DIFFERENTIAL EQUATION ANSWER 4—1 17. find the general solution of the equation: d 2 dt y 2 2 dy t ye dt the general solution is: y h p y of the homogeneous equation : d first we find suppose the y y h 2 dt mt y (t ) = e y 2 2 dy y0 dt , and it is satisfies the homogeneous equation h 2 hence the characteristic equation is: m 2m 1 0 , so the characteristic equation have the repeat root : m=-1;then we know that t y e h ,and we must to find another solution : by the method of undetermined coefficients: y suppose 2 d y t ue h 2 h dt u d e dt t 2 d and y h dt du t t ue , e dt du t t ue e dt then we can get the equation : d 2 u dt y so t h y dt t (a bt ) e a e bt e second we find d t 0 so u(t)=a+bt; a,b is constant y ,guessing p y p ct 2 t e ,and 2 p d y 2ct e c t e , dt t 2 t 2 p t t 2c e 4ct e c t 2 t e fixed in the equation t t 2c e 4ct e c t t t 2c e e c 2 t t 4ct e 2c t e 2 t e ct 2 t e t e 1 2 y so the particular solution of the equation is : y p y y h 1 2 t ;hence the general solution 2t e t p (a bt ) e 1 2 t , a,b is constant 2t e 34. y (t ) is the solution of equation: 1 d 2 y dt p 2 y (t ) is the solution of equation: 2 d 2 dt y 2 p 2 y dt let y (t ) dy qy h(t ) dt y (t ) y (t ) show the d dy qy g (t ) dt 1 p is the solution of equation: 2 dy qy g (t ) h(t ) dt y (t ) y (t ) 1 and 2 d ( y (t ) y (t )) p d ( y (t ) y (t )) q( (t ) y y dt dt d y (t ) p d y (t ) q (t )) ( d y (t ) p d y (t ) q (t )) ( y y dt dt dt dt d 2 2 y dy p qy dt dt 1 2 1 2 1 2 1 2 1 1 2 2 g (t ) h(t ) y (t ) y (t ) so d 1 2 y dt 2 p is the solution of equation : dy qy g (t ) h(t ) dt 40. (a) find the general solution of equation d 2 dt 2 2 y 2 4y 6 t e 2 t 2 2 2 (t )) first suppose y e mt h ,so the characteristic equation is : m 2 40 then the characteristic equation have complex root 2i ,-2i y (t ) c cos(t ) c sin( t ) so the 1 h 2 2 second suppose y (a bt c t ) d e ,and 2 p t d y dt 2 p 2ct d e t fixed in the equation 2c d e 4a 4bt 4c t 4d e 6 t e t 2 11 a 8 2c 4a 6 4b 0 b 0 1 4c 1 c 4 5d 1 d 1 5 t y p 2 t 11 1 2 1 t (t ) ( t ) e 8 4 5 so the general solution is y (t ) y h (t ) y p 11 1 2 1 t (t ) c1 cos(t ) c2 sin( t ) ( t ) e 8 4 5 (b) by the initial condition y(0) y ' (0) 0 1 1 t y ' (t ) c1 sin( t ) c2 cos(t ) t e 2 5 1 y ' (0) 0 c2 0 5 11 1 y (0) 0 c1 0 8 5 63 c1 40 1 c2 5 so the solution with initial condition is: y(t ) 63 1 11 1 2 1 t cos(t ) sin( t ) ( t ) e 40 5 8 4 5 c after the long-time the solution of (b) is tend to
© Copyright 2026 Paperzz