A Modeling Study of Alternative Stable States in the Florida Bay Ecosystem: Benthic-Pelagic Coupling Christopher J. Madden1, Amanda McDonald1, Marguerite Koch2, Patricia Glibert3, Cynthia Heil4, Bernard Cosby5, W. Michael Kemp3 1SFWMD Everglades Division, 2FL Atl. Univ., 3Univ. MD HPL, 4FL FWCC, 5Univ. VA ASLO Nice, FR January 30, 2009 Florida Bay and the Everglades Watershed: Hydrologic Model Domains 2 Integration of Watershed Hydrologic Models Langevin et al. (2004) 3 FATHOM (Flux Accounting and Tidal Hydrology Ocean Model) Cosby et al. (2005) Hunt et al. (2006) 4 Florida Bay SAV Numerical Ecological Model Calibration Sites Everglades National Park Taylor Slough Florida Keys Florida Bay Nuttle et al. (2005) N Madden et al. (2007) 5 Seagrass Community Ecological Model Madden et al. (2007) 6 Plant Growth Responses Thalassia 1 Sulfide Toxicity Thalassia 1 1 Halodule Relative Growth Halodule Nitrogen Uptake 0 Phosphorus Uptake 1 2 Nitrogen Concentration (uM) 0 P vs I 1 1 2 Phosphorus Concentration (uM) Temperature Effect Halodule 1 Thalassia 0 5 Halodule Thalassia 10 15 Salinity Effect 1 Thalassia Halodule 0 1000 (PAR) 2000 0 35 15 25 Temperature (°C) 0 10 20 30 40 50 60 Madden et al. (2005) 7 Integrating FATHOM and SAV Models: Reconstruction of SAV Community: 1970-2003 8 Integrating FATHOM and SAV Models: Reconstruction of SAV Community: 1970-2003 9 Integrating FATHOM and SAV Models: Reconstruction of SAV Community: 1970-2003 10 Integrating FATHOM and SAV Models: Reconstruction of SAV Community: 1970-2003 SAV Salinity Little Madeira Bay Thalassia Halodule High Salinity Salinity output from FATHOM Cosby et al. (2005) SAV from Madden et al. (2006) 11 Phytoplankton Bloom Mapping 2005-2008 Generic pre-bloom conditions 12 SAV-Phytoplankton Model Interactions Advection New N Species NH4 NO3 40%~80% Grazing 7-15% Recycled N Urea Phytopl Recycled P New P Epiphytes Advection SAV Variable C:chla Variable C:P Advection (TT=10-120 d) Net Settling 0-15% Resuspension Remin P Geochemical Sequestration Sediment OM Below ground Bound P Available P Sediment P 13 Characteristics of the Phytoplankton Module Dependency on Recycling (40-80%) Dependency on Residence Time (0-120 d) Dependency on Grazing Rate (7-15%) P Limitation/Injection and Bloom N Substrate Preference Mechanistically Incorporates Variables Linked to Climate Change: depth, light, temperature, salinity response 14 Phytoplankton: Basin Residence Time and P Recycling Efficiency 12 12 Residence= 20d 6 6 12 12 Chla ug/L Chla ug/L Residence= 40d 6 Recycling= 0.4 Recycling= 0.6 6 12 12 6 6 Recycling= 0.8 Residence= 60d 5 YR 10 YR 5 YR 10 YR 15 Phytoplankton: Grazing (Sponges) Filtration= 10% d-1 10 Chla ug/L 5 10 Filtration= 15% d-1 5 16 Phytoplankton Parameter Sensitivity Recycling Fraction (%) % max annual biomass Residence Time (d) Grazing Rate (% d-1) 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80 (d) 40 50 60 70 80 (% N&P recycled) 6 9 12 15 (% loss d-1) 17 Bloom Simulation and SAV: P injection in Yr 7 (Source: dead SAV, dead Mangrove, Hurricane) 20 1: chla conc Chla ug/L 1: 20 0% grazing; Phytoplankton 50% recycling 10 1: P injection 10 10% grazing; 50% recycling 1: 0 0.00 912.50 Page 1 1825.00 2737.50 3650.00 Days 1: PAR @ SAV leaf Untitled PAR 1: 2000 2000 PAR 1000 1000 1: 0 1: 0.00 912.50 Page 1 1825.00 2737.50 Days Untitled 3650.00 10 YR 1: TAG 1: 50000 SAV mg C/m2 50000 1: 1: Thalassia 25000 25000 0 0.00 Page 1 912.50 1825.00 5 YR Days Untitled 2737.50 3650.00 10 YR 18 SAV Decline in Bloom Area: Six Year Trend Frequency of quadrats with high density and sparse vegetation 1 0.9 dense SAV cover Frequency 0.8 Oct 2005 0.7 0.6 0.5 0.4 0.3 0.2 sparse cover 0.1 Y Freq(Bare+Sparse Tot) Begin increase in freq. of sparse cover Oct. 2005-Jan 2006 01/2007 01/2006 01/2005 01/2004 01/2003 01/2002 01/2001 0 Freq(Dense Tot) (DERM data; Rudnick et al. 2008) 19 Conclusions Florida Bay is highly coupled, poised betw. alternate states Model identifies buffered zones as well as inflection or tipping points where potential to undergo state change Sometimes small change = Big Response Tool-wise are moving from a “Box of Models” to a Real Model Synthesis We can use simple transport and heuristic models to understand complex ecological response Model framework now being used to develop regulatory freshwater requirements and to evaluate restoration designs in the context of global climate change 20
© Copyright 2026 Paperzz