really, estimating (2.19) in Cn3,13 (T ) , we have 3 v Cn3,13 ( T ) { i C 3 ,0 ( T ) it C( T ) } 3[N1 0 ] M*, i 1 it C( T ) 0 ( 1 ),( i 1,3 ), k i C 3 ,0 ( T ) D i C( T ) N1 40 ; i C( T ) 2 ,( i 1,3 ), 0 k 3 (2.20) so as i i0 H i 1 2 2 ,( max( 1 ; 2 ) ), t 1 H sup exp( ( 12 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 i 3 T 0 R3 ( t s );s ) d 1d 2 d 3ds 2 ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). Uniqueness is obvious, as a method by contradiction. Therefore from (2.19) uniqueness of the solution follows in Cn3,1 3 (T ). 4) Coming back to the proof the theorem 1, thus considering (2.3), (2.19), and their partial derivatives on xi ,( i 1,2,3 ) , we find 3 x ( H j Hix H j H jx ) i ( x1 ,x2 ,x3 ,t ),i 1,3. i j 1 j (2.21) i As i – is known functions, hence from system (2.21) differentiating 1-equation on x1 [(2.21): i=1], 2- equations on x2 [(2.21): i=2], 3-equations on x3 [(2.21): i=3], summing up, we will receive 3 0 ,( 0 ixi ( x1 , x2 , x3 , t )), (2.22) i 1 at that C 2 (T ) : ds ds ds 1 0 ( s1 , s2 , s3 , t ) 1 2 3 . 4 R3 r The equation (2.22) it have the third equation of system (2.4). Therefore, from the received results, taking into account (2.6), follows 1 1 1 P Q 2 4 F ( s ,s ,s ,t ) 0 R3 1 2 3 ds1ds2 ds3 , r (2.23) i.e. (2.23) – is the fourth equation of system (2.4). The formula (2.23) can be transformed in equivalent form 1 1 3 2 1 P i ( s1 ,s2 ,s3 ,t )ds1ds2 ds3 , 2 i 1 r R3 3 1 0 ( s ,s ,s ,t ) ds1ds2 ds3 , ( Q 2 ; 1 ( F 0 )), 1 2 3 i 0 4 R3 r 4 i 1 where (2.23)* – the equation of Bernoulli’s type [12]. Then function (2.23)*: satisfies the equation: (2.23)* 1 P 1 3 2 i I 2 i 1 I 4 , and function I is called Newton’s potential [13], at that on infinity aspires to a zero. is called density of this potential. Hence functions i , , are defined from systems (2.19), (2.22), (2.23) and these functions are smooth on set to the variables, that the system (2.4) has the unique smooth solution. The theorem 1 – is proved. ■ As a consequence the theorem 1 we will receive following statements: Theorem 2. In conditions of the theorem 1 and (2.10), (2.12) the Navier-Stokes problem (1.1)-(1.3), (A1) has a unique and conditional-smooth solution in Gn1 3 ( D0 ) . Proposition 1. In the conditions of (1.2), (1.3), (А1) and (2.12), (2.13) the Navier-Stokes problem has a unique solution in the space Wn2 3; ( D0 ) . Theorem 2*. In conditions of the theorem 1 and (2.12)*, (2.20) the problem (1.1) - (1.3), (A1) is solvable at Cn3,1 3 (T ). The essential factor of researches of this paragraph are results of the theorem 2*. In this case the solution of system (1.1) is considered as the strict decision of a problem (1.1)-(1.3), (А1). It is obvious that small changes i0 ,( i 1,3 ) or fi ,( i 1,3 ) influence the solution (2.19) a little, i.e. continuous depends on this data. Therefore, a question on a statement correctness problems (1.1)-(1.3), (A1) are considered at once with results of the theorem 2*. 2.2. Inequality Beale-Kato-Majda The Beale-Kato-Majda regularity criterion originally derived for solutions to the 3D Euler equations [2] and holds for solutions to the 3D equations Navier-Stokes [5] and the criterion can be viewed as a continuation principle for strong solutions. A further generalization was presented in [8] where the regularity condition is expressed in terms of the time integrability. Note that there are some inequalities for a priori estimates depending on the spaces. To prove this criterion, for example, enough fulfill the inequality [5]: T0 sup rot ( x1 ,x2 ,x3 ,t ) dt M const . R3 0 (2.24) On the basis of results of the theorem 1 the solution of systems (1.1) it is presented in a kind (2.19), where global existence of solutions is received in a class Cn3,13 (T ) from the point of view of the initial data satisfying (2.19). It is pleasant that results of this theorem leads to such global classical solution Navier-Stokes, besides it is known that in [5] classical solution is received, if the criterion of Beale-Kato-Majda is executed. Really, at performance of conditions of the theorem 2* takes place t 1 exp( ( 12 22 32 )) sup 3 T 0 R3 ( t s );s ) 2 ( x1 2 1 x3 d d d ds h , 1 2 3 1 t 1 exp( ( 12 22 32 )) sup 3 T 0 R3 ( t s );s ) 3 ( x1 2 1 x1 d d d ds h , 1 2 3 2 t 1 exp( ( 12 22 32 )) sup 3 T 0 R3 3 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 x2 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) 1( x1 2 1 ( t s ), x2 2 2 ( t s ),x3 2 3 x3 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 x1 ( t s );s ) x 1( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) 2 d 1d 2 d 3 ds h3 , ( x ,x ,x ) ( x ,x ,x ) h 0 ; 10 ( x1 ,x2 ,x3 ) 30 ( x1 ,x2 ,x3 ) h20 , 20 1 2 3 1 x 30 1 2 3 x x x 2 3 3 1 3 0 0 x 20 ( x1 ,x2 ,x3 ) x 10 ( x1 ,x2 ,x3 ) h3 , ( ( hi hi ) M 0 const ). i 1 1 2 Then we will receive estimation rot 0 : sup rot ( x1 ,x2 ,x3 ,t ) M 0 . T In a consequence and (see (2.24)): T0 T0 sup rot ( x1 ,x2 ,x3 ,t ) dt sup { R3 R3 0 3 ( x1 ,x2 ,x3 ,s ) x1 0 3 ( x1 ,x2 ,x3 ,s ) 2 ( x1 ,x2 ,x3 ,s ) x2 x3 1( x1 ,x2 ,x3 ,s ) x3 2 ( x1 ,x2 ,x3 ,s ) 1( x1 ,x2 ,x3 ,s ) }ds M 0T0 M . x1 x2 2.3. Estimation of affinity of solutions of the equations Navier-Stokes and Euler I. Incompressible Streams Without the Friction. For incompressible currents without a friction [2, 6 and 12]: 0 the equations of Navier-Stokes become simpler, as there are no members: i . Therefore the problem (1.1) - (1.3) is led to a kind 1 2 3 it ( j2 )x fi j 1 i 1 Pxi ,i 1,3, (2.25) i ( x1 ,x2 ,x3 ,t )|t 0 0i ( x1 ,x2 ,x3 ),i 1,3, (2.26) div 0, ( 1 ,2 ,3 ); rot 0. (2.27) The system (2.25) with conditions (2.26), (2.27) has the strict solution [12] with preservation of all convective members at performance of a condition of Stokes. Really, for incompressible currents without a friction, the vector of speed is represented as a gradient of potential and this potential satisfies the Laplace equation. Therefore for potential currents the member in the equation (1.1), depending on viscosity, identically disappears. At that the system (2.25) has the smooth unique solution in Cn3,13 (T ) [9, see pp.147-151]: 3 k 3 ,1 Cn3 ( T ) i C 3 ,1 ( T ) N0 ; i C 3 ,1 ( T ) D i C( T ) it C( T ) , i 1 0 k 3 k 3 i k 0 : D0 ;k 0 : D k ; k i ,( i 0,1,2,3;i 1,3 ), i i i x11 x2 2 x33 i 1 (2.28) and is harmonious functions. The specified method of theorem 2* can be used in particular and for the decision of a problem (2.25) - (2.27) as a test example. Really, on a basis APS from system (2.25), follows 3 J F0 , (J 1 P 1 Q, F0 f ix ), i 2 i 1 1 1 F0 ( s1 ,s2 ,s3 ;t ) ds1ds2 ds3 , J 4 R3 r 1 i J xi F0 ( x1 1 ,x2 2 ,x3 3 ;t ) d 1d 2 d 3 ,( i 1,3 ). 2 2 2 3 4 R3 ( ) 1 2 3 (2.29) So as J - the solution of the equation (2.29), with the account: J xi 1 1 Pxi Qxi 2 (2.30) from (2.25) we will receive it fi J x ,( i 1,3 ). (2.31) i From system (2.31) on the basis of (2.26), follows t ( x ,x ,x ) i i0 1 2 3 0 i ( x1 ,x2 ,x3 , )d ,( i 1,3 ), 3 f J ,( i 1,3 ); ixi F0 J 0, ( x1 ,x2 ,x3 ,t ) T . i xi i i 1 Hence from (2.29) and (2.30) we have 1 1 1 P Q 2 4 1 F ( s ,s ,s ,t ) r ds ds ds , 0 1 2 3 1 2 3 (2.32) (2.33) R3 i.e. (2.33) there is an equation of type Bernoulli that is similar with (2.23)*. From the received results follows that the system (2.32) satisfies to a condition (2.27), and it means that the found solutions i ,i 1,3 satisfies to the of Laplace equation, i.e. are harmonious functions. As it has been proved. II. It is known that limit transition to very small viscosity should be executed not in the equations of Navier-Stokes, but in the solutions of these equations by approach of factor of viscosity to zero [12]. Then the solution of system (1.1) is representing in the form of (2.19) with conditions of theorem 2*. To estimate affinity of solutions (2.19), (2.32) in sense Cn3,13 (T ) , when [9]: 0 , conditions are required is: ( x1 ,x2 ,x3 ,t ) T ; i , i ,i0 C 3 ( R 3 ) : D k ( i0 i0 ) 1 1 ,( x1 ,x2 ,x3 ) R 3 , k D [ i ( x1 ,x2 ,x3 ,t ) i ( x1 ,x2 ,x3 ,t )] 2 2 ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), t 1 sup exp( ( 12 + 22 + 32 )){ D k [ i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 3 T 0 R3 2 3 ( t s );s ) i ( x1 ,x2 ,x3 ;s ) ] }d 1d 2d 3ds 3 ,( i 1,3 ), t 3 j 1 sup exp( ( 12 + 22 + 32 ))[ il j ( x1 2 1 ( t s ),x2 2 2 ts j 1 3 T 0 R3 ( t s ),x3 2 3 ( t s );s ) ]d 1d 2 d 3 ds 4 , l x 2 ( t s ); 0 const ,( k 1,4; i 1,3 ), . i i k 0 1 2 i (2.34) Lemma 1. If conditions of the theorem 2* and (2.34) are satisfied, an admissible error between solutions of system (2.19), (2.32) in Cn3,13 (T ) , when , will be an order ( ). To prove to affinity of decisions (2.19) and (2.32) in Cn3,13 (T ) , at first we will prove to affinity of solutions C(T ); C 3,0 (T ) . At that obviously that estimations relatively i i C 3 ,1 ( T ) will be an order ( ) . Really estimating (2.19), (2.32), we have t 1 i i i0 i0 3 exp( ( 2 1 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ), 0 R3 x3 2 3 ( t s );s ) i ( x1 ,x2 ,x3 ;s ) d 1d 2d 3ds t 1 3 exp( ( 2 1 22 32 )) 0 R3 i ( x1 ,x2 ,x3 ;s ) i ( x1 ,x2 ,x3 ;s ) ]d 1d 2d 3ds 1 1 3 2 2 T0 C0 ,( i 1,3 ), or i i C( T ) C0 ,( i 1,3;C0 1 3 2T0 ), here (see.(2.32)): t i i0 ( x1 ,x2 ,x3 ) i ( x1 ,x2 ,x3 , )d i0 0 t 1 3 exp( ( 2 1 22 32 )) 0 R3 1 (2.32)* exp( ( ))d 1d 2d 3 1 ). 3 R3 Similarly, we will receive also estimations concerning expressions where partial derivative functions i ( x1 ,x2 ,x3 , )d 1d 2 d 3d H i ,( i 1,3; 2 1 2 2 2 3 i and i to the third order, inclusive, contain i , i , i.e. i i C 3 ,0 ( T ) 0 k 3 D k ( i i ) C( T ) 20C0 ,( i 1,3 ). Hence, as C 3,1(T ) i ,i , estimating (2.19) and (2.32)* in sense of norm C 3,1 ( T ) we will receive: k i C 3 ,1 ( T ) D ( i i ) C( T ) it it C( T ) ( 20C0 20 ) N 0 , i 0 k 3 it it 20 ,( i 1,3 ), C( T ) it i , ( i 1,3 ), it [i0 ( x1 ,x2 ,x3 ) H i ( x1 ,x2 ,x3 ,t )] H it , (Vit H it ; see.(2.19)), t t 3 1 exp( ( 12 + 22 + 32 ))[ j il j ( x1 2 1 ( t s ),x2 H it i ( x1 ,x2 ,x3 ,t ) j 1 t s 3 0 R3 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2 d 3ds,( i 1,3 ). (2.35) Then taking into account (2.35) and ( 1 ,2 ,3 ), ( 1 ,2 ,3 ) , we have 3 Cn3,13 ( T ) i i i 1 3 C 3 ,1 (T ) { i 1 0 k 3 D k ( i i ) C( T ) it it C( T ) } 3N0 . (2.36) And it means that if the admissible error of an estimation will be order ( ) in Cn3,13 (T ) . The lemma 1 – is proved. ■ Remark *. So as i0 C 3 ( R3 ),( i 1,2,3 ), that to estimate affinity of solutions (2.10), (2.32) in sense Gn1 3 ( D0 ) , when 0 , it is required conditions of theorem 2 and (2.34). Then we have i i 1 3 exp( ( 2 1 22 32 )) i0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ) i0 ( x1 ,x2 ,x3 ) R3 d 1d 2 d 3 i0 i0 t 1 3 exp( ( 2 1 22 32 )) i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 0 R3 2 3 ( t s );s ) i ( x1 ,x2 ,x3 ;s ) d 1d 2 d 3ds t 1 3 exp( ( 2 1 22 32 )) i ( x1 ,x2 ,x3 ;s ) 0 R3 i ( x1 ,x2 ,x3 ;s ) ]d 1d 2 d 3ds ( 3 1 2T0 1 3 2T0 ) C0 ,( i 1,3 ), or i i i i C( T ) C0 ,( i 1,3 ), C 3 ,0 ( T ) 20C0 ,( i 1,3 ). Similarly, we will receive estimating it it (2.37) L1 ( 0,T0 ) , i.e. it it 1 ( 31 2T0 20T0 ) C1 ,( i 1,3 ), L ( 0,T0 ) 3 j 1 2 2 2 exp ( ( )) ( i0h j ( x1 2 1 it i , ( i 1,3 ); it 1 2 3 t 3 R3 j 1 t 1 exp( ( 12 22 32 )) t ,x2 2 2 t ,x3 2 3 t )d 1d 2d 3 i 3 0 R3 (2.38) j 3 il j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2d 3ds. ts j 1 Then taking into account (2.37), (2.38) and estimating in the space Gn1 3 ( D0 ) we obtain 3 Gn13 ( D0 ) { i 1 0 k 3 D i T0 k C( T ) sup it ( x1 ,x2 ,x3 ,t )dt} 3N0 ,( N0 =20C0 C1 ). R3 (2.39) 0 Proposition 2. In conditions of the theorem 2 and (2.34), (2.39) an admissible error between solutions of system (2.10), (2.32) in Gn1 3 ( D0 ) will be an order ( ). 3. Fluid Average Viscosity with a Condition (A2) Let's consider a fluid with viscosity with Reynolds small number where all inertial participants contain in equations Navier-Stokes. Theoretically, it is not investigated till now [12]. Hence, here we will consider, methods of integration of the equations Navier-Stokes, therefore the decision of the method, from where follows of equations integration of Navier-Stokes in a case (А2), is a major factor of this point. The developed method of the decision of system (1.1) is connected with i , where these functions will transform (1.1) to systems (1.4), (1.5) with conditions (а02) and (1.3) : i t 0 0,( x1 ,x2 ,x3 ) R3 ,( i0 ( x1 ,x2 ,x3 ) 0;i 1,3 ), i t 0 0,( x1 ,x2 ,x3 ) R3 ,( i 1,3 ), (1.3)* (3.1) where the current is considered with average size of viscosity. Theorem 3. Systems (1.4), (1.5) it is equivalent will be transformed to a kind 3 1 1 J F , ( J P Q; F f ixi ; divf 0; 1 0 const ), 0 0 0 0 2 i 1 it fi i J 0 xi i , i Di 1 , 2 , 3 ,( i 1,3 ), 1 ds ds ds 1 1 P Q F0 ( s1 ,s2 ,s3 ,t ) 1 2 3 ,( r ( x1 s1 )2 ( x2 s2 )2 ( x3 s3 )2 ), 2 4 R3 r (3.2) when conditions (1.2), (1.3)*, (3.1), (А2) are satisfied. Hence, the nonstationary problem of Navier-Stokes (1.1)-(1.3)* has the smooth unique solution. Proof. Really, from system (1.4), considering conditions (1.2), (1.3)*, (3.1) and having entered APS, i.e. differentiating the equations of system (1.4) accordingly on хi and, then summing up, we have the equation J 0 F0 , 1 1 (3.3) F0 ( s1 ,s2 ,s3 ,t )ds1ds2 ds3 , J0 4 R3 r 1 i F0 ( x1 1 ,x2 2 ,x3 3 ;t ) 1 1 J 0 xi d 1d 2 d 3 ,( si xi i ; Pxi Qxi J 0 xi ;i 1,3 ). 4 R3 2 ( 12 2 2 32 )3 If J 0 – the solution of the equation (3.3), then substituting: J 0 xi ,( i 1,3 ), in system (1.4), we have it i i i , ( i 1,3 ), 3 ( x ,x ,x ,t ) f J ,( i 1,3 ), ixi F0 J 0 0, ( x1 ,x2 ,x3 ,t ) T . i 0 xi i 1 2 3 i 1 The solution of a problem (1.1) - (1.3)* is represented in a kind (3.4) t 1 r2 ds ds ds d 0 exp( )i ( s1 ,s2 ,s3 , ) 1 2 3 3 ii ,( i 1,3 ), i H i 3 4 ( t ) ( ( t )) 8 0 R3 t r2 ds ds ds d H 0 ( x ,x ,x ,t ) 1 exp( ) i ( s1 ,s2 ,s3 , ) 1 2 3 3 ,( i 1,3 ), i 1 2 3 3 4 ( t ) ( ( t )) 8 0 R3 (3.5) therefore concerning functions i ,(i 1,2,3) , we will receive 3 i {[H 0 j j 1 t 1 3 exp( ( 2 1 22 32 )) j ( x1 2 1 ( t ),x2 2 2 ( t ),x3 0 R3 t 1 2 3 ( t ); )d 1d 2 d 3 d ] [H ix0 j 3 exp( ( 0 R 2 1 22 32 )) 3 j ( t ) i ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3d ] [H 0j t 1 3 exp( ( 2 1 22 32 )) j ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 0 R3 ( t ); )d 1d 2 d 3 d ] [H 0jxi t 1 3 0 R3 i ( t ) exp( ( 12 22 32 )) j ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3d ]} Di [1 , 2 , 3 ], si xi 2 i ( t ),( i 1,3 ), where for example, partial derivatives of functions i are defined: t ( x j s j ) 1 1 r2 0 H ( x ,x ,x ,t ) exp ( )i ( s1 ,s2 ,s3 , ) ix j ix j 1 2 3 3 3 2 ( t ) 4 ( t ) ( ( t )) 3 8 0 R t j ds ds ds d H 0 1 exp( ( 12 22 32 )) i ( x1 2 1 ( t ),x2 1 2 3 ix 3 j ( t ) 3 0 R (3.6) 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3d , t j 0 1 H exp( ( 12 22 32 )) i ( x1 2 1 ( t ),x2 2 2 ( t ),x3 ix j 3 ( t ) 3 0 R 2 3 ( t ); )d 1d 2 d 3d , ( si xi 2 i ( t );i 1,3; j 1,3 ). (3.7) The system (3.6) consists of three the nonlinear integral equations of Volterra and Volterra-Abel [13] on a variable t [0,T0 ] and contains in itself of three i ,( i 1,2,3 ) unknown functions. The theory of the specified system is well developed in section of mathematics [13]. Therefore there is no necessity to think out various algorithms for the decision of this system. To solve this system, it is enough to find conditions that allow us to use the Banach Principle. Really, if the input functions satisfy to 0 D k i ( x1 ,x2 ,x3 ,t ) 0 , ( i 1,3; k 0,2 ), ( x1 ,x2 ,x3 ,t ) T ; i ;H i : sup T t 1 exp( ( 12 22 32 ))d 1d 2 d 3 d T0 , 3 [sup 0 ,T0 ] 0 3 R t 1 3 sup exp( ( 12 22 32 )) i ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 T 0 R3 ( t ); ) d 1d 2 d 3 d 0T0 , t t i 1 1 1 2 2 2 1 sup exp ( ( )) d d d d ( ) sup 1 2 3 1 2 3 3 T 3 T t t 3 0 0 R 1 1 {( 2 exp( ( 2 2 2 ) )d d d ) 2 ( exp( ( 2 2 2 ) )d d d ) 2 }d 1 2 3 1 2 3 1 2 3 1 2 3 R3 i R3 t 1 1 1 sup d ( )1 2T0 , ( ) [ 0 ,T0 ] 0 2 t t j 1 H ix0 sup exp( ( 12 22 32 )) i ( x1 2 1 ( t ),x2 2 2 j (3.8) t 3 T 0 R3 ( t ),x3 2 3 ( t ); ) d 1d 2 d 3d ( )1 0 2T0 and if the operators Di ,( i 1,2,3 ) satisfy to conditions of a principle of compression, that is, 3 d D : d ,( d 1 ), ( i 1,3 ; d i d 12( )1 * 1 ), i i 3 i 1 d 4( )1[2 2 T 3 2r T 3 ] 4( )1 1, ( i 1,3 ), 0 0 1 0 * i 2 2 T 3 2r T 3 , ( k , [k max( 1; 144 2 )] ) 0 0 1 0 0 0 0 4 * and (3.9) Di [10 , 20 , 30 ] i0 r1( 1 d ) : Di [1 , 2 ,3 ] i0 C C 0 0 0 0 0 0 0 Di [1 , 2 , 3 ] Di [1 , 2 , 3 ] C Di [1 , 2 , 3 ] i C di 3r1 r1( 1 d ) r1 , 0 0 0 0 Di : Sr1 ( i ) Sr1 ( i ), ( i 1,3 ),Sr1 ( i ) {i : i i r1 , ( x1 ,x2 ,x3 ,t ) T }. (3.10) Then, by Banach Principle, the system (3.6) is solvable at C 2,0 ( T ) and the solution of this system can be found by Picard’s method as i,n 1 Di [1,n ,2,n ,3,n ],( n 0,1,...;i 1,3 ), (3.11) where 1,0 ,2,0 ,3,0 initial estimates. Received the sequence of functions {i,n }0 ,( i 1,3 ) is converging and fundamental in Sr1 ( i0 ) , so as 3 3 E ; E i ,n i ,n 1 C , ( i 1,3 ) : n n 1 i ,n 1 i ,n C i 1 i 1 3 d 1 n d 0, i i ,n i ,n 1 C di En ; En 1 dEn ... d E1 i ,n 1 i ,n C n i 1 k 1 k 1 3 k 1 i ,n k i ,n i ,n j 1 i ,n j di i ,n j i ,n j 1 di En j , C C C j 0 j 0 i 1 j 0 k 1 k 1 k 1 d 1 E d E ... d d n j 1 E E d n d j E d n 1 0. nk n j 1 1 1 n 1 d j 0 j 0 j 0 Thus elements of the constructed sequences belong Sr1 ( i0 ) . Really, for n , rather i , n 1 we have n 1 j 0 0 0 0 ... d ( i , n1 i ,0 i ,n 1 i ,n i ,2 i ,1 i ,1 i ,0 i d )E1 Di [1 , 2 , 3 ] i j 0 n 1 n j j ( 1 d )r1d d ( 1 d )r1 ( 1 d )r1 d r1 , j 0 j 0 1 d j ( 1 d )1 ; d i d ; E1 3( 1 d )r1 ; i ,n1 S r1 ( i0 ), ( i 1,3 ). 3 j 0 C It means that sequence {i,n }0 ,( i 1,3 ) is converged to i ,( i 1,3 ), that is, 3 3 d 1 U ; U i i ,0 C : U n 1 dU n ... d n 1U 0 0, 0 n 1 i ,n 1 i C n i 1 i 1 d 1 i i ,( x1 ,x2 ,x3 ,t ) T , ( i 1,3 ). n i ,n 1 Then according to results of the theorem 3, functions i ,i 1,3 are defined from system (3.5) (3.12) t 1 exp( ( 12 22 32 )) i0 ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 i 3 0 R3 ( t ); )d 1d 2 d 3 d H i ( x1 ,x2 ,x3 ,t ), ( i 1,3 ), 0 si xi 2 i ( t ); i ( x1 ,x2 ,x3 ,t ) i ( x1 ,x2 ,x3 ,t ) i ( x1 ,x2 ,x3 ,t ), ( i 1,3 ), (3.5)* here i ,i ,H i - known functions and ( x1 ,x2 ,x3 ,t ) T ; i0 : sup D k i0 ( x1 ,x2 ,x3 ,t ) 1 , ( i 1,3;k 0,2 ), T t 1 sup exp( ( 12 22 32 )) i0 ( l1 ,l2 ,l3 ; ) d 1d 2 d 3 d 2 1T0 , 3 T 0 R3 t 3 1 1 2 2 2 sup exp ( ( ) ) j il0(k k ) ( l1 ,l2 ,l3 ; ) d 1d 2 d 3 d 1 2T0 3 , 1 2 3 3 j (3.13) t s j 1 T 0 R3 i , l j x j 2 j ( t s ),( j 1,3; k 0,2 ), 0 ( 1 ); max 1 i 3 t 1 sup exp( ( 2 2 2 )) 0 ( x 2 ( t ),x 2 ( t ), 1 2 3 i 1 1 2 2 i 3 T 0 R3 x3 2 3 ( t ); ) d 1d 2 d 3 d 1T0 , ( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). Then considering norm of space Cn3,13 (T ) we will receive 3 v { i C 3 ,0 ( T ) it C( T ) } 3[N1 0 ] M*, 3 ,1 Cn3 ( T ) i 1 N1 20 , ( i C( T ) ); it i C 3 ,0 ( T ) D ki C( T ) 0 k 3 C( T ) 0 ( 1 ),( i 1,3 ). (3.14) Thus (3.5)* satisfies the equation (3.4): 0 , ( i 1,3 ), i i it 3 3 3 0 ; H 0 : ix0i 0, ( x1 ,x2 ,x3 ,t ) T , i i i ixi ixi i 1 i 1 i 1 3 div 0, ( ( 1 ,2 ,3 ); i i ); i f i J 0 xi ,( i 1,3 ), ixi F0 J 0 0. i 1 Really, having calculated partial derivative of system (3.5)*: k const , ( k max( 1; 144 2 )); ( x ,x ,x ,t ) T : 0 0 * 1 2 3 0 t t 2 1 r ds1ds2 ds3 d 1 0 exp ( ) ( s ,s ,s , ) exp( ( 12 22 32 )) i i 1 2 3 3 3 3 4 ( t ) ( ( t )) 8 0 R3 0 R3 0 i ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 ( t ); )d 1d 2d 3 d ,( i 1,3 ), (3.4)* t 3 j 1 0 2 2 2 ( x ,x ,x ,t ) exp ( ( )) il0j ( x1 2 1 ( t ),x2 it i 1 2 3 1 2 3 3 t j 1 0 R3 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3d , ( l j x j 2 j ( t ) ; i 1,3; j 1,3 ), t ( x j s j ) 1 1 r2 ix exp( ) i0 ( s1 ,s2 ,s3 , )ds1ds2 ds3d j 3 3 2 ( t ) 4 ( t ) ( ( t )) 8 0 R3 t j 1 2 2 2 exp ( ( )) i0 ( x1 2 1 ( t ),x2 2 2 ( t ),x3 1 2 3 3 ( t ) 0 R3 2 3 ( t ); )d 1d 2 d 3d , t j 2 2 2 2 1 exp ( ( )) il0j ( x1 2 1 ( t ),x2 2 2 ( t ),x3 1 2 3 ix 3 j ( t ) 0 R3 2 3 ( t ); )d 1d 2 d 3 d , t 3 j 1 2 2 2 exp ( ( )) il0j ( x1 2 1 ( t ),x2 2 2 ( t ), i 1 2 3 3 t j 1 0 R3 x 2 ( t ); )d d d d 3 1 2 3 (3.15) 3 and substituting (3.15) in (3.4)*, we have i t 0 0,( x1 ,x2 ,x3 ) R 3 ; 1 0 ; ( x1 ,x2 ,x3 ,t ) T : t 3 j 0 1 0 0 2 2 2 exp ( ( )) il j ( x1 2 1 ( t ),x2 0 it i i i 1 2 3 3 j 1 t 0 R3 t (3.16) 1 0 2 2 2 exp ( ( )) 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3 d i 1 2 3 3 0 R3 3 j il0j ( x1 2 1 ( t ),x2 2 2 ( t ),x3 2 3 ( t ); )d 1d 2 d 3d 0. j 1 t That it was required to show. From the received results, on the basis of (3.3) follows 1 1 1 P Q 2 4 R3 F0 ( s1 ,s2 ,s3 ,t )ds1ds2 ds3 . r (3.17) Then according to results of the theorem 3, functions i ,i 1,3 are defined from system (3.5)* and satisfies the equation (1.2). For a problem Navier-Stokes (1.1)-(1.3)*, (A2), are proved: existence of the smooth unique solution in area Cn3,13 (T ) , and we will notice that the received decision (3.5)* continuously depends on the initial data fi ,( i 1,3 ) . The theorem is proved. ■ 4. Fluid with Very Small Viscosity with a Condition (A3) In the theory of the differential equations in partial derivatives there are various mathematical transformations which simplify investigated problems and does possible to find the solution in certain spaces [6, 12, 13 and 15]. Here in a case 0 1 (Reynolds number [12]: Re ≥ 2300) we will show that at certain mathematical transformations of the equation Navier-Stokes is led to a linear kind. At that the new system has an analytical solution, which is based on the Picard's method. So, inverse Fourier transform plays great part while deciding boundary problem for the solution of some integral equations, integration; Laplace transformation – while solution of simple differential equation of multiple of N with the constant rate and their systems, some differential equation in the partial derivative, Volterra equation of the second and first type with the difference kernel, and integral equation with the logarithmic kernel and etc. But at the decision of equations Navier-Stokes in the general form these transformations yet have not brought desirable results, if we do not consider special cases. Therefore for the last decades in the mathematics the methods, connected with using of integral of the transform, became widely spread. Different formulas of integral transform arise while a concrete problem solving, but in the sequel they can be applied to the solution of other problems when researching the differential and integral equation, integration. From the received results follows that system Navier-Stokes (1.1) in the conditions of (1.2), (1.3) and (A3) can have the analytical smooth unique solution. At least, such solution answers a mathematical question, and possibility to construct the solution on a problem Navier-Stokes (1.1) - (1.3) for an incompressible liquid with viscosity. 4.1. Fluid with Viscosity 0 1 , when divf 0 Let components of a vector of speed for t 0 be defined by (1.3) as i t 0 i0 ( x1 ,x2 ,x3 ) i 0 ( x1 ,x2 ,x3 ),( i 1,3 ), where 0 i – the known constants. Then speed components (4.1) are defined by a rules i iV ( x1 ,x2 ,x3 ,t ),( i 1,3 ), 3 V t 0 0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R , divf 0; div 0 : 3 3 3 V 0; V j xj j ix j i jVx j 0. j 1 j 1 j 1 (4.2) Hence, the system (1.1) is transformed to the system of inhomogeneous linear equations iVt fi 1 Pxi i V ,( i 1,3 ), (4.3) where V new unknown function which defines the solution of the Navier-Stokes problem. At that (4.1)-(4.3) are investigated in work [8] in Gn23; ( D0 ) or Wn23; ( D0 ). Here the problem (4.1)-(4.3) it is investigated in Gn1 3 ( D0 ) . For this purpose that to solve the system (2.3) at first we define a pressure P . Really, considering APS from system (4.3) we will receive: 3 3 (4.3) : 1 P F ,( F f ( x ,x ,x ,t )), 0 0 ixi 1 2 3 i1 xi i 1 ds ds ds 1 1 F0 ( s1 ,s2 ,s3 ,t ) 1 2 3 , P 4 R3 r 1 i d 1d 2 d 3 Px 1 F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ,( si xi i ;i 1,3 ). i 2 2 2 3 4 R3 ( ) 1 2 3 Therefore Vt 0 ( x1 ,x2 ,x3 ,t ) V , ( x1 ,x2 ,x3 ,t ) T , 3 0 xi 0, ( x1 ,x2 ,x3 ,t ) T , i 1 ( )1( f 1 P ) ( )1( f 1 P ) ( )1( f 1P ) , 1 x1 2 2 x2 3 3 x3 0 1 (4.4) (4.5) i.e. is the system (4.3) is transformed to the linear equations of heat conductivity with a condition of Cauchy in a kind (4.5), and in a class of functions with smooth enough initial data is correctly put [13, 14]. Accordingly there is an the conditional-smooth unique solution of a problem Navier-Stokes in G 1( D0 ). Really from system (4.13), follows: V 1 8( t )3 exp( R3 r2 1 )0 ( s1 ,s2 ,s3 )ds1ds2 ds3 4 t 8 3 0 ( s1 ,s2 ,s3 ,s )ds1ds2 ds3 ds 2 3 t )d 1d 2 d 3 3 exp( ( 3 2 1 exp( 0 R3 r2 1 ) 4 ( t s ) ( ( t s ))3 22 32 ))0 ( x1 2 1 t ,x2 2 2 t ,x3 R3 t 1 1 t exp( ( 2 1 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds H 0 ( x1 ,x2 ,x3 ,t ),( si xi 2 i t ;si xi 2 i ( t s );i 1,3 ), where H0 – known function and the found solution (4.6) satisfies system (4.5). For this purpose, considering partial derivative systems (4.6): ( 0,1 ) ; h j x j 2 j t ; l j x j 2 j ( t s ),( j 1,3 ),( x1 ,x1 ,x1 ,t ) T : 1 exp( ( 12 22 32 ))0 h j ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d 3 Vx j 3 R3 t 1 exp( ( 12 22 32 )) 0l j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 3 0R ( t s );s )d d d ds, 1 2 3 (4.6) 1 exp( ( 12 22 32 ))0 h2 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ) Vx2j 3 j R3 t d 1d 2 d 3 1 exp( ( 12 22 32 )) 0l 2 ( x1 2 1 ( t s ),x2 2 2 3 j 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds, 3 ( x1 ,x2 ,x3 ) R ; t ( 0,T0 ] : 3 j 2 2 2 V 1 e xp ( ( )) ( 0 h ( x1 2 1 t ,x2 2 2 t ,x3 t 1 2 3 t j j 1 3 R3 t 3 j 1 2 2 2 2 t )d d d exp ( ( )) 0l j ( x1 3 1 2 3 0 1 2 3 3 t s 3 j 1 0 R 2 ( t s ),x 2 ( t s ),x 2 ( t s ) ;s )d d d ds 1 2 2 3 3 1 2 3 and substituting (4.7) in (4.5), we have V t 0 0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R 3 ;( 0,1 ) ; ( x1 ,x2 ,x3 ) R 3 ; t ( 0,T0 ] : 3 1 2 2 2 0 V V exp ( ( )) ( j 0 h j ( x1 2 1 t ,x2 t 0 0 1 2 3 3 t j 1 R3 t 3 j 1 2 2 2 2 2 t ,x3 2 3 t ))d 1d 2 d 3 0 exp ( ( )) ( 1 2 3 ts j 1 3 0 R3 0l j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s ) ;s ))d 1d 2d 3ds 0 { 1 exp( ( 12 22 32 ))0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d 3 3 R3 1 t exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ) ,x3 2 3 3 0 R3 3 1 2 2 2 ( t s ) ; s )d d d ds } exp ( ( ))( j 0 h j ( x1 2 1 t , 1 2 3 1 2 3 t j 1 3 R3 t 3 j 2 2 2 x2 2 2 t ,x3 2 3 t ))d 1d 2 d 3 1 exp ( ( ))( 0l j 1 2 3 3 ts j 1 0 R3 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s ) ;s ))d 1d 2 d 3 ds 1 1 { 1 exp( ( 12 22 32 )) 0 h2 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t ) 2 3 t 1 R3 1 1 exp( ( 12 22 32 )) 0 h2 ( x1 2 1 t ,x2 2 2 t , d( x1 2 1 t )d 2 d 3 3 t 2 R3 1 x3 2 3 t )d 1d( x2 2 2 t )d 2 d 3 1 exp( ( 12 22 32 )) 0 h2 ( x1 t 3 3 R3 (4.7) t 1 1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2 d( x3 2 3 t ) 3 0 ts 2 2 2 [ exp( ( 1 2 3 )) 0l12 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) R3 d( x 2 ( t s ) )d d exp( ( 2 2 2 )) ( x 2 ( t s ),x 2 1 1 2 3 1 2 3 1 1 2 2 0l22 R3 ( t s ),x3 2 3 ( t s );s )d 1d( x2 2 2 ( t s ) )d 3 exp( ( 12 22 32 )) R3 0l 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d( x3 3 3 1 2 2 2 2 ( t s ) ) ] ds } exp ( ( ))( j 0 h j ( x1 2 1 t ,x2 2 2 3 1 2 3 t j 1 3 R3 t 3 j 2 2 2 t , x3 2 3 t ))d 1d 2 d 3 1 exp ( ( ))( 0l j ( x1 1 2 3 ts j 1 3 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2 d 3ds 3 2 2 2 1 exp ( ( ))( j 0 h j ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )) 1 2 3 3 3 t j 1 R t 3 j 1 2 2 2 exp ( ( ))( 0l j ( x1 2 1 ( t s ),x2 d 1d 2 d 3 1 2 3 ts j 1 3 0 R3 2 2 ( t s ),x3 2 3 ( t s );s ))d 1d 2 d 3ds} 0, i.e. the system (4.6) satisfies a problem (4.5). That it was required to prove. The limiting case in G 1 ( D0 ) , when the decision of (4.5) is representing in the form of (4.6), when ( x1 ,x2 ,x3 ,t ) T ; li xi 2 i ( t s ),( i 1,3 );V0 ; 0 : sup D kV0 1 , ( k 0,3 ), R3 T0 sup D k ( x ,x ,x ,t ) ; sup ( x ,x ,x ,s )ds T , 0 1 2 3 1 1 0 2 0 1 2 3 R3 R3 0 t 1 sup exp( ( 12 22 32 ) D k 0 ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3 ds 1T0 2 , T 3 0 R3 t 3 1 1 2 2 2 exp ( ( ) sup j 0l j ( l1 ,l2 ,l3 ;s ) d 1d 2 d 3ds 3 1 2T0 3 , 1 2 3 3 t s j 1 T 0 R3 3 1 1 2 2 2 sup exp ( ( ))( j V0 l j ( l1 ,l2 ,l3 ) )d 1d 2 d 3 1 1 2 3 R3 3 R3 i 1 3 3 1 1 { ( 2 exp( ( 2 2 2 ) )d d d ) 2 ( exp( ( 2 2 2 ) )d d d ) 2 } 3 1 , 1 2 3 1 2 3 1 2 3 1 2 3 1 i 2 i 1 R3 R3 li xi 2 i t , ( i 1,3 ), max i ; 0 ( 3 2 T0 1 T0 ). 1 i 3 (4.8) Really, estimating (4.6) in G 1 ( D0 ) , we have V Vt V G1 ( D0 ) V C 3 ,0 ( T ) Vt L1 N 3 0 , T0 L1 sup Vt ( x1 ,x2 ,x3 ,t )dt ( 3 2 T0 1 T0 ) 0 , R3 C 3 ,0 ( T ) 0 0 k 3 D kV C( T ) N 3 40 , ( V C( T ) 2 ). The uniqueness of the solution the system (4.6) in G 1 ( D0 ) is obvious on the basis of proof by contradiction [13]. Results (4.6) with a condition (4.2), (4.8) are received where smoothness of functions is required only on xi as the derivative of 1st order is in time has t>0. Therefore, on a basis transformation (4.2) we will receive decisions of system (1.1), which satisfies a condition (1.2), i.e. i i H 0 ( x1 ,x2 ,x3 ,t ), ( i 1,3 ), 3 3 3 1 3 2 2 2 H 0; H exp ( ( )) iV0 hi ( x1 2 1 t ,x2 ix i 0 x i 0 x 1 2 3 i i i 3 3 i 1 i 1 i 1 i 1 R t 3 1 2 2 2 2 t ,x 2 t )d d d exp ( ( )) 2 3 3 1 2 3 1 2 3 i 0li ( x1 2 1 3 3 i 1 0 R ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds 0, h x 2 t ; l x 2 ( t s ),( i 1,3 ). i i i i i i (4.9) In the conclusion estimating (4.9) it is had 3 v ( , , ) : v [ iV C 3 ,0 ( T ) iVt L1 ] d0 [N 3 0 ] d0 M 0 , 1 2 3 Gn13 ( D0 ) i 1 3 V 1 V V N ,( d i ;M 0 N 3 0 ). 3 ,0 1 t L 3 0 0 C (T ) G ( D0 ) i 1 (4.10) Theorem 4. In the conditions of (1.2), (4.1), (4.8) and (4.10) the problem (1.1), (1.2), (4.1) has a unique solution in Gn1 3 ( D0 ) , which is defined by a rule (4.9). Remark 2. If i0 ,( i 1,2,3 ) initial components of a vector of speed at the moment of time t 0 it is set in a kind: i t 0 0,( x1 ,x2 ,x3 ) R 3 ,( i 1,3 ). (4.1)* Then with that end in view we will assume that there are functions 0 iV0 ,( i 1,2,3 ) , which satisfy conditions C 3 ( R 3 ) 0 ( x1 ,x2 ,x3 );0 i const, (i 1,3 ): 3 k sup D ( ),( 0 1; 0; 0 ). 0 0 0 i 0 xi 0; 0 ( ) 3 0 i 1 R Hence we will use transformation of a kind i i [V ( x1 ,x2 ,x3 ,t ) 0 ( x1 ,x2 ,x3 )], ( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 V t 0 0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R , 3 3 div 0 : jVx j 0; j0 x j 0, j 1 j 1 3 3 3 3 3 jix iV jVx i0 jVx iV j0 x i0 j0 x 0, j j j j j j 1 j 1 j 1 j 1 j 1 (4.2)* that, the system (1.1) will be transformed to a kind iVt fi 1 Pxi i V ,( i 1,3 ). (4.3)* Further, from system (4.3)*, considering condition (4.2)*, and having entered [8] APS we have the equation (4.4). Therefore the system (4.13) will be transformed to (4.5). Hence from system (4.5), we have the of equation (4.6). In the conclusion, with the account (4.2)*, follows i i [ 0 ( x1 ,x2 ,x3 ) H 0 ( x1 ,x2 ,x3 ,t )] Yi ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 1 exp( ( 12 22 32 ))0 ( x1 2 1 t ,x2 2 2 t ,x3 0 ( x1 ,x2 ,x3 ) 3 R3 2 3 t )d 1d 2 d 3 0 ( x1 ,x2 ,x3 ), t H 1 exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 0 R3 ( t s );s )d 1d 2 d 3 ds,( si xi 2 i t ;si xi 2 i ( t s );i 1,3 ) (4.9)* and summarising, takes place an estimation of a kind (4.10), where Yi ,( i 1,2,3 ) – known functions. From here we will receive similar results in the conditions of the theorem 4 in Gn1 3 ( D0 ) . 4.2. Fluid with Small Viscosity, when 0 0; divf 0 I. The overall objective of this point: to change a method (4.2) so that the received anal ytical solution of the Navier-Stokes problem with viscosity, belonged in Cn3,1 3 (T ). If takes place i t 0 i0 ( x1 ,x2 ,x3 ) i 0 ( x1 ,x2 ,x3 ),i 1,3, 3 3 3 k j0 x j 0; 0 0; 0 C ( R ); divf 0; sup D f i N0 const , ( i 1,3;k 0,4 ), T j 1 (4.11) that we will use transformation of a kind i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )],( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Z t 0 0, ( x1 ,x2 ,x3 ) R , 3 3 div 0 : j Z x j 0; j0 x j 0, j 1 j 1 3 3 3 3 3 jix i 0 j0 x j i 0 j Z x j i Z j0 x j i Z j Z x j 0, j j 1 j 1 j 1 j 1 j 1 (4.12) where 0 i the known constants. Hence, the system (1.1) will be transformed to a kind i Zt fi 1 Pxi i Z ,i 1,3. (4.13) From system (4.13), considering conditions (4.11), (4.12), and having entered [8] APS we have the equation (4.4). Hence the system (4.13) will be transformed to a kind Z Z , ( x ,x ,x ,t ) T , 0 1 2 3 t Z t o 0, 1 1 1 1 1 1 ( 1 ) ( f1 Px1 ) ( 2 ) ( f 2 Px2 ) ( 3 ) ( f 3 Px3 ) 0 ( x1 ,x2 ,x3 ,t ). (4.14) Then the decision of a problem (4.14) is presented in a kind Z 1 8 3 exp( 0 R3 t 1 t 3 exp( ( 2 1 r2 1 ) 0 ( s1 ,s2 ,s3 ,s )ds1ds2 ds3 ds 4 ( t s ) ( ( t s ))3 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) 0 R3 (4.15) d 1d 2 d 3 ds H( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T , ( si xi 2 i ( t s );i 1,3 ), here H – known function. The solution (4.15) satisfies system (4.14). Really, having calculated partial derivative of system (4.15): 3 j 1 t 2 2 2 Z ( x ,x ,x ,t ) exp ( ( )) 0l j ( x1 2 1 t 0 1 2 3 1 2 3 3 3 t s j 1 0 R ( t s ),x 2 ( t s ),x 2 ( t s );s )d d d ds, 2 2 3 3 1 2 3 t 1 exp( ( 12 22 32 )) 0l j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 Z x j 3 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds, 1 t Z x2 exp( ( 12 22 32 )) 0l 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 j j 3 0 R3 2 3 ( t s );s )d 1d 2 d 3 ds, ( l j x j 2 j ( t s ); j 1,3 ) and substituting (4.16) in (4.14), we (4.16) Z 0, ( x1 ,x2 ,x3 ) R 3 ; ( 0,1 ) ; l j x j 2 j ( t s ); ( x1 ,x2 ,x3 ,t ) T : t 0 t 3 j 1 2 2 2 0l j ( x1 2 1 )) ( ( exp Z Z 0 3 2 1 0 0 t 3 s t 3 1 j 0 R ( t s ),x 2 ( t s ),x 2 ( t s );s )d d d ds 0 3 2 1 3 3 2 2 t 3 1 exp( ( 12 22 32 )) 0l 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 { 3 j j 1 0 R3 t 3 j 2 2 2 2 ( t s );s )d d d ds} 1 0l j ( x1 )) ( ( exp 3 2 1 3 2 1 3 3 ts j 1 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds t 1 1 1 [ exp( ( 12 22 32 )) 0l 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ), { 2 3 1 0 t s R3 2 2 2 x3 2 3 ( t s );s )d( x1 2 1 ( t s ) )d 2 d 3 3 exp( ( 1 2 3 )) 0l22 ( x1 2 1 R ( t s ),x 2 ( t s ),x 2 ( t s );s )d d( x 2 ( t s ) )d 3 2 2 1 3 3 2 2 2 2 2 exp( ( 1 2 3 )) 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) 0l3 R3 t 3 j 1 2 2 2 0l j ( x1 )) ( ( exp } ds ] ) ) s t ( 2 x d( d d 3 2 1 3 3 2 1 3 ts j 1 0 R3 2 ( t s ),x 2 ( t s ),x 2 ( t s );s )d d d ds 3 2 1 3 3 2 2 1 t 3 1 1 exp( ( 12 22 32 )) j 0l j ( x1 2 1 ( t s ),x2 2 2 ( t s ), { 3 j 1 0 t s R3 x3 2 3 ( t s );s )d 1d 2 d 3 ds 0. That it was required to prove. From the received results follows that functions i are defined on the basis of (4.12), i.e. i i [0 ( x1 ,x2 ,x3 ) H( x1 ,x2 ,x3 ,t )],( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). (4.17) Further, considering partial derivatives of 1st order systems (4.17) and summing up with acceptance in attention (1.2), (4.12) we have, that the system (4.17) satisfies to a condition (1.2) 3 3 3 3 3 1 t 2 2 2 H exp ( ( )) { ixi i 0 xi i xi i 0 xi 1 2 3 i 0li ( x1 i 1 i 1 i 1 i 1 3 0 R3 i1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )}d 1d 2 d 3 ds 0, 3 3 li xi 2 i ( t s ),( i 1,3 ), 0; i 0 xi i 0 xi 0. i 1 i 1 II. So as i0 i0 , ( 0 C 3 ( R 3 )) , that solution of problem (1.1)-(1.3) belongs in Cn3,13 (T ) : 3 k Cn3,13 { D i C it C }, i 1 0 k 3 3,1 3,3,3,1 3,3,3,1 Cn 3 ( T ) Cn 3 ( T ) Cn 3 ( T );v ( 1 ,2 ,3 ); i i [0 Z ],( i 1,3 ); 0 0, k 3 Z k 0 k Z 3 ,1 D Z Z ; k 0 : D Z Z ; k 0 : D Z ; k i , ( i 0,3 ). k 3 t C 3 1 2 C C x x x 0 i 1 1 2 3 Really, if i0 C 3 ( R 3 ); 0 : sup D ki0 1 ; sup D k 0 ( x1 ,x2 ,x3 ,t ) 1 , ( i 1,3; k 0,3 ), T R3 t sup 1 exp( ( 12 22 32 )) D k 0 ( l1 ,l2 ,l3 ; ) d 1d 2 d 3 d 1T0 2 , 3 T 0 R3 t 3 1 1 2 2 2 sup exp ( ( ) ) j 0l( kk ) ( l1 ,l2 ,l3 ; ) d 1d 2 d 3 d 1 2 3 3 j T t j 1 0 R3 t 3 1 1 sup exp( ( 12 22 32 )) 1 j d 1d 2 d 3 d 31 2T0 3 , t j 1 3 T 0 R3 l j x j 2 j ( t ),( j 1,3 ), max( i ; 1 ), 0 ( 1 ), 1 i 3 (4.18) that on a basis (4.15) we will receive: Z C3 N1 0 , ( 0 ,1 N 1 2 0 ). In the conclusion estimating (4.17) it is had v ( , , ); [ Z ],( i 1,3 ) : 1 2 3 i i 0 3 v Cn3,13 ( T ) [ i Z C 3 ,0 ( T ) i0 C 3 ( T ) i Zt C( T ) ] d0 [N1 N 2 0 ] d0 [N0 0 ], i 1 3 Z Z Z N , ( d i ; N0 N1 N 2 40 ). C 3 ,1 ( T ) t C( T ) 1 0 0 C 3 ,0 ( T ) i 1 Lemma 2. In the conditions of (1.2), (4.11), (4.12) and (4.18) the equation (4.15) has a unique solution in C 3,1 ( T ) . Theorem 4*. At performance of conditions of the lemma 2 the problem (1.1), (1.2), (4.11) is solvable at Cn3,13 (T ) of the defined by a rule (4.17). Remark 3. Results 4.2 taking into account transformation (4.12) can be used concerning equations Navier-Stokes (1.1): i 3 1 j i fi Pxi i ,( i 1,3 ) t j 1 x j and (1) div 0, ( x, t ) T U 3 [0, T0 ], (2) in the limited area U 3 spaces of variables ( x1 ,x2 ,x3 ) the limited surface S , and for t , satisfying to an inequality 0 t T0 , under conditions [13]: i S 0, ( i 1,3 ), (3) i t 0 i 0 ( x1 ,x2 ,x3 ),( 0 S 0 ). (4) Really, applying transformation (4.12), i.e.: i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )],( x1 ,x2 ,x3 ,t ) T U 3 [0,T0 ],( i 1,3 ), Z S 0, t [0,T0 ], 3 Z t 0 0, ( x1 ,x2 ,x3 ) U , we will receive the equation (4.13), i.e.: i Zt fi 1 (5) Pxi i Z ,( i 1,3 ). (6) Hence (4.14): 1 P 4 F0 , ( F0 1 4 3 f i 1 ixi (7) ( x1 ,x2 ,x3 ,t )). The equation (7) is the equation of Poisson and for descriptive reasons decisions we put a boundary problem in a kind: P S 1 0, t [0,T0 ], P n 2 0. S (8) Then equation (7) we obtain explicit representations for the unknown pressure P : 1 r dS 1 1 n 4 3 (9) Z t 0 Z , ( x1 ,x2 ,x3 ,t ) T , 1 1 1 1 1 1 ( 1 ) ( f1 Px1 ) ( 2 ) ( f 2 Px2 ) ( 3 ) ( f 3 Px3 ) 0 ( x1 ,x2 ,x3 ,t ), (10) ds ds ds 1 P F0 ( s1 ,s2 ,s3 ,t ) 1 2 3 r 4 U3 1 S 1 r S 2 dS 1 r F ( s ,s ,s ,t ) 0 1 2 U3 ds1ds2 ds3 , [see. (0.8) : 1 , 2 0; r ( x1 s1 )2 ( x2 s2 )2 ( x3 s3 )2 ] . Thus, considering (6), (9) we will receive [13]: Z Z S 0, t [0,T0 ], t 0 0, ( x1 ,x2 ,x3 ) U 3 . (11) Full research of a problem (10), (11) is well shown in work [13, pp.349-351]. And it means that the generalized solution will be the decision in usual sense, at sufficient smoothness 0 [13, pp.311-318, XXII]. Therefore similar conclusions we can make concerning a problem (1)-(4). That it was required to prove. Remark 4. In point 2.2 Beale-Kato-Majda inequality is resulted. Therefore, here we will specify communication criterion of a regularity of Beale-Kato-Majda with results of the theorem 4*. On the basis of results of the theorem 4* the solution of system (1.1) it is presented in a kind (4.17), where global existence of solution is received in a class Cn3,13 (T ) from the point of view of the initial data satisfying (4.17). Really, at performance of conditions of theorem 4* and rot 0, ( v ( 1 ,2 ,3 )), i i [0 Z ] : 30 x ( x1 ,x2 ,x3 ) 20 x ( x1 ,x2 ,x3 ) h10 , 2 3 0 10 x ( x1 ,x2 ,x3 ) 10 x ( x1 ,x2 ,x3 ) h2 ; 20 x ( x1 ,x2 ,x3 ) 10 x ( x1 ,x2 ,x3 ) h30 , 3 1 1 2 t 1 exp( ( 12 22 32 )) 3 0l2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 sup 3 T 0 R3 ( t s );s ) 2 0l3 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) d 1d 2 d 3 ds h1 ,( li xi 2 i ( t s ),i 1,3 ), t 1 exp( ( 12 22 32 )) 1 0l3 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 sup 3 T 0 R3 ( t s );s ) 3 0l1 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) d d d ds h , 1 2 3 2 t 1 exp( ( 12 22 32 )) 2 0l1 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 sup 3 T 0 R3 ( t s );s ) 1 0l2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) d 1d 2 d 3 ds h3 , takes place 3 rot 0 : sup rot ( x1 ,x2 ,x3 ,t ) M 0 , ( ( hi hi0 ) M 0 ). (4.19) i 1 T In a consequence and (see (2.24)): T0 T0 sup rot ( x1 ,x2 ,x3 ,t ) dt sup { 3 x2 ( x1 ,x2 ,x3 ,s ) 2 x3 ( x1 ,x2 ,x3 ,s ) R3 0 R3 0 (4.20) 1x3 ( x1 ,x2 ,x3 ,s ) 3 x1 ( x1 ,x2 ,x3 ,s ) 2 x1 ( x1 ,x2 ,x3 ,s ) 1x2 ( x1 ,x2 ,x3 ,s ) }ds M 0T0 M . Well then, we obtain an estimation of type Beale-Kato-Majda [5]. 4.3. Modified Variant of a Method (4.12) with the Conditions divf 0,rot f 0 Let’s consider updating of the basic method 4.1. Here we will see that components of speed grow than in rules (4.2) or (4.12), when 0 1 , on the basis of regulatory functions i . Therefore in this case the problem (1.1)-(1.3) does not contain in itself restriction in kinds (А1), (А2) and in it urgency of research in a case (А3) and divf 0, rot f 0 . Offered methods of integrated transformations are entered so that to transform nonlinear of the Navier-Stokes problems to linear problems of heat conductivity. Questions solvability of the problem are proved on the basis of the developed methods. These methods are initial problems lead to the integral equations where possibility to find the analytical solution taking into account the theory of the integral equations of Volterra-Abel [13]. For incompressible currents with a friction, when i t 0 i0 ( x1 ,x2 ,x3 ) i 0 ( x1 ,x2 ,x3 ),( i 1,3 ), 3 3 3 i 0 xi 0; 0 0; 0 C ( R ), i 1 divf 0, rot f 0,( f 0; i 1,3 ), sup D k f N const , ( T R 3 [0,T ] ), i i 0 0 T t ( x ,x ,x ,t ) f ( x ,x ,x ,s )ds, ( i 1,3 ), 0 i 1 2 3 i 1 2 3 (4.21) functions i ,i 1,2,3 is represented in a kind i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )] i ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Z t 0 0, ( x1 ,x2 ,x3 ) R , (4.22) where 0 i the known constants. From the entered functions i , is required it fi ( x1 ,x2 ,x3 ,t ),( i 1,3 ), t k k fi 0 : i 0, ( D i D f i ( x1 ,x2 ,x3 ,t,s )ds N 0 T0 ; i 1,3 ), 0 at that all functions i are regular concerning viscosity parameter ( 0,1 ) , (here in a role of small parameter), i.e.: lim i ( x1 ,x2 ,x3 ,t ) 0,( x1 ,x2 ,x3 ,t ) T. 0 Further, supposing (4.21), (4.22) and 3 3 3 div 0 : Z 0; 0; ixi 0, i xi i 0 xi i 1 i 1 i 1 3 3 1 3 2 1 2 U j ; j i x j 2 ( j )xi 2 U xi , j 1 j 1 j 1 3 3 3 1 ji x j j ( 0 Z ) i x j j i ( 0 x j Z x j ) U xi , 2 j 1 j 1 j 1 3 3 j ( 0 Z )i ( 0 x j Z x j ) i ( 0 Z ) j ( 0 x j Z x j ) 0, j 1 j 1 it i Zt it ; i [i ( 0 Z ) i ] i Z ,( i 1,3; 0 0 ), (4.23) for incompressible currents with a friction the equations of Navier-Stokes (1.1) become simpler as take place (4.21)-(4.23). Therefore the problem (1.1) - (1.3), is led to a kind 3 3 1 2 i Zt j ( 0 Z )i x j i ( 0 x Z x ) U x ( 1 ) fi j 1 j j 1 j j i 1 Pxi i Z ,( i 1,3 ). (4.24) The system (1.1) is equivalent transformed to a kind (4.24). Then a new system of equations is called of inhomogeneous linear system a transfer of vortices [12]. Here the inertial terms in the equations (1.1) are linearized using regulatory functions i ,( i 1,2,3 ) , which were first introduced in [8] and in the method (4.22). From system (4.24), considering conditions (4.21)-(4.23) and having entered APS we have the equation: 1 1 3 x (4.24) : ( P 2 U ) {F0 B[Z x1 ,Z x2 ,Z x3 ]}, i 1 i 1 1 1 1 {F0 ( s1 ,s2 ,s3 ,t ) ( B[Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2ds3 , P U 2 4 R3 r 1 Px 1 U x 1 {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B[Z h1 ,Z h2 ,Z h3 ] )( x1 1 ,x2 2 ,x3 i 2 i 4 R3 i ; t )} d 1d 2 d 3 , ( si xi i ;hi xi i ;i 1,3 ), 3 2 2 2 3 ( ) 1 2 3 (4.25) so as takes place 3 3 3 3 ( B [ Z ,Z ,Z ] )( x ,x ,x ,t ) ( )Z ( j ix j xi jxi Z x j )i , x1 x2 x3 1 2 3 i 1 j 1 i 1 j 1 3 3 3 3 div f 0; F ( x ,x ,x ,t ) ( ) ( 0 1 2 3 i j xi 0 x j 0 xi j i x j ), i 1 j 1 i 1 j 1 3 3 3 3 3 3 3 { j ( 0 Z ) i x j j i ( 0 x j Z x j )} i ( j xi 0 x j ) 0 xi ( j i x j ) j 1 i 1 j 1 i 1 j 1 i 1 xi j 1 3 3 3 3 ( j ix j )Z xi ( jxi Z x j )i , i 1 j 1 i 1 j 1 3 3 3 ( j x j )xi 0; ( j0 x j )xi 0, ( j Z x j )xi 0,( i 1,3 ), j 1 j 1 j 1 3 3 3 3 1 1 1 1 [ i Z x ] 0; ( i Z ) 0; ( U x ) U ; ( Px ) P, i i i 2 t i 1 i 1 xi i 1 xi 2 i 1 xi B[Z x1 ,Z x2 ,Z x3 ] 0,( x1 ,x2 ,x3 ,t ) T . lim 0 There are various methods [12] which give communication of speed and pressure. For example, if the law of the pressure distribution obtained from the Bernoulli equation. Here is received the new law of distribution of pressure in the form of (4.25), for the first time similar results are received in work [8]. Then on a basis (4.25) system (4.24) it is equivalent, will be transformed to a kind: Zt 0 ( Q[Z ,Z x1 ,Z x2 ,Z x3 ] )( x1 ,x2 ,x3 ,t ) Z ,( i 1,3 ), 3 Z t 0 0,( x1 ,x2 ,x3 ) R , where (4.26) 3 3 3 3 1 ( x ,x ,x ,t ) d [ ( 1 ) f ( j 0xj 0 i 0 j i x j ) 0 1 2 3 j 1 i 1 i 1 j 1 3 3 1 i { ( F ( x ,x ,x ;t )) } d d d ] ; d i 0, 0 1 1 2 2 3 3 1 2 3 0 3 2 2 2 3 4 i 1 i 1 ( ) R 1 2 3 3 3 1 ( Q [ Z ,Z ,Z ,Z ] )( x ,x ,x ,t ) { d Z( x ,x ,x ,t ) [ ( j i x j ( x1 ,x2 ,x3 ,t ))] x1 x2 x3 1 2 3 0 1 2 3 i 1 j 1 3 3 i 1 ( ( B[Z h1 ,Z h2 ,Z h3 ] )( x1 Z x j ( x1 ,x2 ,x3 ,t ) j ( x1 ,x2 ,x3 ,t ) d 01[ 4 R3 i 1 ( 12 22 32 )3 j 1 1 ,x2 2 ,x3 3 ;t ))d 1d 2 d 3 ]}, (hi xi i ,i 1,3 ). The problem (4.26) is led to system of the integrated equations quite regular rather ( 0,1 ) , in a kind Z x Wi ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), i t 1 r2 1 Z M exp ( ) ( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s )ds1ds2 ds3ds 1 3 3 4 ( t s ) ( ( t s )) 3 8 0 R t 1 M 1 exp( ( 12 22 32 ))( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 3 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds ( 0 [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t r2 ( xi si ) 1 W M 1 ( exp ( )) ( Q[Z ,W1 ,W2 ,W3 ] ) 1xi i 4 ( t s ) 2 ( t s ) ( ( t s ))3 8 3 0 R3 t i ( s ,s ,s ,s )ds ds ds ds M 1 exp( ( 12 22 32 )) 1 2 3 1 2 3 1xi 3 ( t s ) 0 R3 ( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) d 1d 2 d 3 ds ( i [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), ( si xi 2 i ( t s );i 1,3 ), t M ( x ,x ,x ,t ) 1 exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 3 1 1 2 3 0 R3 (4.27) ( t s ) ,x3 2 3 ( t s );s )d 1d 2 d 3 ds. The received system (4.27) consists of four integral equations, i.e. Volterra and Volterra-Abel on a variable t [0,T0 ] and thus contains in itself of four unknown functions. Therefore there is no necessity to think out various algorithms for the decision of this system and it is enough to show conditions which provide contraction mapping principle and for the decision of this system to use a of Picard’s method. Therefore, if takes place: ( x1 ,x2 ,x3 ,t ) T ;M 1 , ,i : sup D k M 1 ( x1 ,x2 ,x3 ,t ) 1 , ( k 0,3; t s ), T 3 3 sup ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) sup{d 01 ( j i s ( x1 2 1 ,x2 2 2 , j T T i 1 j 1 T T 3 x3 2 3 ;t ) ) j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 i d 1[ 1 ( { ( j il ( x1 2 1 1 ,x2 2 2 2 , 0 4 3 j i 1 ( 12 22 32 )3 i 1 j 1 R 3 3 x 2 ;t ) ) ( jl ( x1 2 1 1 ,x2 2 2 2 ,x3 3 3 3 i i 1 j 1 2 ;t ) ) } )d d d ]} , 3 3 i 1 2 3 2 t 1 k0 sup exp( ( 12 22 32 )) ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 2 T0 , 3 T 0 R3 t k 1 sup exp( ( 2 2 2 )) ( x ,x ,x , , , ;t, ) i d d d d 1 2 3 1 2 3 1 2 3 1 2 3 i 3 T 0 R3 2T0 2 ,( i 1,3 ), max( 2T0 ; 3 2T0 2 ) (4.28) and if operators: i ,( i 0,3 ) compressing with a compression factor k i , h i ,( i 0,3 ) : ki 4 ,( h 1 ), 3 ki ( 2T0 3 2T0 2 ) ( 1 ) h 1 i 0 (4.29) and: Sr ( 0 ) {Z ,W j : V ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ); 1 i [0,0,0,0] C r1 ( 1 h ) : i [Z ,W1 ,W2 ,W3 ] C i [Z ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C (4.30) [ 0,0,0,0 ] k 4r r ( 1 h ) hr r ( 1 h ) r , i i 1 1 1 1 1 C i : Sr1 ( 0 ) Sr1 ( 0 ), ( i 0,3 ). Then on the basis of a contraction mapping principle system (4.27) is solvable and solution of this system we can find on the basis of Picard’s method ( x1 ,x2 ,x3 ,t ) T : Z n1 0 [Z n ,W1,n ,W2,n ,W3,n ], (4.31) W [ Z ,W ,W ,W ] ,( n 0,1,...;Z 0; W 0; i 1,3 ). i ,n 1 i n 1,n 2,n 3,n 0 i ,0 Received the sequence of functions Z n1 ,Wi , n1 ,( i 1,2,3 ) is converging and fundamental in S r1 ( 0 ) , at that elements of the constructed sequences belong S r1 ( 0 ) , so as 3 3 E Z Z W W ; E Z Z Wi ,n Wi ,n 1 C , n 1 n C i ,n 1 i ,n C n n n 1 C n 1 i 1 i 1 Z n 1 Z n k0 En ; Wi ,n 1 Wi ,n ki En ,( i 1,3 ) : C C h 1 n En 1 hEn ... h E1 0, n k 1 k 1 Z Z k E ; W W ki En j ,( i 1,3 ), n C 0 n j i ,n k i ,n C nk j 0 j 0 k 1 k 1 k 1 1 h 1 En k h En j ... h h n j 1 E1 E1h n h j E1h n 0, n 1 h j 0 j 0 j 0 n 1 n 1 Z n 1 Z n 1 Z n ... Z 2 Z1 Z1 k0 ( h j )E1 0 [0,0,0,0 ] ( 1 h )r1h h j C j 0 j 0 n ( 1 h )r ( 1 h )r h j r , [ h j ( 1 h )1 ; k 1 h; E 4( 1 h )r ; Z S ( 0 )], 1 1 1 0 1 1 n 1 r1 4 j 0 j 0 n 1 n 1 W j j k ( h )E [ 0,0,0,0 ] ( 1 h )r h; i 1,3;Wi , n 1 S r1 ( 0 )]. i 1 i 1 h r1 , [k i C i , n 1 4 j 0 j 0 Therefore 3 3 h1 U Z W ; U Z Z Wi ,n1 Wi C : U n 1 h n1U 0 0, 0 i n 1 n 1 n C C C i 1 i 1 h1 h1 3,1 Z Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n n1 n Z H C (T ); Wi ,n1 Hence on the basis of (4.22) i ,n 1 i [0 ( x1 ,x2 ,x3 ) Z n 1( x1 ,x2 ,x3 ,t )] i ( x1 ,x2 ,x3 ,t ),( n 0,1,2,...;i 1,3 ), h 1 n 1 0,( i 1,3 ). i ,n 1 i C i Z n 1 Z C i hU n i h U 0 n (4.32) (4.33) And it means that sequence {i ,n }0 converging to a limit i ,( i 1,3 ) : h 1 i ,n 1 i C 3,1(T ),( i 1,3 ). n (4.34) Theorem 5*. Under conditions (1.2), (1.3), (4.21), (4.22), (4.28)-(4.30) and (4.34) the Navier-Stokes problem is solvable at Cn3,13 (T ) . Remark 5. If takes place 0 21 , that 0 1. In a case 2 1 , then 0 ( 2 1[ 1 4 1 1] )2 1. 4.4. Updating of a Method (4.2), When divf 0, rot f 0, 0 0 Let consider updating of the basic method of paragraph 4.1: (4.2), when: (4.35) i t 0 i0 ( x1 ,x2 ,x3 ) i0 ( x1 ,x2 ,x3 ),( i 1,3 ), 3 3 3 C ( R ); 0; i0 xi 0, 0 0 i 1 3 fi i it ; divf 0 : div 0; it 0, i 1 xi it ( x1 ,x2 ,x3 ,t ) fi ( x1 ,x2 ,x3 ,t ), ( i 1,3 ), ( 1 ,2 ,3 ); f ( f 1 , f 2 , f 3 ), divf 0; rot f 0 : f 0,( 0 ), i i t 3 3 3 1 1 2 2 U j ; j ix j ( j )xi U xi ; i fi ( x1 ,x2 ,x3 ,s )ds,( i 1,3 ). 2 j 1 2 j 1 j 1 0 Then functions i ,i 1,3 is represented in a kind (4.36) i iV ( x1 ,x2 ,x3 ,t ) i ( x1 ,x2 ,x3 ,t ),( i 1,3 ), V t 0 0 ( x1 ,x2 ,x3 ),( x1 ,x2 ,x3 ) R 3 , (4.37) div 0 : 3 t 3 3 V 0; ixi ( fixi ( x1 ,x2 ,x3 ,s ))ds 0. i xi i 1 0 i 1 i 1 Further, supposing (4.36), (4.37) and 3 3 3 3 1 ji x j V j ix j i Vx j j U xi ,( iV jVx j 0 ), 2 (4.38) j 1 j 1 j 1 j 1 it iVt it , i [i V i ] i V ,( i 1,3; i 0 ), for incompressible currents with a friction the equations of Navier-Stokes (1.1) become simpler as take place (4.36)-(4.38). Therefore the problem (1.1)-(1.3), is led to a kind 3 3 1 1 (4.39) iVt V j ix j i Vx j j U xi i Pxi i V ,( i 1,3 ). 2 j 1 j 1 From system (4.39), considering conditions (4.36)-(4.38) and having entered APS we have the equation: 3 1 1 (4.39) : ( P U ) B[Vx1 ,Vx2 ,Vx3 ], 2 i 1 xi 3 3 3 3 ( B[V ,V ,V ] )( x ,x ,x ,t ) V ( ) ( xi j ix j jxiVx j )i , x1 x2 x3 1 2 3 i 1 j 1 i 1 j 1 1 1 1 1 {( B[Vs1 ,Vs2 ,Vs3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2 ds3 , (4.40) P U 2 4 3 r R i 1 P 1U 1 {( B[Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 xi xi 2 4 3 ( 2 2 2 )3 1 2 3 R ;t )}d d d , ( s x ;h x ;i 1,3 ), 1 2 3 i i i i i i 3 so as takes place 3 3 3 3 1 1 1 1 ( i V ) 0; ( U xi ) U ; ( Pxi ) P, [ iVxi ] 0; 2 t i 1 i 1 xi i 1 xi 2 i 1 xi 3 3 3 3 3 3 3 3 (V ) ( V ) ( V ) ( j ix j i x j jxi j x i xi x j i Vx j jxi ), i xi j 1 j i 1 1 i 1 j 1 j 1 i 1 j 1 3 3 3 3 3 3 3 3 ( V ) V ( ) V ( ) V ( xi j ix j j ixi x j xi j ix j ), x i x j j j 1 i 1 j 1 j 1 i 1 i 1 j 1 i 1 i 3 3 3 3 j ( iVxi )x j 0; V j ( ixi )x j 0; div 0; lim B[Vx1 ,Vx2 ,Vx3 ] 0. 0 x j i 1 j 1 j 1 i 1 Then on a basis (4.40) system (4.39) it is equivalent, will be transformed to a kind: 3 3 3 3 i 1 1 1 ( Vt d V [ ( j ix j )] Vx j j 0 d [ 4 3 i 1 ( 2 2 2 )3 i 1 j 1 j 1 1 2 3 R {( B[Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 3 ;t )} )d 1d 2 d 3 ] V , 3 3 1 d 0; ( x ,x ,x ,t ) d i i ( x1 ,x2 ,x3 ,t ), 0 1 2 3 i 1 i 1 or from (4.41), follows: Vx Wi ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), i t 1 r2 V M 1( x1 ,x2 ,x3 ,t ) exp ( )( Q[V ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) 4 ( t s ) 8 3 0 R3 t 1 1 ds ds ds ds M exp( ( 12 22 32 ))( Q[V ,W1 ,W2 ,W3 ] )( x1 1 3 1 2 3 3 ( ( t s )) 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds 0 [V ,W1 ,W2 ,W3 ], t ( xi si ) 1 r2 ( exp( ))( Q[V ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) Wi M 1xi 4 ( t s ) 8 3 0 R3 2 ( t s ) t i 1 1 ds ds ds ds M 1xi exp( ( 12 22 32 )) 3 1 2 3 ( t s ) 3 0 R3 ( ( t s ) ) ( Q[V ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s ) d d d ds [V ,W ,W ,W ], i 1 2 3 1 2 3 where 1 exp( ( 12 22 32 ))0 ( x1 2 1 t ,x2 2 2 t ,x3 2 3 t )d 1d 2d 3 M 1 3 R3 t 1 exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 R3 (4.41) (4.42) ( t s );s )d 1d 2 d 3ds, ( s j x j 2 j t ; s j x j 2 j ( t s ); j 1,3 ), 3 3 1 ( Q [ V ,V ,V ,V ] )( s ,s ,s ,s ) { d [ V ( s ,s ,s ,s ) ( j is j ( s1 ,s2 ,s3 ,s ))] s1 s2 s3 1 2 3 1 2 3 i 1 j 1 3 3 1 1 1 {( B[Vh ,Vh ,Vh ] )( s1 Vs j ( s1 ,s2 ,s3 ,s ) j ( s1 ,s2 ,s3 ,s ) d [ 4 ( i 1 2 3 2 2 2 3 3 ( ) j 1 i 1 1 2 3 R 1 ,s2 2 ,s3 3 ;s )} )d 1d 2 d 3 ]}, ( hi si i ; i 1,3 ). Here (4.42) – system of the nonlinear integrated equations of Volterra-Abel of the second sort concerning V ,Wi on a variable t [0,T0 ] . Therefore, if takes place: M ; ; ; t s : sup D k M ( x ,x ,x ,t ) , ( k 0,3 ), i 1 1 2 3 1 1 T 3 3 1 sup ( x ,x ,x , , , ;t, ) sup{ d ( j il j ( x1 2 1 ,x2 2 2 ,x3 1 2 3 1 2 3 T T T T i 1 j 1 3 2 3 ;t ) ) j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 1 1 1 ( { ( j il j ( x1 2 1 1 ,x2 2 2 d [ i 2 2 2 3 4 3 i 1 ( ) i 1 j 1 1 2 3 R 3 3 2 ,x3 2 3 3 ;t ) ) ( jli ( x1 2 1 1 ,x2 2 2 2 ,x3 i 1 j 1 2 3 3 ;t ) )i } )d 1d 2 d 3 ]} 2 , t k 1 sup exp( ( 12 22 32 )) ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 2 T0 , 0 3 T 0 R3 t k 1 sup exp( ( 12 22 32 )) ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) i d 1d 2 d 3d i 3 T 0 R3 (4.43) 2T ,( i 1,3 ), max( T ;3 2T ) 0 2 2 0 0 2 and 3 h i ,( i 0,3 ) : ki , [ ki ( 2T0 3 2T0 2 ) ( 1 ) h 1], (4.44) 4 i 0 i : Sr1 ( 0 ) Sr1 ( 0 ), ( i 0,3 ), [S r1 ( 0 ) {V ,W j : V ; W j r1 ,( x1 ,x2 ,x3 ,t ) T }; j 1,3], i [0,0,0,0 ] C r1( 1 h ) : i [V ,W1 ,W2 ,W3 ] C i [V ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C [0,0,0,0 ] k 4r r ( 1 h ) r , i i 1 1 1 C Then on the basis of (4.31) - (4.34) there is a unique solution of system (4.42), and this solution is found on the basis of a Picard’s method. It means that sequence {i ,m }0 is converged to i , that is, h 1 i ,n 1 i ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n (4.45) From the received results follows that the Navier-Stokes problem (1.1)-(1.3) in a case (4.36) and (4.45), with smooth enough initial data has the conditional-smooth unique solution in Gn13 ( D0 ) , so as V G1( D0 ). Therefore results are formulated by the following theorem. Theorem 5. Under conditions (1.2), (1.3), (4.36), (4.37) and (4.45) the Navier-Stokes problem has a conditional-smooth unique solution in Gn13 ( D0 ) . Remark 6. Updating of a Method (4.2), when divf 0 . The algorithm (4.37) also is applicable in a case, if 3 f , ( i 1,3 ), div f 0 : div 0; i x it 0, i it i 1 i (4.46) divf 0; rot f 0 : fi 0,( i 0;i 1,3 ), 3 ( x ,x ,x ) ( x ,x ,x ), ( i0 xi 0 ), i0 1 2 3 i 0 1 2 3 i t 0 i 1 that on a basis (4.39)-(4.41): 3 1 1 (4.39) : ( P U ) {B[Vx1 ,Vx2 ,Vx3 ] div}, 2 i 1 xi 3 3 3 3 ( B[V ,V ,V ] )( x ,x ,x ,t ) ( )V ( jxi Vx j )i , x1 x2 x3 1 2 3 j ix j xi i 1 j 1 i 1 j 1 3 1 1 1 1 { ( B [ V ,V ,V ] )( s ,s ,s ,t ) P U isi ( s1 ,s2 ,s3 ,t )}ds1ds2ds3 , s1 s2 s3 1 2 3 2 4 3 r i 1 R i 1 P 1U 1 {( B[Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 3 ;t ) x x i 2 i 4 2 2 2 3 3 (1 2 3 ) R 3 ih ( x1 1 ,x2 2 ,x3 3 ;t )}d 1d 2 d 3 , ( si xi i ;hi xi i ;i 1,3 ), i i 1 3 3 3 Vt d 1V [ ( j ix )] Vx j 0 ( Q[V ,Vx ,Vx ,Vx ] )( x1 ,x2 ,x3 ,t ) V , j j 1 2 3 i 1 j 1 j 1 3 i 1 1 Q [ V ,V ,V ,V ] d [ ( ( B[Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 x1 x2 x3 2 2 2 3 4 R 3 i 1 ( 1 2 3 ) 2 ,x3 3 ;t ))d 1d 2 d 3 ], 3 3 3 3 i d 0; div 0; d 1[ 1 { ( ih ( x1 1 , i 0 i 4 3 i 1 ( 2 2 2 )3 i 1 i i 1 i 1 1 2 3 R 3 3 1 x2 2 ,x3 3 ;t ))}d 1d 2 d 3 ]; U 2j ; j ix U x ,( i 1,3 ). j 2 i j 1 j 1 we will receive (4.42): V 0 [V ,W1 ,W2 ,W3 ], (4.42)* Wi i [V ,W1 ,W2 ,W3 ],( i 1,3 ), Vxi Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). Hence, as takes place (4.47), that the solution of system (4.42)* we can find on the basis of Picard’s method. Then on a basis (4.31)-(4.34) we have (4.45). Further, we will receive similar results in the conditions of the theorem 5, i.e. under conditions (1.2), (1.3), (4.45), (4.46) problem Navier-Stokes has the unique solution in Gn13 ( D0 ) in a kind (4.37). 5. Fluid with Viscosity, When 1 0 In the Navier-Stokes problems with great values of viscosity components the speed can be so small that in many researches do not consider the forces of inertia. Let's consider a fluid with viscosity with Reynolds small number where all inertial participants contain in equations Navier-Stokes. As has been said, theoretically, it is not investigated [12]. Hence, here we will consider, methods of integration of the equations Navier-Stokes. However, it is necessary to notice that technical applications of the theory of a liquid with very great values of viscosity, short of the theory of greasing [12], it is rather limited. But theoretically researches in this direction from the scientific point of view are very important. Therefore in this paragraph methods are developed for the decision of these problems in space Cn3,13 (T ) . Alternatively, we can consider, e.g., a class of suitable solutions constructed in Gn1 3 ( D0 ) on the basis of lemma K. Friedrichs [15]. The basic methods (4.2) and (4.12) of paragraph 4 are for this purpose modified on the basis of regulating functions Ki ,( i 1,2,3 ) , and the problem (1.1) - (1.3) does not suppose restrictions (А1), (А2) in what the urgency of researches of this paragraph consists. 5.1. Fluid with Average Viscosity by Conditions (A3), divf 0 Therefore, in this case, if the initial data ( i0 ; fi ) is set in a kind: i0 ( x1 ,x2 ,x3 ) i0 ( x1 ,x2 ,x3 ),( x1 ,x2 ,x3 ) R 3 ,( i 1,3 ), i t 0 3 i0 xi 0, ( 0 i const ;1 0 ), i 1 3 1 f K , [ K f ; i 1,3 ] , div f 0 : div 0; K it 0, i i it it i x i i 1 divf 0; rot f 0 : fi 0,( K i 0;i 1,3 ), ( 1 ,2 ,3 ); f ( f1 , f 2 , f 3 ), t 3 3 3 U K 2j ; K j Ki x 1 ( K 2j )x 1 U x ,( i 1,3 ); K i 1 fi ( x1 ,x2 ,x3 ,s )ds, j i 2 j 1 2 i 0 j 1 j 1 we enter for definition a component of speeds: (5.1) i iV( x1 ,x2 ,x3 ,t ) Ki ( x1 ,x2 ,x3 ,t ),( i 1,3 ), 3 V t 0 0 ( x1 ,x2 ,x3 ), ( x1 ,x2 ,x3 ) R , at that 3 3 div 0 : iVxi 0; Kixi 0, i 1 i 1 3 3 3 3 1 ji x j V j Ki x j i Vx j K j U xi ,( iV jVx j 0 ), 2 j 1 j 1 j 1 j 1 it iVt Kit ; i {i V Ki } i V ,( i 1,3 ). Then on the basis (5.2), (5.3) we will receive 3 3 1 1 iVt V j Ki x j i Vx j K j U xi i Pxi i V ,( i 1,3 ). 2 j 1 j 1 Hence on a basis (5.4) and having entered APS, we have 1 1 ( P 2 U ) B* [Vx1 ,Vx2 ,Vx3 ], 3 3 3 3 ( B* [Vx1 ,Vx2 ,Vx3 ] )( x1 ,x2 ,x3 ,t ) ( j K ix j )Vxi ( K jxi Vx j )i , i 1 j 1 i 1 j 1 1 1 1 1 {( B* [Vs1 ,Vs2 ,Vs3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2 ds3 , P U 2 4 r 3 R i 1 P 1U 1 {( B* [Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 xi xi 2 4 3 ( 2 2 2 )3 1 2 3 R ;t )}d d d , ( s x ;h x ;i 1,3 ), 1 2 3 i i i i i i 3 so as 3 3 (5.4) : [ iVxi ( x1 ,x2 ,x3 ,t )] 0, xi t i 1 i 1 3 3 1 1 1 U xi U ; ( Pxi ) P, i 1 xi 2 i 1 xi 3 3 3 3 3 ( i V ) 0; K j ( iVxi )x j 0; V j ( K i xi )x j 0; div 0, x j i 1 i 1 xi j 1 j 1 i 1 3 3 3 3 3 3 3 3 (V K ) ( V K ) K ( V ) ( j i x j i x j j xi j x i xi x j i Vx j K j xi ), x i j i 1 j 1 i 1 j 1 j 1 i 1 j 1 i 1 3 3 3 3 3 3 3 3 ( i Vx j K j ) Vxi ( j Ki x j ) V j ( Ki xi )x j Vxi ( j Ki x j ). i 1 xi j 1 i 1 j 1 j 1 i 1 i 1 j 1 Then system (5.4) it is equivalent will be transformed to a kind (5.2) (5.3) (5.4) (5.5) 3 3 3 3 i 1 1 1 V d V [ ( K ) ] V K d [ ( t j ixj xj j 0 2 2 2 3 4 i 1 j 1 j 1 R 3 i 1 ( 1 2 3 ) {( B* [Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 3 ;t )} )d 1d 2 d 3 ] V , 3 3 1 hi xi i ,( i 1,3 ), 0 d i ; d i 0. i 1 i 1 For consideration of unknown function V we have t 1 r2 exp ( )( Q[V ,Vs1 ,Vs2 ,Vs3 ] )( s1 ,s2 ,s3 ,s ) V M 1( x1 ,x2 ,x3 ,t ) 3 4 ( t s ) 8 0 R3 1 ds ds ds ds, ( ( t s ) )3 1 2 3 t 1 r2 1 r2 M 1 exp ( ) ( s ,s ,s )ds ds ds exp ( ) 0 1 2 3 1 2 3 4 t 4 ( t s ) 8 ( t )3 R3 8 3 0 R3 1 1 ds ds ds ds exp( ( 12 22 32 ))0 ( x1 2 1 0 ( s1 ,s2 ,s3 ,s ) 3 1 2 3 3 ( ( t s ) ) R3 t t ,x 2 t ,x 2 t )d d d 1 exp( ( 12 22 32 )) 0 ( x1 2 2 3 3 1 2 3 3 0 R3 2 ( t s ),x 2 ( t s ),x 2 ( t s ) ;s )d d d ds, 2 2 3 3 1 2 3 1 s x 2 t ; s x 2 ( t s ); j 1,3, j j j j j j 3 3 ( Q[V ,Vs ,Vs ,Vs ] )( s1 ,s2 ,s3 ,s ) {d 1[V ( s1 ,s2 ,s3 ,s )( j K is ( s1 ,s2 ,s3 ,s ))] 1 2 3 j i 1 j 1 3 3 1 1 1 V ( s ,s ,s ,s ) K ( s ,s ,s ,s ) d [ ( i j 1 2 3 sj 1 2 3 2 2 2 3 4 (1 2 3 ) j 1 R 3 i 1 {( B* [Vh1 ,Vh2 ,Vh3 ] )( s1 1 ,s2 2 ,s3 3 ;s )} )d 1d 2 d 3 ]},( h j s j j , j 1,3 ). Hence, differentiating (5.7) on xi and having entered designation: Vxi Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), from (5.7) we will receive t 1 exp( ( 12 22 32 ))( Q[V ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ), V M 1 3 0 R3 x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2d 3ds 0 [V ,W1 ,W2 ,W3 ], t i 1 W M exp( ( 12 22 32 )) ( Q[V ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ), 1xi i 3 ( t s ) 3 0R x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds i [V ,W1 ,W2 ,W3 ], ( i 1,3 ). (5.6) (5.7) (5.8) (5.9) If takes place: k ( x1 ,x2 ,x3 ,t ) T ;M 1 ;Y ;K i ,( t s ) : sup D M 1 ( x1 ,x2 ,x3 ,t ) 1 , ( k 0,3 ), T 3 3 1 sup Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) sup{d ( j K is ( x1 2 1 ,x2 2 2 j T T T T i 1 j 1 3 ,x 2 ;t ) ) K j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) 3 3 j 1 3 3 3 1 d 1[ 1 ( i { ( j K il ( x1 2 1 1 ,x2 2 2 j 2 2 2 3 (5.10) 4 3 i 1 ( ) i 1 j 1 1 2 3 R 3 3 2 ,x3 2 3 3 ;t ) ) ( K jli ( x1 2 1 1 ,x2 2 2 2 ,x3 i 1 j 1 2 3 3 ;t ) )i } )d 1d 2 d 3 ]} 1 2 , t 1 1 sup exp( ( 12 22 32 ))Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 2T0 , k0 3 T 0 R3 t 1 sup exp( ( 12 22 32 ))Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) i d 1d 2 d 3d ki 3 T 0 R3 1 2T0 2 ,( i 1,3 ), max( 2T0 ; 3 2T0 2 ); 1 0 and 3 h 1 1 1 1 ,( i 0,3 ) : k , [ ki ( 2T0 3 2T0 2 ) (1 ) h 1], i i 4 i 0 i : Sr1 ( 0 ) S r1 ( 0 ),( i 0,3 ); S r1 ( 0 ) {V ,W j : V ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ), (5.11) i [0,0,0,0 ] C r1( 1 h ) : i [V ,W1 ,W2 ,W3 ] C i [V ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C [0,0,0,0] k 4r r ( 1 h ) r . i i 1 1 1 C Then the solution (5.9) exists and is unique, and we can find this solution on the basis of a Picard’s method ( x1 ,x2 ,x3 ,t ) T : Vn 1 0 [Vn ,W1,n ,W2,n ,W3,n ], Wi ,n 1 i [Vn ,W1,n ,W2,n ,W3,n ],( n 0,1,...; V0 0; Wi ,0 0; i 1,3 ). (5.12) Therefore using known mathematical conclusions concerning of Picard’s method we can tell the following. On the basis of conclusions of a method of Picard’s the sequence of functions {Vn }0 ,{Wi ,n}0 ,( i 1,3 ) is converging and fundamental in S r1 ( 0 ) and at that elements of the constructed sequences belong S r1 ( 0 ) (see. §4.3). Then we have 3 3 h 1 V W ; V V Wi ,n 1 Wi C : n 1 h n 1 0 0, i C n 1 n 1 0 n C C i 1 i 1 h 1 h 1 V Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n n 1 n V H ; Wi ,n 1 Hence on the basis of (5.2) we will receive i ,n 1 i [0 ( x1 ,x2 ,x3 ) Vn 1( x1 ,x2 ,x3 ,t )] K i ( x1 ,x2 ,x3 ,t ),( n 0,1,2,...;i 1,3 ), h 1 n 1 0,( i 1,3 ), i ,n 1 i C i Vn 1 V C i h n i h 0 n (5.13) (5.14) i.e. it means that sequence {i ,n }0 converging to a limit i ,( i 1,3 ) : h 1 i ,n 1 i ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n (5.15) Theorem 6. Under conditions (1.2), (1.3), (A3), (5.1), (5.15) the Navier-Stokes problem has a continuous unique solution in Gn1 3 ( D0 ) and can be defined by the (5.2). Remarks: I. Uniqueness is obvious, as a method by contradiction. Results (5.13) with a condition ((A3), (5.1), (5.11), (5.12)) are received where smoothness of functions is required only on xi ,( i 1,2,3 ) as the derivative of 1st order is in time has t 0 . Then taking into account (5.13) the system (5.9) has the continuous unique solution: V C 3,0 (T ). Therefore: V G1( D0 ). Hence, on the basics (5.2), (5.14), (5.15): Gn1 3 ( D0 ). II. The algorithm (5.2) also is applicable in a case, if 3 f K , div f 0 : div 0; i x Kit 0, i it i 1 i 3 3 1 2 div f 0; rot f 0 : f 0,( K 0;i 1,3 ); U K ; j K j Ki x j 2 U xi , i i j 1 j 1 i t 0 i0 ( x1 ,x2 ,x3 ) i0 ( x1 ,x2 ,x3 ),( i 1,3 ). That on a basis (5.16), (5.2) we will receive (5.4). Hence, we have 3 1 1 div 0; (5.4) : ( P U ) {B* [Vx ,Vx ,Vx ] div}, 1 2 3 2 i 1 xi 3 3 3 3 ( B [V ,V ,V ] )( x ,x ,x ,t ) ( K )V ( K V ) , j ix j xi jxi x j i 1 2 3 * x1 x2 x3 i 1 j 1 i 1 j 1 1 3 1 1 1 P U { ( B [ V ,V ,V ] )( s ,s ,s ,t ) isi ( s1 ,s2 ,s3 ,t )}ds1ds2ds3 , * s1 s2 s3 1 2 3 2 4 3 r i 1 R i 1 P 1U 1 {( B* [Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 3 ;t ) xi xi 2 4 3 ( 2 2 2 )3 1 2 3 R 3 ih ( x1 1 ,x2 2 ,x3 3 ;t )}d 1d 2 d 3 , ( si xi i ;hi xi i ) i 1 i and (5.16) (5.17) 3 3 3 3 i 1 1 1 V d V [ ( K ) ] V K d [ ( t j ixj xj j 0 2 2 2 3 4 i 1 j 1 j 1 R 3 i 1 ( 1 2 3 ) {( B* [Vh1 ,Vh2 ,Vh3 ] )( x1 1 ,x2 2 ,x3 3 ;t )} )d 1d 2d 3 ] V , 3 3 (5.18) 1 1 1 { ( F ( x ,x ,x 0 ( x1 ,x2 ,x3 ,t ) d [ i i 0 1 1 2 2 3 4 3 i 1 ( 12 22 32 )3 i 1 R 3 3 3 ;t ))}d 1d 2 d 3 ], ( d i 0; F0 ( x1 ,x2 ,x3 ,t ) ixi ). i 1 i 1 Here (5.17) differs from (5.5), as div 0. Then considering (5.18), (5.7), (5.8) we will receive system (5.9): V 0 [V ,W1 ,W2 ,W3 ], (5.19) Wi i [V ,W1 ,W2 ,W3 ],( i 1,3 ). Therefore, as takes place (5.10), (5.11), (5.13) in a consequence (5.14), (5.15), i.e. h 1 i ,n 1 i i Vn 1 V i h n i h n 1 0 0,( i 1,3 ), n C C (5.20) h 1 , ( x ,x ,x ,t ) T ,( i 1,3 ). i ,n 1 i 1 2 3 n Further, we will receive similar results in the conditions of the theorem 6. 5.2. Updating of a Method (5.2) in a Case 0 0; divf 0; rot f 0 The decision method from where follows of equations integration of Navier-Stokes in Cn3,13 (T ) in a case i t 0 i0 ( x1 ,x2 ,x3 ) i 0 ( x1 ,x2 ,x3 ),( 0 i const ;i 1,3 ), 3 3 3 i 0 xi 0, ( i 1,3 ), 0 0; 0 C ( R ), i 1 divf 0; rot f 0, ( f 0; f ( f , f , f )); sup D k f N , ( x ,x ,x ,t ) T , i 1 2 3 i 0 1 2 3 T t K ( x ,x ,x ,t ) 1 f ( x ,x ,x ,s )ds, ( K 0; i 1,3 ), i 1 2 3 i i 1 2 3 0 is a major factor of this point. Therefore we enter for definition a component of speeds: i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )] K i ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Z t 0 0,( x1 ,x2 ,x3 ) R , at that 3 3 3 0; K ixi 0, div 0 : i Z xi 0; i 0 xi i 1 i 1 i 1 3 3 1 1 fi ( x1 ,x2 ,x3 ,t ); U K 2j ; K j K i x j U xi , ( i 1,3 ), K it 2 j 1 j 1 3 3 3 1 ji x j j ( 0 Z )K i x j i ( 0 x j Z x j )K j U xi , 2 j 1 j 1 j 1 (5.21) (5.22) 3 3 ( Z ) ( Z ) ( Z ) j ( 0 x j Z x j ) 0, i 0xj xj i 0 j 0 j 1 j 1 Z K ; [ ( Z ) K ] Z , ( i 1,3 ). i t it i i 0 i i it (5.23) Hence on the basis of (5.21)-(5.23) we will receive 3 3 1 2 i Zt j ( 0 Z )Ki x K j i ( 0 x Z x ) U x ( 1 j 1 j j 1 j j i 1 ) fi 1 Pxi i Z ,( i 1,3 ). (5.24) Then for incompressible currents with a friction the equations of Navier-Stokes (1.1) become simpler as take place (5.21), (5.23). Therefore a problem (1.1)-(1.3) with account [(5.5)-(5.9) here instead of i we will consider K i ] we will receive t 1 r2 1 exp( )( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) ds1ds2 ds3ds Z M 1 3 4 ( t s ) ( ( t s ))3 8 0 R3 t M 1 1 exp( ( 12 22 32 ))( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 3 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds ( 0 [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t 1 r2 ( xi si ) (5.25) W M ( exp ( )) ( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) i 1xi 3 4 ( t s ) 2 ( t s ) 3 8 0 R t i ds1ds2 ds3 ds M 1x 1 exp( ( 12 22 32 )) ( Q[Z ,W1 ,W2 ,W3 ] )( x1 i 3 ( ( t s ) ) ( t s ) 3 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3 ds ( i [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ),( i 1,3 ), where 1 1 ( P 2 U ) {F0 B* [Z x1 ,Z x2 ,Z x3 ]}, 1 1 1 1 P 2 U 4 r {F0 ( s1 ,s2 ,s3 ,t ) ( B* [Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2 ds3 , R3 1 1 1 i {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B* [Z h1 ,Z h2 ,Z h3 ] )( x1 Pxi U xi 2 4 R3 ( 12 22 32 )3 1 ,x2 2 ,x3 3 ;t )}d 1d 2 d 3 ,( si xi i ;hi xi i ; i 1,3 ), Z xi Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), Z t 0 ( Q[Z ,Z x1 ,Z x2 ,Z x3 ] )( x1 ,x2 ,x3 ,t ) Z ,( i 1,3 ), (5.26) t 1 M ( x ,x ,x ,t ) exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ), 1 1 2 3 3 0 R3 x3 2 3 ( t s );s )d 1d 2 d 3 ds, ( si xi 2 i ( t s );t s ;i 1,3 ), 3 3 1 ( Q[Z ,Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,s ) {d 0 [Z( s1 ,s2 ,s3 ,s )( j K i s j ( s1 ,s2 ,s3 ,s ))] i 1 j 1 3 3 1 i Z s j ( s1 ,s2 ,s3 ,s )K j ( s1 ,s2 ,s3 ,s ) d 01[ ( 4 R3 i 1 ( 12 22 32 )3 j 1 {( B* [Z h1 ,Z h2 ,Z h3 ] )( s1 1 ,s2 2 ,s3 3 ;s )} )d 1d 2 d 3 ]}, hI si i ,( i 1,3 ), 3 3 3 3 ( B [Z ,Z ,Z ] )( x ,x ,x ,t ) ( K )Z ( K Z ) , 1 2 3 j ix j xi jxi x j i * x1 x2 x3 i 1 j 1 i 1 j 1 3 3 3 3 3 F ( x ,x ,x ,t ) ( K ) ( K ); div f 0; d i 0, i j xi 0 x j 0 xi j i x j 0 0 1 2 3 i 1 j 1 i 1 j 1 i 1 3 3 3 3 3 1 1 i 1 K d [ ( 1 ) f ( K ) { ( F0 ( x1 j 0xj 0 i 0 j ixj 0 2 2 2 3 4 3 j 1 i 1 i 1 j 1 i 1 ( ) R 1 2 3 ,x ,x ;t ))}d d d ] . 2 3 3 1 2 3 1 2 If the known functions entering into system (5.25) satisfy conditions ( x1 ,x2 ,x3 ,t ) T ;M 1 ;Y ;K i , ( t s ) : k sup D M 1 ( x1 ,x2 ,x3 ,t ) 1 , ( k 0,3 ), T 3 3 1 sup Y( x ,x ,x , , , ;t, ) sup{ d ( 1 2 3 1 2 3 0 j K i s j ( x1 2 1 ,x2 2 2 ,x3 T T T T i 1 j 1 3 2 3 ;t ) ) K j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 i 1 d01[ ( { ( j K il j ( x1 2 1 1 ,x2 2 2 4 R3 i 1 ( 12 22 32 )3 i 1 j 1 3 3 ,x 2 ;t ) ) ( K jl ( x1 2 1 1 ,x2 2 2 2 ,x3 2 3 3 3 i i 1 j 1 2 ;t ) ) } )d d d ]} ( )1 , 3 3 i 1 2 3 2 t 1 k0 sup exp( ( 12 22 32 ))Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 3 T 0 R3 t 1 T ; k 1 sup exp( ( 2 2 2 ))Y( x ,x ,x , , , ;t, ) i 2 0 i 1 2 3 1 2 3 1 2 3 3 T 0 R3 1 d 1d 2 d 3 d 2T0 2 ,( i 1,3 ), * max( 2T0 ;3 2T0 2 ) and (5.27) h ,( i 0,3 ) : k ,( h 1 ), i i 4 3 k 1 ( T 3 2T 1 ) 1 ( 1 1 ) h 1,( 1 ), i 2 0 0 2 * 0 i 0 S r1 ( 0 ) {Z ,W j : Z ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ), i [0,0,0,0 ] C r1 ( 1 h ) : i [Z ,W1 ,W2 ,W3 ] C i [Z ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C i [0,0,0,0 ] C ki 4r1 r1 ( 1 h ) hr1 r1 ( 1 h ) r1 , i : S r1 ( 0 ) S r1 ( 0 ), ( i 0,3 ). (5.28) That the solution of this system we can find on the basis of Picard’s method ( x1 ,x2 ,x3 ,t ) T : Z n 1 0 [Z n ,W1,n ,W2,n ,W3,n ], Wi ,n 1 i [Z n ,W1,n ,W2,n ,W3,n ],( Z0 0; Wi ,0 0; i 1,3; n 0,1,...). (5.29) Then considering results (5.13)-(5.15) we will receive, i.e. that sequence {i ,n }0 converging to a limit i : h 1 i ,n 1 i ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n (5.30) Theorem 6*. If the conditions (1.2), (1.3), (5.21)-(5.23) and (5.30) are fulfilled, then the Navier-Stokes problem is solvable at Cn3,13 (T ) . Remark 7. If takes place 0 * 2 1 , that 1 0 . In a case * 2 1 , then m0 0 const , ( m0 max[1;4( 1 4 *1 1)2 ] ). (1)* In a case 1 , that 3 k i 0 i ( T0 3 2 ) 2 T0 2 * h 1, (see. (5.28)). (2)* Let's note, as the equations of system ( 1 , (5.25)) are the equations of Volterra-Abel [13] on a variable t [0,T0 ] , discussing in language of the Volterra’s equations, we can find the solution in C 3,1 ( T ) , when the condition (5.28) is not satisfied. For simplicity, let's assume 1; C0 ( T0 3 2 ) 2 : 3 ki h C0 T0 1. i 1 (3)* And in this case all results of the theorem 6* are carried out, i.e. that is we will prove that under condition of (3)* system (5.25) correct in C 3,1( T ). 1 1 Really, as in case of (3)*, the interval [0,T0 ] we will divide on two parts: [0, T0 ], [ T0 ,T0 ]. 2 2 1 1 1 Thus a step: h T0 . Then in area T1 R 3 [0, T0 ] and in T2 R 3 [ T0 ,T0 ], we will receive 2 2 2 systems Z1 0 ,1[Z1 ,W1,( 1 ) ,W2,( 1 ) ,W3,( 1 ) ],( x1 ,x2 ,x3 ,t ) T1 , Wi ,( 1 ) i ,1[Z1 ,W1,( 1 ) ,W2,( 1 ) ,W3,( 1 ) ],( x1 ,x2 ,x3 ,t ) T1 ,( i 1,3 ). (4)* Thus, operators 0 ,1 ; i ,1 are compressing 3 d0 ki h* ( i 1 T0 T 3 2 ) 2 0 1 2 2 (5)* and display ranges of definition in it self, i.e. conditions of contraction mapping principle [13] are satisfied. Then is under condition of (5)* system (4)* correct in C 3,1(T1 ). 1 Further, we will consider T2 R 3 [ T0 ,T0 ], accordingly 0,2 ; i ,2 , at that 2 1 1 3 Z1( x1 ,x2 ,x3 , 2 T0 ) Z 2 ( x1 ,x2 ,x3 , 2 T0 ), ( x1 ,x2 ,x3 ) R , W ( x ,x ,x , 1 T ) W ( x ,x ,x , 1 T ), ( x ,x ,x ) R 3 ,( i 1,3 ), i ,( 2 ) 1 2 3 0 1 2 3 i ,( 1 ) 1 2 3 2 0 2 (6)* and hence, operators 0 ,2 ; i ,2 satisfy to conditions of a principle of compression. Then system of the integral equations corresponding to the operator 0 ,2 ; i ,2 it is correct in C 3,1(T2 ). Therefore the system (5.25) correct in C 3,1(T R3 [0,T0 ] ) . The offered method the decision of system (5.25) in the theory of the Volterra’s equations is called [13] «a method pasting» or «a method of subareas». 5.3. Fluid with Viscosity, When Re 2300; fi 0, ( i 1,3 ) Area of the fluid with average viscosity, when fi 0,( i 1,3 ) it is studied in 5.1. Here we will consider a the general methods of the equations integration of Navier-Stokes with conditions, i.e. with average and with Reynolds small number ([12]: Re 2300 ), where all inertial participants contain in equations Navier-Stokes, when fi 0,( i 1,3 ). The overall objective of this paragraph: to change a method (5.2) so that the received analytical decision the Navier-Stokes problem with viscosity, belonged in Cn3,1 3 (T ). In particular in many scientific literatures, investigates a problem [12]: 3 it jix i j j 1 1 Pxi ,( i 1,3 ), (5.31) div 0, ( x, t ) T R 3 [0, T0 ], (5.32) i (5.33) t 0 3 i 0 ( x1 ,x2 ,x3 ),( x1 ,x2 ,x3 ) R ,( i 1,3 ), where 0 i the known constants and in the equations (1.1) are assumed 3 3 0 n0 0 , ( i0 i 0 ; 0 C ( R ); n0 , 0 (5.34) c ). onst Hence, here we will consider a methods of the equations integration of Navier-Stokes (5.31) with a conditions (5.32) - (5.34). With that end in view we will assume that there are functions 0 fi ,( i 1,3 ) , which satisfy conditions C 3,0 ( T ) f i : sup D k f i i ( ) ( ) 1, ( 0 1; i 1,3 ), T divf 0; rot f 0 : fi 0, ( f ( f1 , f 2 , f 3 )), t I i ( x1 ,x2 ,x3 ,t ) f i ( x1 ,x2 ,x3 ,s )ds , ( 0 0; I i 0; I i t f i ; i 1,3 ). 0 Hence is offered the method: [ Z( x ,x ,x ,t )] I ( x ,x ,x ,t ),( i 1,3 ), i 0 1 2 3 i 1 2 3 i 3 Z t 0 0,( x1 ,x2 ,x3 ) R , 3 3 3 3 div 0 : i0 x 0; i Z x 0, ( I i x 0;U I 2j ; i i i i 1 i 1 i 1 j 1 (5.35) (5.36) 3 I I j 1 j i xj 1 U xi ). 2 Thus takes place conditions 3 3 3 1 3 I 0; ( Z )I I j i ( 0 x j Z x j ) U xi , i t j i x j 0 i x x j j 2 j 1 j 1 j 1 i1 i 3 3 j ( 0 Z )i ( 0 x j Z x j ) i ( 0 Z ) j ( 0 x j Z x j ) 0, j 1 j 1 Z I ; [ ( Z ) I ] Z ,( i 1,3 ). i t i t i i 0 i i it (5.37) Then for incompressible currents with a friction the equations of Navier-Stokes (5.31) become simpler as take place (5.32)-(5.34). Therefore the problem (5.31) - (5.33), is led to a kind 3 3 1 2 i Zt j ( 0 Z )Ii x I j i ( 0 x Z x ) U x fi j 1 j j 1 j j i 1 Pxi i Z ,( i 1,3 ). (5.38) From system (5.38), considering conditions (5.31)-(5.33) and having entered APS, we will receive the equation: 1 1 3 x (5.38) : ( P 2 U ) {F0 B [Z x1 ,Z x2 ,Z x3 ]}, i 1 i 3 3 3 3 ( B [ Z ,Z ,Z ] )( x ,x ,x ,t ) ( I )Z ( I j xi Z x j )i , x1 x2 x3 1 2 3 j i x j xi i 1 j 1 i 1 j 1 3 3 3 3 F0 ( x1 ,x2 ,x3 ,t ) i ( I j xi 0 x j ) 0 xi ( j I i x j ); divf 0, i 1 j 1 i 1 j 1 1 1 1 1 P U {F0 ( s1 ,s2 ,s3 ,t ) ( B [Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2 ds3 , 2 4 R3 r 1 P 1U 1 {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B [Z h1 ,Z h2 ,Z h3 ] )( x1 1 ,x2 2 ,x3 xi 2 xi 4 3 R i d 1d 2 d 3 ,si xi i ;hi xi i ,( i 1,3 ), 3 ;t )} 2 2 2 3 ( ) 1 2 3 (5.39) so as takes place 3 3 3 3 3 3 3 { ( Z )I I ( Z ) } ( I ) ( j I i x j ) j 0 i x j i 0 x x i j x 0 x 0 x x j j j i j i i 1 j 1 j 1 i 1 j 1 i 1 j 1 i 3 3 3 3 ( j I i x j )Z xi ( I j xi Z x j )i , i 1 j 1 i1 j 1 3 3 3 ( I ) 0; ( ) 0, ( Z ) 0, ( i 1,3 ), j 0 x j xi j x j xi j 1 j x j xi j 1 j 1 3 3 3 3 1 1 1 1 [ Z ] 0; ( Z ) 0; ( U ) U ; ( Pxi ) P. i xi t i 1 i xi 2 i 1 xi i 1 xi 2 i 1 xi Then on a basis (5.39) of system (5.38) it is equivalent, will be transformed to a kind: Z t 0 ( x1 ,x2 ,x3 ,t ) ( Q[Z ,Z x ,Z x ,Z x ] )( x1 ,x2 ,x3 ,t ) Z ,( i 1,3 ), 1 2 3 3 Z t 0 0,( x1 ,x2 ,x3 ) R , 3 3 3 3 3 d 0; I d 1[ ( f ) ( I ) i 0 j 0 x j 0 i 0 j i x j 0 i 1 j 1 i 1 i 1 j 1 3 i 1 ( F0 ( x1 1 ,x2 2 ,x3 3 ;t ))}d 1d 2 d 3 ], 4 { ( 12 22 32 )3 R3 i 1 3 3 ( Q[Z ,Z ,Z ,Z ] )( x ,x ,x ,t ) {d 1Z( x ,x ,x ,t )[ ( I ( x ,x ,x ,t ))] x1 x2 x3 1 2 3 0 1 2 3 j i x j 1 2 3 i 1 j 1 3 1 i 3 1 Z ( x ,x ,x ,t )I ( x ,x ,x ,t ) d [ ( j 1 2 3 0 xj 1 2 3 2 4 R3 i 1 ( 1 22 32 )3 j 1 {( B [Z ,Z ,Z ] )( x ,x ,x ;t )} )d d d ]}, 1 1 2 2 3 3 1 2 3 h1 h2 h3 h x , ( i 1,3 ). i i 1 (5.40) The problem (5.40) is led to system of the integrated equations in a kind t r2 1 )( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) ( exp M Z 1 3 ) s t ( 4 3 8 0 R t 1 1 exp( ( 12 22 32 ))( Q[Z ,W1 ,W2 ,W3 ] )( x1 ds1ds2 ds3 ds M 1 3 3 ( ( t s ) ) 0 R3 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2d 3ds ( 0 [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t 1 ( xi si ) r2 1 )) ( exp ( Wi M 1 xi 3 4 ( t s ) 2 ( t s ) ( ( t s ))3 8 0 R3 t 1 exp( ( 12 22 32 )) M ds ds ds )ds ,s ,s ,s s )( ] ,W ,W ,W Z [ Q ( 1 xi 3 2 1 1 2 3 3 2 1 3 0 R3 i ( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s ) ( t s );s )d 1d 2 d 3 ds ( i [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), Z xi Wi ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), t M 1 ( x1 ,x2 ,x3 ,t ) 1 exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 3 (5.41) 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3 ds,( si xi 2 i ( t s );i 1,3 ). To solve a problem (5.40) concerning this problem we will receive system (5.41) of four integral equations. Let concerning known functions M 1 , ,I i takes place: M 1 , ,I i : sup D k M 1 ( x1 ,x2 ,x3 ,t ) 1 ( ), ( k 0,3; t s ), T 3 3 sup ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) sup{d 01 ( j I i s j ( x1 2 1 ,x2 2 2 ,x3 2 3 T T T T i 1 j 1 3 ;t ) ) I j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 i 1 1 d [ ( { ( 0 j Ii l j ( x1 2 1 1 ,x2 2 2 4 R3 i 1 ( 12 22 32 )3 i 1 j 1 3 3 2 ,x3 2 3 3 ;t ) ) ( I j l ( x1 2 1 1 ,x2 2 2 2 ,x3 i i 1 j 1 2 3 3 ;t ) )i } )d 1d 2 d 3 ]} 2 ( ), t k 1 sup exp( ( 2 2 2 )) ( x ,x ,x , , , ;t, )d d d d 1 2 3 1 2 3 1 2 3 1 2 3 0 3 T 0 R3 t i 1 2 2 2 ( )T ; k sup exp ( ( )) ( x ,x ,x , , , ;t, ) 2 0 i 1 2 3 1 2 3 1 2 3 3 T 0 R3 d d d d 2T ( ) 1 ,( i 1,3 ), max( T ; 3 2T ) 1 2 3 0 2 2 0 0 2 (5.42) and if operators: i ,( i 0,3 ) compressing with a compression factor k i , h i ,( i 0,3 ) : ki 4 ,( h 1 ), 3 k ( )( T 3 1 2T ) ( )( 1 1 ) h 1, i 2 0 0 2 n0 i 0 1 1 ) ]1 , ( 0 1; 0 n0 0 ), ( ) [( n0 Sr1 ( 0 ) {Z ,W j : Z ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ) (5.43) and: i [0,0,0,0] C r1( 1 h ) : i [Z ,W1 ,W2 ,W3 ] C i [Z ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C i [0,0,0,0 ] C ki 4r1 r1( 1 h ) hr1 r1( 1 h ) r1 , : S ( 0 ) S ( 0 ), ( i 0,3 ). r1 i r1 (5.44) Hence on the basis of contraction mapping principle system (5.41) is solvable and for which makes Picard’s method ( x1 ,x2 ,x3 ,t ) T : Z n1 0 [Z n ,W1,n ,W2,n ,W3,n ], Wi ,n1 i [Z n ,W1,n ,W2,n ,W3,n ],( n 0,1,...;Z0 0; Wi ,0 0; i 1,3 ). (5.45) The resulting sequence of functions {Z n }0 ,{Wi ,n }0 is converging and fundamental in S r1 ( 0 ) . Thus we have 3 3 h1 Z W ; Z Z Wi ,n1 Wi C : n1 h n1 0 0, i C n 1 n 1 n 0 C C i 1 i 1 h1 h1 Z Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n n1 n Z H ; Wi ,n1 (5.46) Then on the basis of (5.36) and i,n 1 i [0 ( x1 ,x2 ,x3 ) Zn 1( x1 ,x2 ,x3 ,t )] I i ( x1 ,x2 ,x3 ,t ),( n 0,1,2,...;i 1,3 ), we will receive i ,n 1 i C i Z n 1 Z C h 1 i h n i h n 1 0 0,( i 1,3 ). n And it means that sequence {i ,n }0 converging to a limit i ,( i 1,3 ) : (5.47) h 1 i ,n 1 i C 3,1(T ),( i 1,3 ). n (5.48) It is obvious that small changes i0 i 0 or f i ,( i 1,3 ) influence the solution (5.36) a little, i.e. continuous depends on this data. Therefore, a question on a statement correctness problems (5.31)-(5.33) are considered at once with results of the theorem 6* in Cn3,13 (T ) . Let's notice that if 3 k i 0 i 1 , at that (see. (5.44)): ( )( 2T0 3 2T0 2 ) 2 ( ) h 1, ( ( ) ( 2 )1 ; 0 1 ), that, obviously, the Navier-Stokes problem (5.31) - (5.33) is solvable at Cn3,13 (T ) . 6. Updating of a Method (4.12) on the Basis of Integrals of Poisson’s Type In the previous paragraphs we researched various variants of a method (4.12) for the Navier-Stokes problem in spaces Cn3,13 (T ) . There are the various partial experimental methods connecting speed and pressure. For example, method Betz, A., Jones B.M. and others [12] establish these connections on the basis of the equation of Bernoulli. We offer the method using regulatory functions for getting connections between pressure and speed for ( 1 ,2 ,3 ) . This distribution law allow us to express speed in the integral form. In this connection in this paragraph the method of integrated transformation on the basis of Poisson’s integrals is considered, when divf 0; 0 1 or divf 0; 1 0 . From the received results it follows that system Navier-Stokes (1.1) in the conditions of (1.2) and (1.3) can have the analytical smooth unique solution in Cn3,13 (T ) . 6.1. Fluid with Very Small Viscosity 0 1, when divf 0 I. For incompressible currents with a friction, when i 0 ( x1 ,x2 ,x3 ),( i 1,3 ), i t 0 i0 ( x1 ,x2 ,x3 ) 3 3 3 i 0 xi 0; 0 0; 0 C ( R ), i 1 divf 0; sup D k f N const , ( T R 3 [0,T ] ), ( i 1,3 ), i 0 0 T functions i ,i 1,2,3 is represented in a kind (6.1) i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )] i ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Z t 0 0, ( x1 ,x2 ,x3 ) R , where 0 i the known constants. From the entered functions i , is required: lim ( x ,x ,x ,t ) 0,( x ,x ,x ,t ) T ; r ( x s )2 ( x s )2 ( x s )2 , 1 2 3 1 1 2 2 3 3 0 i 1 2 3 t r2 1 i ( x1 ,x2 ,x3 ,t ) 1 exp ( ) f i ( s1 ,s2 ,s3 ,s )ds1ds2 ds3ds 4 ( t s ) ( ( t s ))3 8 3 0 R3 t 1 exp( ( 12 22 32 )) fi ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 R3 ( t s );s )d d d ds, ( s x 2 ( t s ); i 1,3 ), 1 2 3 i i i t 3 1 j 2 2 2 it fi ( x1 ,x2 ,x3 ,t ) exp ( ( )) [ f il ( x1 2 1 ( t s ),x2 1 2 3 ts j j 1 3 0 R3 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2 d 3ds,( i 1,3 ), t ( x j s j ) 1 r2 1 exp ( ) fi ( s1 ,s2 ,s3 ,s )ds1ds2 ds3ds 3 ix j 4 ( t s ) 8 3 0 R3 2 ( t s ) ( ( t s )) t 1 exp( ( 12 22 32 )) j f i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 3 ts 0 R3 2 3 ( t s );s )d 1d 2 d 3ds,( i 1,3; j 1,3 ), t 2 1 exp( ( 12 22 32 )) j fil j ( x1 2 1 ( t s ),x2 2 2 ( t s ), 3 ix j ts 0 R3 x3 2 3 ( t s );s )d 1d 2 d 3ds, t j 1 exp( ( 12 22 32 )) f 2 ( x1 2 1 ( t s ),x2 2 2 ( t s ), 3 3 ix j t s il j 0 R3 x3 2 3 ( t s );s )d 1d 2 d 3ds,( i 1,3; j 1,3 ), t 1 exp( ( 12 22 32 )) f i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 i 3 0 R3 ( t s );s ) d d d ds N , 1 2 3 0 N ( ) f T ; f f const , ( i 1,3 ), 0 0 i 0 0 here ( 0,1 ) in a role of small parameter. At that 3 3 3 div 0 : Z 0; 0; ixi 0, i xi i 0 xi i 1 i 1 i 1 t 3 j 2 2 2 1 exp ( ( )) [ fil ( x1 2 1 ( t s ),x2 i 1 2 3 ts j j 1 3 0 R3 (6.2) 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2 d 3ds,( l j x j 2 j ( t s );i 1,3; j 1,3 ), 3 3 3 3 ( Z ) ( Z ) j i x j , ixj j i 0xj xj j i x j j 0 j 1 j 1 j 1 j 1 3 3 ( Z ) ( Z ) ( Z ) j ( 0 x j Z x j ) 0, j 0 i 0xj xj i 0 j 1 j 1 Z ; [ Z ], ( 0; i 1,3 ), i t it i i i 0 it t 3 j 2 2 2 Z f 1 exp ( ( )) [ fil ( x1 2 1 it i i t i 1 2 3 3 ts j j 1 0 R3 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2d 3ds {i Z t 3 j 1 2 2 2 exp ( ( )) [ f il ( x1 2 1 ( t s ),x2 2 2 1 2 3 3 ts j j 1 0 R3 ( t s ),x 2 ( t s );s )]d d d ds} Z f Z , ( i 1,3 ). 3 3 1 2 3 i t i i (6.3) Then for incompressible currents with a friction the equations of Navier-Stokes (1.1) become simpler as take place (6.1)-(6.3). Therefore the system (1.1), is led to a kind 3 3 3 i Zt j ( 0 Z )i x j i ( 0 x Z x ) j i x ( 1 ) fi j 1 j j 1 j j j 1 j 1 Pxi (6.4) i Z ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). From system (6.4), considering conditions (6.1)-(6.3) and having entered APS we have the equation: 1 3 x (6.4) : P {F0 B[Z x1 ,Z x2 ,Z x3 ]}, i 1 i 3 3 3 3 ( B [ Z ,Z ,Z ] )( x ,x ,x ,t ) ( )Z ( jxi Z x j )i , x1 x2 x3 1 2 3 j ix j xi i 1 j 1 i 1 j 1 3 3 3 3 3 3 divf 0; F0 ( x1 ,x2 ,x3 ,t ) ( j i x j ) i ( j xi 0 x j ) 0 xi ( j i x j ), i 1 xi j 1 i 1 j 1 i 1 j 1 1 1 1 P 3 r {F0 ( s1 ,s2 ,s3 ,t ) ( B[Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2ds3 , 4 R 1 1 i Pxi {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B[Z h1 ,Z h2 ,Z h3 ] )( x1 1 , 2 4 R3 ( 1 22 32 )3 x2 2 ,x3 3 ;t )}d 1d 2 d 3 , ( si xi i ;hi xi i ;i 1,3 ), so as takes place 3 3 3 3 3 3 { ( Z ) ( Z ) } ( j xi 0 x j ) j 0 ixj j i 0xj xj j ixj i x j 1 j 1 i 1 j 1 i 1 i j 1 3 3 3 3 3 3 ( ) ( )Z ( Z ) , j ix j xi jxi x j i 0 xi j i x j i 1 j 1 i 1 j 1 i 1 j 1 (6.5) 3 3 3 ( ) 0; ( ) 0, ( j Z x j )xi 0, ( i 1,3 ), j 0 x j xi j x j xi j 1 j 1 j 1 3 3 3 1 1 [ Z ] 0; ( P ) P; ( i Z ) 0. i xi xi t i 1 i 1 xi i 1 xi Then on a basis (6.5) system (6.4) it is equivalent, will be transformed to a kind: Z t 0 ( Q[Z ,Z x1 ,Z x2 ,Z x3 ] )( x1 ,x2 ,x3 ,t ) Z ,( i 1,3 ), 3 Z t 0 0,( x1 ,x2 ,x3 ) R , 3 3 3 3 3 d 0; ( x ,x ,x ,t ) d 1[ ( 1 ) f ( ) 0 1 2 3 j 0xj 0 i 0 j ixj 0 i 1 i j 1 i 1 i 1 j 1 3 3 3 1 i ( ) { ( F0 ( x1 1 ,x2 2 ,x3 3 ;t ))}d 1d 2 d 3 ], j ixj 2 2 2 3 4 3 i 1 j 1 i 1 ( ) R 1 2 3 3 3 ( Q[Z ,Z x ,Z x ,Z x ] )( x1 ,x2 ,x3 ,t ) {d 01Z( x1 ,x2 ,x3 ,t )[( j i x ( x1 ,x2 ,x3 ,t ))] 1 2 3 j i 1 j 1 3 3 i Z ( x ,x ,x ,t ) ( x ,x ,x ,t ) d 1[ 1 ( {( B[Z l1 ,Z l2 ,Z l3 ] )( x1 xj 1 2 3 j 1 2 3 0 j 1 4 R3 i 1 ( 12 22 32 )3 ,x ,x ;t )} )d d d ]},( l x , i 1,3 ). 1 2 3 i i i 1 2 2 3 3 (6.6) The problem (6.6) is led to system of the integrated equations quite regular rather ( 0,1 ) , in a kind Z x Wi ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), i t 1 r2 ds ds ds ds Z M exp ( )( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) 1 2 3 3 1 4 ( t s ) ( ( t s )) 8 3 0 R3 t 1 M 1 exp( ( 12 22 32 ))( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 3 0 R3 2 2 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3 ds ( 0 [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t r2 ( xi si ) 1 W M 1 ( exp( )) i 1xi 3 4 ( t s ) 2 ( t s ) ( ( t s ) )3 8 0 R3 t 1 ( Q [ Z ,W ,W ,W ] )( s ,s ,s ,s )ds ds ds ds M exp( ( 12 22 32 )) 1 2 3 1 2 3 1 2 3 1xi 3 0 R3 i ( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s ) ( t s );s )d 1d 2 d 3 ds ( i [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t 1 M 1( x1 ,x2 ,x3 ,t ) exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 3 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3ds,( si xi 2 i ( t s );i 1,3 ). (6.7) Let's notice that if known functions f i satisfy conditions of submultiplications [15] and takes place: ( x1 ,x2 ,x3 ,t ) T ;M 1 ; ; i : k sup D M 1 ( x1 ,x2 ,x3 ,t ) 1 , ( k 0,3; t s ), T t 1 exp( ( 12 22 32 )) f i ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 i 3 0 R3 2 ( t s );s )d d d ds, ( i 1,3 ), 3 1 2 3 3 3 1 sup ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) sup{d0 ( j i s j ( x1 2 1 ,x2 2 2 , T T i 1 j 1 T T 3 x3 2 3 ;t ) ) j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 i 1 1 d [ ( { ( j il ( x1 2 1 1 ,x2 2 2 0 4 3 2 2 2 3 j i 1 i 1 j 1 ( ) R 1 2 3 3 3 2 ,x3 2 3 3 ;t ) ) ( jl ( x1 2 1 1 ,x2 2 2 2 ,x3 i i 1 j 1 2 3 3 ;t ) )i } )d 1d 2 d 3 ]} 2 , t k0 1 sup exp( ( 12 22 32 )) ( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 2 T0 , 3 T 0 R3 t i 1 2 2 2 k sup exp ( ( )) ( x ,x ,x , , , ;t, ) d 1d 2 d 3 d i 1 2 3 1 2 3 1 2 3 3 T 3 0 R 2T ,( i 1,3 ); max( T ; 3 2T ), 0 2 2 0 0 2 (6.8) at that if operators: i ,( i 0,3 ) compressing with a compression factor k i , h i ,( i 0,3 ) : ki 4 ,( h 1 ), 3 ki ( 2T0 3 2T0 2 ) ( 1 ) h 1, i 0 S r1 ( 0 ) {Z ,W j : Z ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ) and i [0,0,0,0 ] r1( 1 h ) : C i [Z ,W1 ,W2 ,W3 ] C i [Z ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C i [0,0,0,0 ] C ki 4r1 r1( 1 h ) hr1 r1( 1 h ) r1 ; i : S r1 ( 0 ) S r1 ( 0 ), ( i 0,3 ). (6.9) (6.10) Then on the basis of contraction mapping principle system (6.7) is solvable and solution of this system we can find on the basis of Picard’s method Z n 1 0 [Z n ,W1,n ,W2 ,n ,W3,n ], Wi ,n 1 i [Z n ,W1,n ,W2 ,n ,W3,n ], ( n 0,1,...; Z 0 0; Wi ,0 0; i 1,3 ), 3 3 En 1 Z n 1 Z n Wi ,n 1 Wi ,n ; En Z n Z n 1 Wi ,n Wi ,n 1 C C C i 1 i 1 Z n 1 Z n C k0 En ; Wi ,n 1 Wi ,n C ki En ,( i 1,3 ), h 1 n 0, n En 1 hEn ... h E1 k 1 k 1 Z n k Z n C k0 En j ; Wi ,n k Wi ,n C ki En j ,( i 1,3 ), j 0 j 0 k 1 k 1 k 1 h 1 En k h En j ... h h n j 1 E1 E1h n h j E1h n 1 0, n 1 h j 0 j 0 j 0 3 3 U Z W ; U Z Z Wi ,n 1 Wi C , i C n 1 n 1 C C 0 i 1 i 1 h 1 n 1 0, U n 1 h U 0 n h 1 h 1 Z H ; Wi ,n 1 Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). Z n 1 n n C : (6.11) Hence on the basis of (6.2) and i,n 1 i [0 ( x1 ,x2 ,x3 ) Zn 1( x1 ,x2 ,x3 ,t )] i ( x1 ,x2 ,x3 ,t ),( n 0,1,2,...;i 1,3 ), (6.12) we will receive i ,n 1 i C i Z n 1 Z C h 1 i hU n i h n 1U 0 0,( i 1,3 ). n (6.13) And it means that sequence {i ,n }0 converging to a limit C 3,1(T ) i ,( i 1,3 ) : h 1 i ,n 1 i ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), n (6.14) i.e. under conditions (1.2), (6.1), (6.2), (6.8) - (6.10) and (6.14) problem Navier-Stokes has the smooth unique solution in Cn3,13 (T ) in a kind (6.2). 6.2. Fluid with Viscosity 1 0 , when divf 0 In this paragraph we will consider a liquid with viscosity and with a Reynolds small number of where all inertial participants contain in the equations Navier-Stokes. Thus we will consider, methods of integrated transformations on the basis of integrals of Poisson’s type, when 1 0 . The decision method, from where follows of equations integration of Navier-Stokes in a case 3 3 i t 0 i0 ( x1 ,x2 ,x3 ) i 0 ( x1 ,x2 ,x3 ),( 0 C ( R ); 0 i const ; i 1,3 ), k divf 0; f ( f1 , f 2 , f 3 ); sup D f i N 0 const ,( x1 ,x2 ,x3 ,t ) T ; 0 0; T 3 i 1 i 0 xi 0, ( i 1,3 ), t 1 1 r2 1 K ( x ,x ,x ,t ) exp ( ) f i ( s1 ,s2 ,s3 ,s )ds1ds2 ds3ds i 1 2 3 4 ( t s ) ( ( t s ))3 8 3 0 R3 t 1 1 exp( ( 12 22 32 )) fi ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 3 0 R3 3 ( t s );s )d d d ds, [r ( xi si )2 ; si xi 2 i ( t s ); i 1,3], 1 2 3 i 1 is a major factor of this point. Therefore we enter for definition a component of speeds: i i [0 ( x1 ,x2 ,x3 ) Z( x1 ,x2 ,x3 ,t )] K i ( x1 ,x2 ,x3 ,t ),( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), 3 Z t 0 0,( x1 ,x2 ,x3 ) R , div 0 : 3 3 3 Z 0; i xi i 0 xi 0; K ixi 0, i 1 i 1 i 1 (6.15) (6.16) at that t 3 1 1 1 j 2 2 2 fi ( x1 ,x2 ,x3 ,t ) exp ( ( )) [ f il j ( x1 2 1 ( t s ),x2 K it 1 2 3 3 0 R3 j 1 t s 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2 d 3ds,( i 1,3 ), t ( x j s j ) 1 1 r2 K ix 1 exp ( ) f i ( s1 ,s2 ,s3 , s )ds1ds2 ds3 ds j 4 ( t s ) 8 3 0 R3 2 ( t s ) ( ( t s ))3 t j 1 1 exp( ( 12 22 32 )) fi ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 3 (t s ) 0 R3 2 ( t s );s )d d d ds,( i 1,3; j 1,3 ), 3 1 2 3 t j 1 1 exp( ( 12 22 32 )) f il ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 K ix2j 3 0 R3 ( t s ) j 2 3 ( t s );s )d 1d 2 d 3ds, t 3 j 2 2 2 K 1 1 exp ( ( )) [ fil j ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 i 1 2 3 3 0 R3 j 1 t s 2 3 ( t s );s )]d 1d 2 d 3ds, ( l j x j 2 j ( t s ); i, j 1,3 ), 3 3 3 3 ( Z )K ( Z )K K j Ki x j , j i x j 0 i x i 0 x x j j j j j j 1 j 1 j 1 j 1 3 3 j ( 0 Z )i ( 0 x j Z x j ) i ( 0 Z ) j ( 0 x j Z x j ) 0, j 1 j 1 Z K ; [ Z K ] , ( i 1,3 ), i t it i i i it t 3 1 1 1 j 2 2 2 fi ( x1 ,x2 ,x3 ,t ) exp ( ( )) [ f il ( x1 it i i Z t 1 2 3 3 0 R3 ts j j 1 2 1 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s );s )]d 1d 2d 3ds 3 1 1 t j 2 2 2 exp ( ( )) [ f il ( x1 2 1 ( t s ),x2 2 2 ( t s ),x3 1 2 3 ts j j 1 3 0 R3 2 3 ( t s );s )]d 1d 2 d 3ds i Z i Z t 1 f i i Z , ( i 1,3 ). Hence on the basis of (6.15)-(6.17) we will receive 3 3 3 1 1 i Zt j ( 0 Z )Ki x j K j i ( 0 x j Z x j ) K j Ki x j ( 1 ) f i Pxi j 1 j 1 j 1 (6.17) (6.18) i Z ,( i 1,3 ). Then for incompressible currents with a friction the equations of Navier-Stokes (1.1) become simpler as take place (6.15), (6.17). Therefore a system (1.1) with account [(6.5) - (6.7), here instead of i we will consider Ki] we will receive Z x Wi ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ), i t 1 r2 1 Z M exp ( ) ( Q[Z ,W1 ,W2 ,W3 ] )( s1 ,s2 ,s3 ,s ) 1 3 4 ( t s ) ( ( t s ))3 8 0 R3 t 1 ds1ds2 ds3 ds M 1 exp( ( 12 22 32 ))( Q[Z ,W1 ,W2 ,W3 ] )( x1 2 1 3 0 R3 ( t s ),x2 2 2 ( t s ),x3 2 3 ( t s ); s )d 1d 2 d 3 ds ( 0 [Z ,W1 ,W2 ,W3 ] )( x1 ,x2 ,x3 ,t ), t r2 ( xi si ) 1 W M 1 ( exp( )) ( Q[Z ,W1 ,W2 ,W3 ] ) i 1xi 3 4 ( t s ) 2 ( t s ) ( ( t s ) )3 8 0 R3 t 1 i ( s ,s ,s ,s )ds ds ds ds M exp( ( 12 22 32 )) 1 2 3 1xi 1 2 3 3 ( t s ) 3 0 R ( Q[Z ,W ,W ,W ] )( x 2 ( t s ),x 2 ( t s ),x 2 ( t s );s ) 1 2 3 1 1 2 2 3 3 d d d ds ( [Z ,W ,W ,W ] )( x ,x ,x ,t ), ( s x 2 ( t s ); i 1,3 ), 1 2 3 i 1 2 3 1 2 3 i i i where 1 t exp( ( 12 22 32 )) 0 ( x1 2 1 ( t s ),x2 2 2 M 1 ( x1 ,x2 ,x3 ,t ) 3 0 R3 ( t s ),x3 2 3 ( t s );s )d 1d 2 d 3 ds,( si xi 2 i ( t s ); i 1,3 ), 1 P {F0 B* [Z x ,Z x ,Z x ]}, 1 2 3 (6.19) 3 3 3 3 ( B [ Z ,Z ,Z ] )( x ,x ,x ,t ) ( K )Z ( K jxi Z x j )i , 1 2 3 j ix j xi * x1 x2 x3 i 1 j 1 i 1 j 1 3 3 3 3 3 3 ( K j K i x j ) i ( K j xi0 x j ) 0 xi ( j K i x j ), divf 0; F0 ( x1 ,x2 ,x3 ,t ) i 1 xi j 1 i 1 j 1 i 1 j 1 1 1 1 {F0 ( s1 ,s2 ,s3 ,t ) ( B* [Z s1 ,Z s2 ,Z s3 ] )( s1 ,s2 ,s3 ,t )}ds1ds2 ds3 , P 4 r 3 R 1 i 1 Pxi {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B* [Z h1 ,Z h2 ,Z h3 ] )( x1 2 4 R3 ( 1 22 32 )3 1 ,x2 2 ,x3 3 ;t )}d 1d 2 d 3 , ( si xi i ;hi xi i ;i 1,3 ), 3 3 3 3 3 Z d 1 [ ( Z )K K K ] K ( Z ) d 1{ [( 1 1 ) f t 0 j 0 ixj j ixj j 0xj xj 0 i i 1 j 1 j 1 j 1 i 1 i 1 {F0 ( x1 1 ,x2 2 ,x3 3 ;t ) ( B* [Z h1 ,Z h2 ,Z h3 ] )( x1 2 2 2 3 4 R3 ( 1 2 3 ) 1 ,x2 2 ,x3 3 ;t )}d 1d 2 d 3 ]} Z , 3 3 1 ( Q [ Z ,Z ,Z ,Z ] )( s ,s ,s ,s ) { d [ Z( s , s ,s ,s ) ( j K i s j ( s1 ,s2 ,s3 ,s ))] s1 s2 s3 1 2 3 0 1 2 3 i 1 j 1 3 3 i 1 Z s j ( s1 ,s2 ,s3 ,s )K j ( s1 ,s2 ,s3 ,s ) d 01[ ( {( B* [Z h1 ,Z h2 ,Z h3 ] )( s1 4 R3 i1 ( 12 22 32 )3 j 1 1 ,s2 2 ,s3 3 ; s )} )d 1d 2 d 3 ]}, ( hi si i ; i 1,3 ), 3 3 3 3 3 3 ( x ,x ,x ,t ) K d 1[ ( 1 1 ) f ( K ) ( K K ) 0 1 2 3 j 0xj 0 i 0 j ixj j ixj j 1 i 1 i 1 j 1 i 1 j 1 3 3 i 1 { ( F ( x ,x ,x ;t )) } d d d ] ; d i 0. 0 1 1 2 2 3 3 1 2 3 0 4 3 2 2 2 3 i 1 i 1 ( ) R 1 2 3 If takes place: ( x ,x ,x ,t ) T ;M ,Y ,K : sup D k M ( x ,x ,x ,t ) , ( k 0,3; t s ), 1 2 3 1 i 1 1 2 3 1 T 3 3 sup Y( x ,x ,x , , , ;t, ) sup{d 1 ( K ( x 2 ,x 2 ,x 2 1 2 3 1 2 3 0 j isj 1 1 2 2 3 3 T T T T i 1 j 1 3 ;t ) ) K j ( x1 2 1 ,x2 2 2 ,x3 2 3 ;t ) j 1 3 3 3 i 1 d01[ ( { ( j K il j ( x1 2 1 1 ,x2 2 2 2 ,x3 4 R3 i 1 ( 12 22 32 )3 i 1 j 1 3 3 2 ;t ) ) ( K jli ( x1 2 1 1 ,x2 2 2 2 ,x3 2 3 3 3 i 1 j 1 1 3 ;t ) )i } )d 1d 2 d 3 ]} 2 , t 1 1 sup exp( ( 12 22 32 ))Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, )d 1d 2 d 3d 2T0 , k0 3 T 0 R3 t 1 k sup exp( ( 12 22 32 ))Y( x1 ,x2 ,x3 , 1 , 2 , 3 ;t, ) i d 1d 2 d 3d i 3 T 0 R3 1 2T0 2 ,( i 1,3 ), * max( 2T0 ;3 2T0 2 ) (6.20) and h i ,( i 0,3 ) : ki 4 ,( h 1 ), 3 k 1 ( T 3 2T 1 ) 1 ( 1 1 ) h 1,( 1 ), i 2 0 0 2 * 0 i 0 S r1 ( 0 ) {Z ,W j : Z ; W j r1 ,( x1 ,x2 ,x3 ,t ) T },( j 1,3 ), i [0,0,0,0 ] C r1 ( 1 h ) : i [Z ,W1 ,W2 ,W3 ] C i [Z ,W1 ,W2 ,W3 ] i [0,0,0,0 ] C i [0,0,0 ,0 ] C ki 4r1 r1 ( 1 h ) hr1 r1 ( 1 h ) r1 , i : S r1 ( 0 ) S r1 ( 0 ), ( i 0,3 ). (6.21) The solution of this system we can find on the basis of Picard’s method (6.11). Then considering results (6.12)-(6.14), hence we will receive, that sequence {i ,n }0 converging to a limit C 3,1(T ) i ,( i 1,3 ) : h 1 i ,n 1 i H i ,( x1 ,x2 ,x3 ,t ) T ,( i 1,3 ). n (6.22) So as consequence of paragraphs 6.1 and 6.2 we will receive following statements: Theorem 7. The Navier-Stoke’s nonstationary problem (1.1)-(1.3) is solvable at Cn3,13 (T ) , when are fulfilled the conditions: 1) (6.1), (6.2), (6.8) - (6.10), (6.14) and 0 1,divf 0, or 2) (6.15)-(6.17), (6.20), (6.21), (6.22) and 1 0 ,divf 0. 7. Fluid with Viscosity, When v R n ,( x R n ;t [0,T0 ] ) Here we will show that at certain mathematical transformations of the equation Navier-Stokes led to a linear kind, when v R n . So, once again clearly confirmed [12], that is, that the Navier-Stokes equations with viscosity have solutions in analytical form, which is based on the Picard's method. Offered methods of integrated transformations in paragraph 4 have been based on integrals of Poisson's type. These methods are entered so that to transform nonlinear the Navier-Stokes problems in inhomogeneous linear problems of heat conductivity [13]. Our purpose – to apply these methods for the equation Navier-Stokes in a case v ( 1 ,...,n ), n it jix fi j j 1 1 Pxi i ,( i 1,n ), div 0, ( x, t ) T* R n [0, T0 ], i t 0 i0 ( x1 ,x2 ,...,xn ),( x1 ,x2 ,...,xn ) R n ,( i 1,n ). (1.1)n (1.2)n (1.3)n From the received results follows that system Navier-Stokes (1.1)n in the conditions of (1.2)n, (1.3)n can have the analytical smooth unique solution in Cn3,1(T* ), [or the conditional-smooth unique solution in Gn1 ( D0 R n ( 0,T0 )); Wn2 ( D0 ) ]. 7.1. Fluid with Very Small Viscosity 0 1 , When divf 0 Let components of a vector of speed for t 0 be defined by (1.3)n as i t 0 i0 ( x1 ,x2 ,...,xn ) i 0 ( x1 ,x2 ,...,xn ),( i 1,n ), (7.1) where 0 i ,( i 1,...,n ) are known constants. Then speed components are defined by the rules i iV ( x1 ,x2 ,...,xn ,t ),( i 1,n ), n V t 0 0 ( x1 ,x2 ,...,xn ), ( x1 ,x2 ,...,xn ) R , divf 0; div 0 : n n n V 0; V j xj j ix j i jVx j 0. j 1 j 1 j 1 (7.2) Hence, the system (1.1)n will be transformed to a kind iVt fi 1 Pxi i V ,( i 1,n ), (7.3) here V is a new unknown function which, by (7.2), defines the solution of the Navier-Stokes problem. Here substitution (7.2) it is equivalent will transform system (1.1)n in the inhomogeneous linear equations of a kind (7.3). For this purpose, at first we will define pressure P . Really, considering APS from system (7.3) we will receive: 1 n x (7.3) : P n F0 , i 1 i n n 1 n 1 2( n 2 ) [ ( ) ] ; F ( ) f ixi ( x1 ,x2 ,...,xn ,t ), ( n 3 ), n 0 n 2 i 1 1 n ds ds ...ds P F0 ( s1 ,s2 ,...,sn ,t ) 1 n22 n , ( r ( xi si )2 ), r i 1 Rn 1 P i ( n 2 )F0 ( x1 1 ,x2 2 ,...,xn n ;t )d 1d 2 ...d n ,( s x ;i 1,n ). i i i xi n ( 12 2 2 ... n2 )n R Therefore Vt 0 ( x1 ,x2 ,...,xn ,t ) V , n 0 xi 0, ( x1 ,x2 ,...,xn ,t ) T* , i 1 ( )1( f 1 P ) ( )1( f 1 P ) ... ( )1( f 1 P ) , 1 x1 2 2 x2 n n xn 0 1 (7.4) (7.5) i.e. is the system (7.3) is transformed in the linear equations of heat conductivity with a condition of Cauchy in a kind (7.5), and in a class of functions with smooth enough initial data is correctly put [13, 14]. Accordingly there is an the conditional smooth and unique solution of a problem Navier-Stokes in G 1( D0 ). Really from system (7.13), follows: V 1 2 n ( t )n 1 ( ( t s )) n exp( Rn r2 1 )V0 ( s1 ,s2 ,...,sn )ds1ds2 ...dsn 4 t 2n n 0 ( s1 ,s2 ,...,sn ,s )ds1ds2 ...dsn ds 1 n 2 1 t ,x2 2 2 t ,...,xn 2 n t )d 1d 2 ...d n exp( ( 2 1 t exp( 0 Rn r2 ) 4 ( t s ) 22 ... n2 ))V0 ( x1 Rn t 1 n exp( ( 2 1 22 ... n2 )) (7.6) 0 Rn 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d nds H 0 ( x1 ,x2 ,...,xn ,t ), ( si xi 2 i t ;si xi 2 i ( t s );i 1,n ), H 0 – is known function. The limiting case in G 1 ( D0 ) , when the solution (7.5) is representing in the form (7.6), when ( x1 ,x2 ,...,xn ,t ) T* ;V0 ; 0 : sup D kV0 1 , ( k 0,3 ), sup D k 0 ( x1 ,x2 ,...,xn ,t ) 1 , T* Rn t sup 1 exp( ( 12 22 ... n2 ) ) D k 0 ( l1 ,l2 ,...,ln ;s ) d 1d 2 ...d n ds 1T0 2 , T* n 0 n R t n 1 1 2 2 2 sup exp ( ( ... ) ) j 0l j ( l1 ,l2 ,...,ln ;s ) d 1d 2 ...d nds 1 2 n n t s j 1 T* 0 Rn T0 n 1 2T0 3 ; sup 0 ( x1 ,x2 ,...,xn ,s )ds 1T0 2 , Rn 0 n 1 1 2 2 2 sup exp ( ( ... ))( j V0 l j ( l1 ,l2 ,...,ln ) )d 1d 2 ...d n 1 n 1 2 n n n R n i 1 R 1 n { ( i2 exp( ( 12 22 ... n2 ) )d 1d 2 ...d n ) 2 ( exp( ( 12 22 ... n2 ) ) i 1 Rn Rn 1 d d ...d ) 2 } n 1 , ( l x 2 ( t s ); l x 2 t ;i 1,n ), 1 2 n 1 i i i i i i 2 max i ; 0 ( n 2 T0 1 T0 ). 1 i 3 (7.7) Really, estimating (7.6) in G 1 ( D0 ) , we have V V V Vt V G1 ( D0 ) C 3 ,0 ( T* ) C( T* ) C 3 ,0 ( T* ) 0 k n Vt D kV L1 C( T* ) N* 0 , N* , 2 , (7.8) T0 L1 sup Vt ( x1 ,x2 ,...,xn ,t )dt ( n 2 T0 1 T0 ) 0 . Rn 0 Uniqueness is obvious, as a method by contradiction from (7.6) in G 1 ( D0 ) . Results (7.6) with a condition (7.2), (7.7) are received where smoothness of functions is required only on xi ,( i 1,...,n ) as the derivative of 1st order is in time has t 0 . Hence, on a basis transformation (7.2) we will receive solution of system (1.1)n, which satisfies a condition (1.2)n, i.e. i i H 0 ( x1 ,x2 ,...,xn ,t ),( i 1,n ), n n n 1 n 2 2 2 H 0; H exp ( ( ... )) iV0 hi ( x1 2 1 i 0 xi 1 2 n ixi i 0 xi n n i 1 i 1 i 1 i 1 R t n 2 2 2 t ,x 2 t ,...,x 2 t )d d ...d 1 exp ( ( ... )) i 2 2 n n 1 2 n 1 2 n i 1 n 0 Rn 0l ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d n ds 0. i (7.9) In the conclusion estimating (7.9) it is had n v ( , ,..., ); d i ; i iV ,( i 1,n ) : 1 2 n 0 i 1 n (7.10) v Gn13 ( D0 ) [ iV C 3 ,0 ( T* ) iVt L1 ] d0 [N* 0 ] d0 M 0 ,( M 0 N* 0 ), i 1 V 1 V C 3 ,0 ( T ) Vt L1 N* 0 . * G ( D0 ) Theorem 8. In the conditions of (1.2)n, (7.1), (7.7) and (7.10) the problem (1.1)n, (1.2)n, (7.1) has a unique solution in Gn1 ( D0 ) , which is defined by a rule (7.9). Remark 8. It is known that the turbulence solutions are conditional smooth in analytical sense [4]. Therefore, we consider a class of suitable solutions of the Navier-Stokes problem in weight space of Sobolev's type Wn2, ( D0 ) . Since i0 C 3 ( R n ),( i 1,...,n ) , that solution (7.6) of the Navier-Stokes problem (1.1)n - (1.3)n belongs in Wn,2 ( D0 ) : n 2 W i W(2i , ) , [W(2i , ) {( x1 ,x2 ,...,xn ,t ) D0 : D ki L2 ; it L2 }; i 1,n], n, i 1 1 T0 T0 2 k 2 [D i ( x1 ,x2 ,...,xn ,t )] dt sup ( t ) it ( x1 ,x2 ,...,xn ,t ) dt} 2 , i W(2 , ) { sup n i Rn 0 0 k 3 R 0 if takes place ( x1 ,x2 ,...,xn ,t ) T* : sup D k i 1 , ( i 1,n;k 0,3 ), T* T0 T0 T0 1 2 1 2 ( sup ( s ) ( x ,x ,...,x ,s ) ds ) q ; 0 ( t ) : ( t ) dt q ; ( t )dt q1 , n i 1 2 n 1 1 4 0 t R 0 0 0 max( , ); ( n q 1 q ). 4 0 * 0 1 * (7.11) For this purpose it is enough to show function accessories V in W2 ( D0 ) . i iV ,( i 1,n ) : W2 ( D0 ) {( x1 ,x2 ,...,xn ,t ) D0 : D kV L2 ; Vt L2 }, 1 T0 T0 2 k 2 2 V W2 { sup [D V ( x1 ,x2 ,...,xn ,t )] dt sup ( t ) Vt ( x1 ,x2 ,...,xn ,t ) dt} . 0 k 3 Rn 0 Rn 0 Let the solution of system (7.5) to represent in the form of (7.6) with conditions (7.7), (7.13). Then estimating (7.6) in W2 ( D0 ) , we have [8]: V 2 N* T0 0 M* , W ( D0 ) 1 T0 2 2 Vt L2 ( sup ( t ) Vt ( x1 ,x2 ,...,xn ,t ) dt ) * ( n q0 1 q1 ) 0 , Rn 0 * ( n q0 1 q1 ) 0 . (7.12) Then on a basis (7.2), (7.12) it is had n 3 d0 i ; D0 R ( 0,T0 ); ( 1V ,...,nV ) : i 1 n n i V W 2 ( D ) d0 ( N* T0 0 ) d0 M* , 2 2 i W Wn, ( D0 ) ( D0 ) 0 ( i , ) i 1 i 1 i.e. in the conditions of (1.2)n, (1.3)n, (7.1), (7.7) and (7.11) the problem (1.1)n - (1.3)n has a the limited solution in Wn,2 ( D0 ) . 7.2. Fluid with Viscosity 0 1 , When divf 0; 0 0 I. The overall objective of this point: to change a method (7.2) so that the received analytical solution of a problem Navier-Stokes with viscosity, belonged in Cn3,1(T* ). If takes place i t 0 i0 ( x1 ,...,xn ) i 0 ( x1 ,...,xn ),i 1,n, n 3 n j0 x j 0; 0 0; 0 C ( R ), j 1 divf 0; sup D k f N , ( i 1,n;k 0,4 ), i 0 T* (7.13) that we will use transformation of a kind i i [0 ( x1 ,x2 ,...,xn ) Z( x1 ,x2 ,...,xn ,t )], ( x1 ,x2 ,...,xn ,t ) T* ,( i 1,n ), n Z t 0 0, ( x1 ,x2 ,...,xn ) R , n n div 0 : j Z x j 0; j0 x j 0, j 1 j 1 n n n n n jix i0 j0 x i0 j Z x i Z j0 x i Z j Z x 0, j j j j j j 1 j 1 j 1 j 1 j 1 (7.14) where 0 i – the known constants. Hence, the system (1.1)n will be transformed to a kind i Zt fi 1 Pxi i Z ,( i 1,n ). (7.15) From system (7.15), considering conditions (7.13), (7.14), and having entered APS we have the equation (7.4). Therefore the system (7.15) will be transformed to a kind Z Z , ( x ,x ,...,x ,t ) T , 0 1 2 n * t Z t o 0, 1 1 1 1 1 1 ( 1 ) ( f1 Px1 ) ( 2 ) ( f 2 Px2 ) ... ( n ) ( f n Pxn ) 0 ( x1 ,...,xn ,t ). Then the solution of problem (7.16) is presented in a kind (7.16) Z 1 2n n exp( 0 Rn t 1 t n exp( ( 2 1 r2 1 ) 0 ( s1 ,s2 ,...,sn ,s )ds1ds2 ...dsn ds 4 ( t s ) ( ( t s ))n 22 ... n2 )) 0 ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn (7.17) 0 Rn 2 n ( t s );s )d 1d 2 ...d n ds H( x1 ,...,x, ,t ), ( si xi 2 i ( t s ) ;i 1,n ), here H – known function. The found solution (7.17) satisfies system (7.16). Really, having calculated partial derivative of system (7.17): n j 1 t 2 2 2 Z exp ( ( ... )) 0l j ( x1 2 1 ( t s ), t 0 1 2 n n n t s j 1 0 R x 2 ( t s ),...,x 2 ( t s );s )d d ...d ds, 2 n n 1 2 n 2 t 1 exp( ( 12 22 ... n2 )) 0l j ( x1 2 1 ( t s ),x2 2 2 Z x j n 0 Rn ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d n ds, 1 t Z x2 exp( ( 12 22 ... n2 )) 0l 2 ( x1 2 1 ( t s ),x2 2 2 j j n 0 Rn ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d n ds, ( l j x j 2 j ( t s ); j 1,n ) (7.18) and substituting (7.18) in (7.16), we have Z t 0 0, ( x1 ,x2 ,...,xn ) R n ; ( 0,1 ) ; ( x1 ,x2 ,...,xn ,t ) T* : t n j 1 2 2 2 0 Z Z exp ( ( ... )) 0l j ( x1 t 0 0 1 2 n n t s n j 1 0 R 2 ( t s ),x 2 ( t s ),...,x 2 ( t s );s )d d ...d ds 1 2 2 n n 1 2 n 0 t n 1 2 2 2 { n exp( ( 1 2 ... n )) 0l 2j ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn j 1 0 Rn t n j 2 2 2 2 ( t s );s )d d ...d ds} 1 exp ( ( ... )) 0l j ( x1 n 1 2 n 1 2 n ts j 1 n 0 Rn t 1 1 1 2 ( t s ),x 2 ( t s ),...,x 2 ( t s ) ; s )d d .. .d ds { 1 2 2 n n 1 2 n n 2 t s 0 [ exp( ( 2 2 ... 2 )) 2 ( x 2 ( t s ),x 2 ( t s ),...,x 2 ( t s ) ;s ) 1 2 n 1 1 2 2 n n 0l1 n R d( x1 2 1 ( t s ) )d 2 ...d n exp( ( 12 22 ... n2 )) 2 ( x1 2 1 ( t s ),x2 2 2 0l2 Rn ( t s ),...,xn 2 n ( t s );s )d 1d( x2 2 2 ( t s ) )...d n ... 2 2 2 exp( ( 1 2 ... n )) 0ln2 ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s ) ;s ) Rn t n j 1 2 2 2 exp ( ( ... )) 0l j ( x1 d 1d 2 ...d( xn 2 n ( t s ) )]ds} 1 2 n ts j 1 n 0 Rn t 1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d n ds { 1 n 0 ts n exp( ( 12 22 ... n2 )) j 0l ( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n j Rn j 1 ( t s );s )d 1d 2 ...d n ds 0. That it was required to prove. From the received results follows that functions i are defined on the basis of (7.14), i.e. i i [0 ( x1 ,x2 ,...,xn ) H( x1 ,x2 ,...,xn ,t )],( x1 ,x2 ,...,xn ,t ) T* ,( i 1,n ). (7.19) Further, considering partial derivatives of 1st order systems (7.19) and summing up with acceptance in attention (1.2)n, (7.14) we have, that the system (7.19) satisfies to a condition (1.2)n. 3 n 3,1 II. So as i0 i 0 , ( 0 C ( R )) , that the solution of problem (1.1)n-(1.3)n belongs in Cn (T* ) : n v ( , ,..., ) : { D ki it C( T ) }, 1 2 n Cn3 ,1 ( T* ) C( T* ) * i 1 0 k 3 3 n 3,1 3,3,...,3,1 ( T* ) Cn3,3,...,3,1( T* ), i i [0 Z ] ; 0 C ( R ); 0 0, ( i 1,n ), Cn ( T* ) Cn Z 3 ,1 Dk Z Z t C( T ) . C( T* ) * C ( T* ) 0 k 3 Really, if i0 C 3 ( R n ); 0 : sup D ki0 1 ; sup D k 0 ( x1 ,x2 ,...,xn ,t ) 1 , ( i 1,n; k 0,3 ), T* Rn t sup 1 exp( ( 12 22 ... n2 ) D k 0 ( l1 ,l2 ,...,ln ; ) d 1d 2 ...d n d 1T0 2 , T* n 0 Rn t n 1 1 2 2 2 sup exp ( ( ... ) j 0l( kk ) ( l1 ,l2 ,...,ln ; ) d 1d 2 ...d n d 1 2 n T n j t j 1 * 0 Rn n 2T , ( l x 2 ( t ); j 1,n ), max( ; ), ( 1 ), 1 0 3 j j j i 1 0 1 i 3 that on a basis (7.17) we will receive Z C 3 ,1 ( T* ) N 1 0 . In the conclusion estimating (7.19) it is had n v 3 ,1 i 0 C 3 ( T* ) i Z t C( T* ) ] d0 [N 1 N 2 0 ] d 0 [N 0 0 ], Cn ( T* ) [ i Z C 3 ,0 ( T* ) i 1 n Z 3 ,1 Z Z N , ( d i ; 0 C 3 ( T ) N 2 ; N0 N1 N 2 ). 3 ,0 t 1 0 0 C ( T* ) C( T* ) * C ( T* ) i 1 (7.20) Lemma 3. In the conditions of (1.2)n, (7.13), (7.14) and (7.20) the equation (7.17) has a unique solution in C 3,1(T* ) . Theorem 8*. At performance of conditions of the lemma 3 the problem (1.1)n, (1.2)n, (7.13) is solvable at Cn3,1(T* ) of the defined by a rule (7.19). The essential factor of researches of this paragraph are results of the theorem 8*. In this case the solution of system (1.1)n is considered as the strict solution of a problem (1.1)n-(1.3)n in Cn3,1(T* ) . It is obvious that small changes i0 ,( i 1,n ) or fi ,( i 1,n ) influence the solution (7.17) a little, i.e. continuous depends on this data. Therefore, a question on a statement correctness problems (1.1)n-(1.3)n are considered at once with results of the theorem 8*. 7.3. Fluid with Viscosity, when Re 2300; fi 0,( i 1,3 ) In this paragraph we generalise results of 5.3, so as this cases has applied value in the theory of a liquid of average and small currents [12], when: ( x,t ) T* Rn [0,T0 ]; fi 0,( i 1,n ), 0 n0 0 , ( n0 , 0 const )) . (7.21) Under a condition (7.21) the problem (1.1)n – (1.3)n is led to a kind n it jix i j 1 j 1 Pxi ,( i 1,n ), (7.22) div 0, ( x, t ) T* , (7.23) i (7.24) t 0 n 3 n i0 i 0 ( x1 ,...,xn ),( x1 ,...,xn ) R , ( 0 C ( R ); 0 0; i 1,n ), where 0 i the known constants. Hence, here we will consider a methods of the equations integration of Navier-Stokes (7.22) with a conditions (7.23), (7.24). With that end in view we will assume that there are functions: 0 fi ,( i 1,n ) , which satisfy conditions 3,0 k C ( T* ) fi : sup D f i i ( ) ( ) 1, ( 0 1; i 1,n ), T* divf 0, rot f 0 : f i 0; ( f ( f 1 , f 2 ,..., f n )), t I ( x ,x ,...,x ,t ) f ( x ,x ,...,x ,s )ds, ( I 0; I f ; i 1,n ). n i i t i 0 i 1 2 n i 1 2 Hence is offered the method: (7.25) i i [0 Z( x1 ,...,xn ,t )] I i ( x1 ,...,xn ,t ),( i 1,n ), n Z t 0 0,( x1 ,...,xn ) R . Thus takes place conditions (7.26) n n n div 0 : 0; Z 0; I i xi 0, i 0 xi i xi i 1 i 1 i 1 n n n n n 0; I 0; ( Z )I I ( Z ) I j I i x j , 0 i t j i x j 0 i x j i 0 x x j j j j i 1 xi j 1 j 1 j 1 j 1 (7.27) n n j ( 0 Z )i ( 0 x j Z x j ) i ( 0 Z ) j ( 0 x j Z x j ) 0, j 1 j 1 it i Z t I i t ; i [i ( 0 Z ) I i ] i Z ,( i 1,n ). Then for incompressible currents with a friction the equations of Navier-Stokes (7.22) become simpler as take place (7.23), (7.24). Therefore the problem (7.22)-(7.24), is led to a kind n n n i Zt j ( 0 Z )Ii x I j i ( 0 x Z x ) I j Ii x fi j 1 j j 1 j j j 1 j 1 Pxi i Z ,( i 1,n ). From system (7.28), considering conditions (7.22)-(7.24) and having entered [8]: will receive the equation: n 1 div f 0; (7.28) : P n {F0 B [Z x1 ,Z x2 ,...,Z xn ]}, i 1 xi n n n 2( n 2 )[ ( )]1 n , ( n 3 ), r ( xi si )2 , 2 i 1 n n n n ( B [Z x ,Z x ,...,Z x ] )( x1 ,...,xn ,t ) ( n )1 [ ( j I i x )Z x ( I j x Z x )i ], 1 2 n j i i j i 1 j 1 i 1 j 1 n n n n n n 1 ( I j I i x j ))], F0 ( x1 ,...,xn ,t ) ( n ) [ i ( I j xi 0 x j ) 0 xi ( j I i x j ) ( i 1 j 1 i 1 j 1 i 1 xi j 1 1 1 P n 2 {F0 ( s1 ,s2 ,...,sn ,t ) ( B [Z s1 ,Z s2 ,...,Z sn ] )( s1 ,s2 ,...,sn ,t )}ds1ds2 ...dsn , r Rn 1 i( n 2 ) Px {F0 ( x1 1 ,x2 2 ,...,xn n ;t ) ( B [Z h1 ,Z h2 ,...,Z hn ] )( x1 i 2 ( 1 22 ... n2 )n Rn 1 ,x2 2 ,...,xn n ;t )}d 1d 2 ...d n , ( si xi i ; hi xi i ; i 1,n ), so as takes place n n 1 1 n [ Z ] 0; ( Z ) 0; ( Pxi ) P, i t i xi i 1 xi i 1 xi i 1 n n n n n n n { ( Z )I I ( Z ) } ( I ) ( j 0 i x j j i 0xj xj i j xi 0 x j 0 xi j I i x j ) i 1 xi j 1 j 1 i 1 j 1 i 1 j 1 (7.28) APS, we (7.29) n n n n ( I )Z ( j i x j xi I j xi Z x j )i , i 1 j 1 i 1 j 1 n n n ( I ) 0; ( ) 0, ( j Z x j )xi 0, ( i 1,n ). j x j xi j 0 x j xi j 1 j 1 j 1 Then on a basis (7.29) the system (7.28) it is equivalent, will be transformed to a kind: Z t 0 ( Q[Z ,Z x1 ,Z x2 ,...,Z xn ] )( x1 ,...,xn ,t ) Z ,( i 1,n ), n Z t 0 0,( x1 ,...,xn ) R , n n n n n n ( x ,...,x ,t ) I d 1[ ( f ) ( I ) ( I I ) n j 0 x j 0 i 0 j i x j j i x j 0 1 j 1 i 1 i 1 j 1 i 1 j 1 n n i( n 2 ) { ( F ( x ,x ,...,x ;t )) } d d ...d ] ; d i 0, 0 1 1 2 2 n n 1 2 n 0 2 2 2 n n i 1 i 1 ( ... ) R 1 2 n n n ( Q[Z ,Z x ,Z x ,...,Z x ] )( x1 ,...,xn ,t ) {d 01Z( x1 ,...,xn ,t )[( j I i x ( x1 ,...,xn ,t ))] 1 2 n j i 1 j 1 n n i( n 2 ) Z ( x ,...,x ,t )I ( x ,...,x ,t ) d 1[ ( {( B [Z h1 ,...,Z hn ] )( x1 xj 1 n j 1 n 0 2 2 2 n j 1 n i 1 ( ... ) R 1 2 n ,x ,...,x ;t )} )d d ...d ]}, ( h x ;i 1,n ). n n 1 2 n 1 i i 1 2 2 (7.30) The problem (7.30) is led to system of the integrated equations in a kind Z W ( x ,...,x ,t ),( x ,...,x ,t ) T ,( i 1,n ), i 1 n 1 n xi t 1 r2 1 exp ( ) Z M 1 ( x1 ,...,xn ,t ) 4 ( t s ) ( ( t s ) )n 2 n n 0 Rn t ( Q[Z ,W ,W ,...,W ] )( s ,s ,...,s ,s )ds ds ...ds ds M 1 exp( ( 12 22 ... n2 )) 1 2 n 1 2 n 1 2 n 1 n 0 Rn ( Q[Z ,W1 ,W2 ,...,Wn ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s );s ) d 1d 2 ...d n ds ( 0 [Z ,W1 ,W2 ,...,Wn ] )( x1 ,...,xn ,t ), t 1 r2 ( xi si ) 1 W M ( exp ( )) i 1 xi n n 4 ( t s ) 2 ( t s ) ( ( t s ))n 2 0 Rn t 1 ( Q [ Z ,W ,W ,...,W ] )( s ,s ,..., s ,s )ds ds ...ds ds M exp( ( 12 22 ... n2 )) 1 2 n 1 2 n 1 2 n 1 xi n 0 Rn i ( Q[Z ,W1 ,W2 ,...,Wn ] )( x1 2 1 ( t s ),x2 2 2 ( t s ),...,xn 2 n ( t s ) (7.31) ( t s );s )d 1d 2 ...d n ds ( i [Z ,W1 ,W2 ,...,Wn ] )( x1 ,...,xn ,t ), where M 1 ( x1 ,...,xn ,t ) t 1 n exp( ( 2 1 22 ... n2 )) 0 ( x1 2 1 ( t s ),x2 2 2 0 Rn ( t s ),...,xn 2 n ( t s );s )d 1d 2 ...d nds, ( si xi 2 i ( t s ),i 1,n ). To solve this system, it is enough to find conditions that allow us to use the Banach Principle. Really, if the input functions M 1 , ,I i satisfy to ( x1 ,...,xn ,t ) T* : sup D k M 1 ( x1 ,x2 ,x3 ,t ) 1 ( ), ( k 0,3; t s ), T* n n sup ( x1 ,...,xn , 1 ,..., n ;t, ) sup{d 01 ( j I i s ( x1 2 1 ,x2 2 2 j T* T* T* T* i 1 j 1 n ,...,x 2 ;t ) ) I j ( x1 2 1 ,x2 2 2 ,...,xn 2 n n n j 1 n n n i ( n 2 ) n1 1 ;t ) d [ ( { ( j Ii l j ( x1 2 1 1 , 0 n 2 2 2 n i 1 i 1 j 1 ( ... ) R 1 2 n n n x2 2 2 2 ,...,xn 2 n n ;t ) ) ( I j li ( x1 2 1 1 ,x2 i 1 j 1 2 ,...,x 2 ;t ) ) } )d d ...d ]} ( ), 2 2 n n n i 1 2 n 2 t 1 k0 sup exp( ( 12 22 ... n2 )) ( x1 ,...,xn , 1 ,..., n ;t, )d 1 ...d n d 2 ( )T0 , n T * 0 Rn t k 1 sup exp( ( 12 22 ... n2 )) ( x1 ,...,xn , 1 ,..., n ;t, ) i d 1 ...d n d i n T* 0 Rn 1 2T0 2 ( ) ,( i 1,n ), max( 2T0 ; n 2T0 2 ), (7.32) at that if the operators i ,( i 0,1,...,n ) satisfy to conditions of a principle of compression, that is, n h 1 1 ,( i 0,n ) : k , [ ki ( )( 2T0 n 2T0 2 ) ( )( 1 ) h 1], i i n 1 i 0 n0 ( ) [( 1 1 ) ]1 , ( 0 1; 0 n ) 0 0 n0 and i : S r ( 0 ) S r ( 0 ), ( i 0,n ), 1 1 S r ( 0 ) {Z ,Wi : Z ; Wi r1 ,( x1 ,...,xn ,t ) T* },( i 1,n ); i [0,0,0,...,0] C r1 ( 1 h ) : 1 i [Z ,W1 ,W2 ,...,Wn ] C i [Z ,W1 ,W2 ,...,Wn ] i [0,0,0,...,0 ] C i [0,0,0,...,0] C ki ( n 1 )r1 r1( 1 h ) hr1 r1 ( 1 h ) r1 . (7.33) (7.34) Then, by Banach Principle, the system (7.31) is solvable and the solution of this system can be found by Picard’s method as ( x1 ,...,xn ,t ) T* : Z m 1 0 [Z m ,W1,m ,W2,m ,...,Wn,m ], (7.35) W [ Z ,W ,W ,...,W ] , ( m 0,1,...; Z 0; W 0; i 1,n ). i m 1,m 2,m n,m 0 i ,0 i ,m 1 Then on the basis of conclusions of a method of Picard’s the sequence of functions {Zm }0 ,{Wi,m}0 ,( i 1,n ) is converging and fundamental in S r1 ( 0 ) , so as n n E Z Z W W ; E Z Z Wi ,m Wi ,m 1 C , m 1 m C i ,m 1 i ,m C m m m 1 C m 1 i 1 i 1 h 1 Z m 1 Z m k0 Em ; Wi ,m 1 Wi ,m ki Em ,( i 1,n ) : Em 1 hEm ... h m E1 0, m C C k 1 k 1 Z Z k E ; W W ki Em j ,( i 1,n ), m C 0 m j i ,m k i ,m C mk j 0 j 0 k 1 k 1 k 1 1 h 1 m j 1 E1 E1h m h j E1h m 0. Em k h Em j ... h h m 1 h j 0 j 0 j 0 Thus we will receive n n Z W ; Z Z Wi ,m 1 Wi i C m 1 m 1 0 C C i 1 i 1 h 1 Z( x1 ,...,xn ,t ) H( x1 ,...,xn ,t ), Z m 1 m h 1 Wi ( x1 ,...,xn ,t ),( x1 ,...,xn ,t ) T* ,( i 1,n ). Wi ,m 1 m Therefore on the basis of (7.26) and C h 1 : m 1 h m 1 0 0, m i,m1 i [0 ( x1 ,...,xn ) Zm1( x1 ,...,xn ,t )] I i ( x1 ,...,xn ,t ),( m 0,1,2,...;i 1,n ), (7.36) (7.37) we will receive i ,m 1 i C i Z m 1 Z C h 1 i h m i h m 1 0 0,( i 1,n ). m And it means that sequence {i ,m }0 converging to a limit i ,( i 1,n ) : h 1 i ,m 1 i C 3,1(T* ),( i 1,n ). m (7.38) Theorem 9. In the conditions of (7.23), (7.24), (7.25), (7.33), (7.34) and (7.38) the Navier-Stokes problem is correctly put in Cn3,1(T* ). The system (7.31) consists of n 1 the integral equations of Volterra and Volterra-Abel on a variable t [0,T0 ] . Thus it is proved that for this system the Banach Principle all conditions are executed. Then the system (7.31) is unequivocally compatible, i.e. on a basis (7.36) there is the smooth and unique function Z( x1 ,...,xn ,t ) C 3,1(T* ) . Hence considering (7.26), under conditions (7.23), (7.24), (7.25), (7.33), (7.34) and (7.38) we will receive i C 3,1(T* ),( i 1,n ) . It is obvious that small changes i0 fi ,( i 1,n ) influence the solution i 0 ,( i 1,n ) or (7.26) a little, i.e. continuous depends on this data. Therefore, a question on a statement correctness problems (7.22)-(7.24) are considered at once with results of the theorem 9 in Cn3,1(T* ) . ■ 8. Conclusion The essence of the given work consists that the developed methods of an initial problem lead to Navier-Stokes equations linearization into integral form without attraction of any conditions for solving the task (1.1)-(1.3). That’s why the received analytical solution is regular to viscosity factor, and mathematic meanings of variables respond to physical significance according to requirements of Clay Mathematics Institute. So, The developed out in this article methods of solution Navier Stokes equations bring the task to equivalent linear equations with heat conductivity type under Cauchy condition in class of functions with smooth enough initial conditions under t 0 . We should remind that Clay Institute suggested solving one from three variants of Navier Stokes equation. But in this work summarising the result received in article [8] for any viscosity meanings in unlimited area in both spaces, as exactly this variant according to Clay Institute is more preferable in comparison with other variants received in [8]. In paragraph 4 the received results are illustrated by an example in the limited area. The solution of 6th millennium problem allowed to consider it that results of this work in Cn3,13 (T ) as principle of continuation of strong solutions connected with Beale-Kato-Majda [2, 5] criterion requirements but already for 3D Navier-Stokes equation for viscous incompressible fluid [1]. When analytical solution of Navier-Stokes equation is found so Beale-Kato-Majda’s criterion for Euler’s equation is automatically proved because viscosity meaning 0 in them responds to Euler’s equation for ideal liquid. From the received results follows the Navier-Stokes equations (1.1) in the conditions of (1.2), (1.3) have the smooth and unique solution in Cn3,13 (T ), [Cn3,1(T* )] , or conditionally-smooth unique solution in Gn13 ( D0 ), millennium problem [1]. [Wn23 ( D0 ); Gn1 ( D0 ); Wn,2 ( D0 )], that reflect the requirements of 6th REFERENCES [1] Navier-Stokes Existence and Smoothness Problem. The Millennium Problems, stated in 2000 by Clay Mathematics Institute. [2] Beale, J.T., Kato, T., Majda, A. (1984), Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1), pp. 61-66. [3] Birkhoff, G. (1983), Numerical fluid dynamics. SIAM Rev., Vol. 25, No 1, pp. 1-34. [4] Cantwell, B.J. (1981), Organized motion in turbulent flow. Ann. Rev. Fluid Mech. Vol. 13, pp. 457-515. [5] Grujic, Z., Guberovic, R. (2010), A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations, Ann. Inst. Henri Poincare, Anal. Non Lineaire 27, pp. 773-778. [6] Ladyzhenskya, O.A. (1970), Mathematical questions of dynamics of a viscous incompressible liquid (in Russian). Nauka, Moscow, 288 p. [7] Omurov, T.D. (2013), Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity. American J. Math.&Statistics, Vol. 3, No 6, pp. 349-356. (http://article.sapub.org/10.5923.j.ajms.20130306.08.html) [8] Omurov, T.D. (2014), The Methods of a Problem Decision Navier-Stokes for the Incompressible Fluid with Viscosity. American J. of Fluid Dynamics, Vol. 4, No 1, pp. 16-48 (http://article.sapub.org/10.5923.j.ajfd.20140401.03.html) [9] Omurov, T.D. (2013), Navier-Stokes problem for Incompressible fluid with viscosity. Varia Informatica, 2013, Ed. M.Milosz, PIPS Polish Lublin, pp. 137-158. [10] Omurov, T.D. (2010), Nonstationary Navier-Stokes Problem for Incompressible Fluid. J.Balasagyn KNU, Bishkek, 21p. [Kyrgyzpatent, author's certificate № 1543 of 2010/07/30]. [11] Prantdl, L. (1961), Gesammelte Abhandlungen zur angewandten Mechanik, Hudro- und Aerodynamic. Springer, Berlin. [12] Schlichting’s, H. (1974), Boundary-Layer Theory. Nauka, Moscow, 712 p. [13] Sobolev, L.S. (1966), Equations of Mathematical Physics. Nauka, Moscow, 443 p. [14] Friedman, A. (1958), Boundary estimates for second order parabolic equations and their application. J. of Math.and Mech., Vol. 7, No 5, pp.771-791. [15] Hörmander, L. (1983), The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer-Verlag, Berlin Heidelberg, NY, Tokyo, 1983.
© Copyright 2026 Paperzz