Helsinki University of Technology Systems Analysis Laboratory Rank-Based Sensitivity Analysis of Multiattribute Value Models Antti Punkka and Ahti Salo Systems Analysis Laboratory Helsinki University of Technology P.O. Box 1100, 02015 TKK, Finland http://www.sal.tkk.fi/ [email protected] 1 Helsinki University of Technology Systems Analysis Laboratory Additive Multiattribute Value Model Provides a complete rank-ordering for the alternatives – Selection of the best alternative – Rank-ordering of e.g. universities (Liu and Cheng 2005) or graduate programs (Keeney et al. 2006) – Prioritization of project proposals or innovation ideas (e.g. Könnölä et al. 2007) n V ( x ) wi vi ( xij ) j i 1 Methods for global sensitivity analysis on weights and scores – Focus only on the selection of the best alternative 1. Ex post: Sensitivity of the decision recommendation to parameter variation 2. Ex ante: Computation of viable decision candidates subject to incomplete information about the parameter values (e.g., Rios Insua and French 1991, Butler et al. 1997, Mustajoki et al. 2006) INFORMS Annual Meeting, Washington DC 2008 2 Helsinki University of Technology Systems Analysis Laboratory Sensitivity Analysis of Rankings Consider the full rank-ordering instead of the most preferred alternative – How ’sensitive’ is the rank-ordering x1 x 4 x3 x 2 ? – How to compare two rank-orderings? How to communicate differences? x1 x4 x3 x2 vs x1 x2 x4 x3 ? We compute the attainable rankings for each alternative subject to global variation in weights and scores – How sensitive is the ranking of an alternative subject to parameter variation? – Is the ranking of university X sensitive to the attribute weights applied? – What is the best / worst attainable ranking of project proposal Y? INFORMS Annual Meeting, Washington DC 2008 3 Helsinki University of Technology Systems Analysis Laboratory Incomplete Information Model parameter uncertainty before computation 1. Relax complete specification of parameters » ”Error coefficients” on the statements, e.g. weight ratios » E.g. Mustajoki et al. (2006) 2. Directly elicit and apply incomplete information » » » » Incompletely defined weight ratios: 2 ≤ w3/ w2 ≤ 3 Ordinal information about weights: w1 ≤ w3 Score intervals: 0.4 ≤ v1(x12) ≤ 0.6 E.g., Kirkwood and Sarin (1985), Salo and Hämäläinen (1992), Liesiö et al. (2007) (0,0,1) w3 Sw w1 Set of feasible weights and scores (S) INFORMS Annual Meeting, Washington DC 2008 1 w3 / w2 3, (0,1,0) w2 (1,0,0) 2 w3 / w1 4 4 Helsinki University of Technology Systems Analysis Laboratory Attainable Rankings Existing output concepts of ex ante sensitivity analysis do not consider the full rank-ordering of alternative set X – Value intervals focus on 1 alternative at a time – Dominance relations are essentially pairwise comparisons – Potential optimality focuses on the ranking 1 Alternative xk can attain ranking r, if exists feasible parameters such that the number of alternatives with higher value is r-1 (w, v) S such that |{x j X | V ( x j ) V ( x k )}| r 1 INFORMS Annual Meeting, Washington DC 2008 5 Helsinki University of Technology Systems Analysis Laboratory Attainable Rankings: Example 2 attributes, 4 alternatives with fixed scores, w1 [0.4, 0.7] V x1 x2 x3 x4 w1 w2 ranking 1 is attainable for x3 ranking 4 is attainable for x1 ranking 1 is attainable for x2 ranking 3 is attainable for x3 0.4 0.7 0.6 0.3 INFORMS Annual Meeting, Washington DC 2008 Attainable rankings 6 Helsinki University of Technology Systems Analysis Laboratory Computation of Attainable Rankings Application of incomplete information set of feasible weights and scores (S) If S is convex, all rankings between the best and the worst attainable rankings are attainable j j k – Best ranking of xk: min |{x X | V ( x ) V ( x )}| 1 ( w,v )S – Worst ranking of xk: max |{x j X | V ( x j ) V ( x k )}| 1 ( w,v )S MILP model to obtain the best / worst ranking of each xk – V(x) expressed in non-normalized form (linear in w and v) – # of binary variables = |X| - 1 INFORMS Annual Meeting, Washington DC 2008 7 Helsinki University of Technology Systems Analysis Laboratory Example: Shangai Rank-Ordering of Universities Shanghai Jiao Tong University ranks the world universities annually Example data from 2007 – http://ed.sjtu.edu.cn/ranking2007.htm – 508 universities Additive model for rank-ordering of the universities INFORMS Annual Meeting, Washington DC 2008 8 Helsinki University of Technology Systems Analysis Laboratory Attributes Criterion Indicator Quality of Education Alumni of an institution winning Nobel Prizes Alumni and Fields Medals 10 % Staff of an institution winning Nobel Prizes and Fields Medals Award 20 % Highly cited researchers in 21 broad subject categories HiCi 20 % Articles published in Nature and Science N&S 20 % Articles in Science Citation Index-expanded, Social Science Citation Index SCI 20 % Academic performance with respect to the size of an institution Size 10 % Quality of Faculty Research Output Size of Institution Code Weight Table adopted from http://ed.sjtu.edu.cn/ranking2007.htm INFORMS Annual Meeting, Washington DC 2008 9 Helsinki University of Technology Systems Analysis Laboratory Data World Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 25 26 27 28 29 30 30 Institution Region Harvard Univ Stanford Univ Univ California - Berkeley Univ Cambridge Massachusetts Inst Tech (MIT) California Inst Tech Columbia Univ Princeton Univ Univ Chicago Univ Oxford Yale Univ Cornell Univ Univ California - Los Angeles Univ California - San Diego Univ Pennsylvania Univ Washington - Seattle Univ Wisconsin - Madison Univ California - San Francisco Johns Hopkins Univ Tokyo Univ Univ Michigan - Ann Arbor Kyoto Univ Imperial Coll London Univ Toronto Univ Coll London Univ Illinois - Urbana Champaign Swiss Fed Inst Tech - Zurich Washington Univ - St. Louis Northwestern Univ New York Univ Rockefeller Univ Americas Americas Americas Europe Americas Americas Americas Americas Americas Europe Americas Americas Americas Americas Americas Americas Americas Americas Americas Asia/Pac Americas Asia/Pac Europe Americas Europe Americas Europe Americas Americas Americas Americas Regional National Score on Score on Score on Score on Score on Score on Country Rank Rank Alumni Award HiCi N&S SCI Size 1 USA 1 100 100 100 100 100 73 2 USA 2 42 78.7 86.1 69.6 70.3 65.7 3 USA 3 72.5 77.1 67.9 72.9 69.2 52.6 1 UK 1 93.6 91.5 54 58.2 65.4 65.1 4 USA 4 74.6 80.6 65.9 68.4 61.7 53.4 5 USA 5 55.5 69.1 58.4 67.6 50.3 100 6 USA 6 76 65.7 56.5 54.3 69.6 46.4 7 USA 7 62.3 80.4 59.3 42.9 46.5 58.9 8 USA 8 70.8 80.2 50.8 42.8 54.1 41.3 2 UK 2 60.3 57.9 46.3 52.3 65.4 44.7 9 USA 9 50.9 43.6 57.9 57.2 63.2 48.9 10 USA 10 43.6 51.3 54.5 51.4 65.1 39.9 11 USA 11 25.6 42.8 57.4 49.1 75.9 35.5 12 USA 12 16.6 34 59.3 55.5 64.6 46.6 13 USA 13 33.3 34.4 56.9 40.3 70.8 38.7 14 USA 14 27 31.8 52.4 49 74.1 27.4 15 USA 15 40.3 35.5 52.9 43.1 67.2 28.6 16 USA 16 0 36.8 54 53.7 59.8 46.7 17 USA 17 48.1 27.8 41.3 50.9 67.9 24.7 1 Japan 1 33.8 14.1 41.9 52.7 80.9 34 18 USA 18 40.3 0 60.7 40.8 77.1 30.7 2 Japan 2 37.2 33.4 38.5 35.1 68.6 30.6 3 UK 3 19.5 37.4 40.6 39.7 62.2 39.4 19 Canada 1 26.3 19.3 39.2 37.7 77.6 44.4 4 UK 4 28.8 32.2 38.5 42.9 63.2 33.8 20 USA 19 39 36.6 44.5 36.4 57.6 26.2 Switzerland 5 1 37.7 36.3 35.5 39.9 38.4 50.5 21 USA 20 23.5 26 39.2 43.2 53.4 39.3 22 USA 21 20.4 18.9 46.9 34.2 57 36.9 23 USA 22 35.8 24.5 41.3 34.4 53.9 25.9 23 USA 22 21.2 58.6 27.7 45.6 23.2 37.8 INFORMS Annual Meeting, Washington DC 2008 10 Helsinki University of Technology Systems Analysis Laboratory Sensitivity Analysis How sensitive are the rankings to weight variation? – What if different weights were applied? – Relax point estimate weighting 1. Relative intervals around the point estimates w {w S w0 | (1 ) wi* wi (1 ) wi*} – E.g. =20 %, wi*=0.20: 0.16 wi 0.24 6 S {w R | wi 0, wi 1} 0 w 6 i 1 2. Incomplete ordinal information – Attributes with wi*=0.20 cannot be less important than those with wi*=0.10 – All weights lower-bounded by 0.02 w {w S w0 | wk wl k {2,3, 4,5}, l {1, 6}, wi 0.02} INFORMS Annual Meeting, Washington DC 2008 11 Helsinki University of Technology Systems Analysis Laboratory Results: Rank-Sensitivity of Top Universities exact weights Unsensitive rankings University 20 % interval 30 % interval ”Different weighting would likely yield a better ranking” incompl. ordinal no information 10th 442nd Ranking INFORMS Annual Meeting, Washington DC 2008 12 Helsinki University of Technology Systems Analysis Laboratory Conclusion A model to compute attainable rankings – Sufficiently efficient even with hundreds of alternatives and several attributes Attainable rankings communicate sensitivity of rank-orderings – Conceptually easy to understand – Holistic view of global sensitivity at a glance independently of the # of attributes Applicable output in Preference Programming framework – Additional information leads to fewer attainable rankings Connections to project prioritization – Initial screening of project proposals for e.g. portfolio-level analysis – Supports identification of ’clear decisions’ (cf. Liesiö et al. 2007) » ”Select the ones ’surely’ in top 50” » ”Discard the ones ’surely’ outside top 50” INFORMS Annual Meeting, Washington DC 2008 13 Helsinki University of Technology Systems Analysis Laboratory References » Butler, J., Jia, J., Dyer, J. (1997). Simulation Techniques for the Sensitivity Analysis of Multi-Criteria Decision Models. EJOR 103, 531-546. » Keeney, R.L., See, K.E., von Winterfeldt, D. (2006). Evaluating Academic Programs: With Applications to U.S. Graduate Decision Science Programs. Oper. Res. 54, 813-828. » Kirkwood, G., Sarin R. (1985). Ranking with Partial Information: A Method and an Application. Oper. Res. 33, 38-48 » Könnölä, T., Brummer, V., Salo A. (2007). Diversity in Foresight: Insights from the Fostering of Innovation Ideas. Technologial Forecasting & Social Change 74, 608-626. » Liesiö, J., Mild, P., Salo, A., (2007). Preference Programming for Robust Portfolio Modeling and Project Selection. EJOR 181, 1488-1505. » Liu, N.C., Cheng, Y. (2005). The Academic Ranking of World Universities. Higher Education in Europe 30, 127-136 » Mustajoki, J., Hämäläinen, R.P., Lindstedt, M.R.K. (2006). Using intervals for Global Sensitivity and Worst Case Analyses in Multiattribute Value Trees. EJOR 174, 278-292. » Rios Insua, D., French, S. (1991). A Framework for Sensitivity Analysis in Discrete MultiObjective Decision-Making. EJOR 54, 176-190. » Salo, A., Hämäläinen R.P. (1992). Preference assessment by imprecise ratio statements. Oper. Res. 40, 1053-1061. INFORMS Annual Meeting, Washington DC 2008 14
© Copyright 2026 Paperzz