The Greedy Approach Young CS 331 D&A of Algo. Greedy 1 General idea: Given a problem with n inputs, we are required to obtain a subset that maximizes or minimizes a given objective function subject to some constraints. Feasible solution — any subset that satisfies some constraints Optimal solution — a feasible solution that maximizes or minimizes the objective function Young CS 331 D&A of Algo. Greedy 2 procedure Greedy (A, n) begin solution Ø; for i 1 to n do x Select (A); // based on the objective // function if Feasible (solution, x), then solution Union (solution, x); end; Select: A greedy procedure, based on a given objective function, which selects input from A, removes it and assigns its value to x. Feasible: A boolean function to decide if x can be included into solution vector (without violating any given constraint). Young CS 331 D&A of Algo. Greedy 3 About Greedy method The n inputs are ordered by some selection procedure which is based on some optimization measures. It works in stages, considering one input at a time. At each stage, a decision is made regarding whether or not a particular input is in an optimal solution. Young CS 331 D&A of Algo. Greedy 4 1. Minimum Spanning Tree ( For Undirected Graph) The problem: 1) Tree A Tree is connected graph with no cycles. 2) Spanning Tree A Spanning Tree of G is a tree which contains all vertices in G. Example: G: Young CS 331 D&A of Algo. Greedy 5 b) Is G a Spanning Tree? Key: Yes Key: No Note: Connected graph with n vertices and exactly n – 1 edges is Spanning Tree. 3) Minimum Spanning Tree Assign weight to each edge of G, then Minimum Spanning Tree is the Spanning Tree with minimum total weight. Young CS 331 D&A of Algo. Greedy 6 Example: a) Edges have the same weight 1 G: 2 4 3 6 5 7 8 Young CS 331 D&A of Algo. Greedy 7 DFS (Depth First Search) 1 7 2 3 5 4 6 8 Young CS 331 D&A of Algo. Greedy 8 BFS (Breadth First Search) 1 2 4 3 5 6 7 8 Young CS 331 D&A of Algo. Greedy 9 b) Edges have different weights 16 G: 1 2 21 11 3 6 6 19 14 33 4 5 5 10 18 DFS 16 1 2 5 6 33 5 Young CS 331 D&A of Algo. 3 14 4 Cost 16 5 10 14 33 78 10 Greedy 10 BFS 16 1 5 2 21 3 Cost 16 19 21 5 6 6 19 67 6 4 5 Minimum Spanning Tree (with the least total weight) 16 1 5 2 11 6 Young CS 331 D&A of Algo. 6 3 18 4 Cost 16 5 6 11 18 56 5 Greedy 11 Algorithms: 1) Prim’s Algorithm (Minimum Spanning Tree) Basic idea: Start from vertex 1 and let T Ø (T will contain all edges in the S.T.); the next edge to be included in T is the minimum cost edge(u, v), s.t. u is in the tree and v is not. Example: G 16 1 2 21 11 3 6 6 19 5 14 33 4 5 10 18 Young CS 331 D&A of Algo. Greedy 12 1 1 16 19 2 (Spanning Tree) 5 6 S.T. 1 1 19 21 5 2 1 19 10 4 6 2 6 5 5 21 6 4 S.T. 1 2 3 4 18 14 2 11 6 3 11 6 3 1 3 4 21 5 11 6 6 S.T. 19 21 2 6 1 6 5 2 3 S.T. 4 Young CS 331 D&A of Algo. Greedy 13 1 2 4 3 19 18 5 5 1 2 S.T. 6 33 2 4 5 3 6 5 Cost = 16+5+6+11+18=56 Minimum Spanning Tree 3 S.T. 4 1 6 (n – # of vertices, e – # of edges) It takes O(n) steps. Each step takes O(e) and e n(n-1)/2 O(n 2 ). Therefore, it takes O(n3) time. With clever data structure, it can be implemented in O(n2). Young CS 331 D&A of Algo. Greedy 14 2) Kruskal’s Algorithm Basic idea: Don’t care if T is a tree or not in the intermediate stage, as long as the including of a new edge will not create a cycle, we include the minimum cost edge Example: 10 30 1 45 Step 1: Sort all of edges 4 (1,2) 10 √ (3,6) 15 √ 20 6 (4,6) 20 √ (2,6) 25 √ (1,4) 30 × reject create cycle (3,5) 35 √ Young CS 331 D&A of Algo. Greedy 2 50 25 3 40 35 55 5 15 15 Step 2: T 1 2 1 2 2 1 1 1 2 3 3 3 2 3 6 6 4 6 4 6 4 5 Young CS 331 D&A of Algo. Greedy 16 How to check: adding an edge will create a cycle or not? If Maintain a set for each group (initially each node represents a set) Ex: set1 set2 1 2 new edge 2 3 6 set3 4 5 6 from different groups no cycle created Data structure to store sets so that: i. The group number can be easily found, and ii. Two sets can be easily merged Young CS 331 D&A of Algo. Greedy 17 Kruskal’s algorithm While (T contains fewer than n-1 edges) and (E ) do Begin Choose an edge (v,w) from E of lowest cost; Delete (v,w) from E; If (v,w) does not create a cycle in T then add (v,w) to T else discard (v,w); End; With clever data structure, it can be implemented in O(e log e). Young CS 331 D&A of Algo. Greedy 18 So, complexity of Kruskal is O (eLoge) n(n 1) e Loge Logn 2 2 Logn 2 3) O(eLoge) O(eLogn) Comparing Prim’s Algorithm with Kruskal’s Algorithm i. Prim’s complexity is O(n 2 ) ii. Kruskal’s complexity is O(eLogn) if G is a complete (dense) graph, 2 Kruskal’s complexity is O(n Logn .) if G is a sparse graph, Kruskal’s complexity is O (nLogn). Young CS 331 D&A of Algo. Greedy 19 2. Dijkstra’s Algorithm for Single-Source Shortest Paths The problem: Given directed graph G = (V, E), a weight for each edge in G, a source node v0, Goal: determine the (length of) shortest paths from v0 to all the remaining vertices in G Def: Length of the path: Sum of the weight of the edges Observation: May have more than 1 paths between w and x (y and z) But each individual path must be minimal length (in order to form an overall shortest path form v0 to vi ) w V0 Young CS 331 D&A of Algo. x y z shortest paths from v0 to vi Greedy Vi 20 Notation cost adjacency matrix Cost, 1 a,b V cost from vertex i to vertex j if there is a edge Cost (a, b) = 0 if a = b otherwise 1 if shortest path (v0 , w) is defined s(w) = 0 otherwise Dist ( j ) j in the vertex set V = the length of the shortest path from v0 to j From( j ) i Young CS 331 D&A of Algo. if i is the predecessor of j along the shortest path from v0 to j Greedy 21 45 Example: 50 10 V0 V1 V4 35 15 10 20 20 30 V2 V3 15 v0 a) Cost adjacent matrix v0 v1 v2 v3 v4 v5 Young CS 331 D&A of Algo. Greedy V5 3 v1 v2 v3 v4 v5 0 50 10 45 0 15 10 20 0 15 20 0 35 30 0 3 0 22 b) Steps in Dijkstra’s Algorithm 1. Dist (v0) = 0, From (v0) = v0 2. Dist (v2) = 10, From (v2) = v0 45 45 V0 50 10 V1 50 V0 V4 V1 10 V4 15 15 20 10 10 35 20 20 35 20 30 30 V2 15 V3 Young CS 331 D&A of Algo. 3 V2 V5 Greedy 15 V3 3 V5 23 3. Dist (v3) = 25, From (v3) = v2 4. Dist (v1) = 45, From (v1) = v3 45 50 V0 V1 45 10 V4 50 V0 15 20 10 V4 15 35 10 V1 20 35 10 20 20 30 30 V2 15 Young CS 331 D&A of Algo. V3 3 V5 Greedy V2 15 V3 3 V5 24 5. Dist (v4) = 45, From (v4) = v0 6. Dist (5) = 45 45 50 V0 V1 V0 V4 10 20 10 V4 35 35 20 10 V1 15 15 20 50 10 20 30 30 V2 15 V3 Young CS 331 D&A of Algo. 3 V5 V2 Greedy 15 V3 V5 3 25 c) Shortest paths from source v0 v0 v2 v3 v1 45 v0 v2 10 v0 v2 v3 25 v0 v4 45 v0 v5 Young CS 331 D&A of Algo. Greedy 26 Dijkstra’s algorithm: procedure Dijkstra (Cost, n, v, Dist, From) // Cost, n, v are input, Dist, From are output begin for i 1 to n do s (i ) 0; Dist (i ) Cost (v, i ); From(i ) v; s (v ) 1; for num 1 to (n – 1) do choose u s.t. s(u) = 0 and Dist(u) is minimum; s (u ) 1; for all w with s(w) = 0 do if ( Dist (u ) Cost (u, w) Dist ( w)) Dist ( w) Dist (u ) Cost (u, w); From( w) u; end; Young CS 331 D&A of Algo. Greedy (cont. next page) 27 Ex: 1 10 50 30 100 5 2 20 10 4 50 5 3 a) Cost adjacent matrix 01 02 03 04 05 1 2 3 4 5 Young CS 331 D&A of Algo. 0 50 30 100 10 0 5 0 50 20 0 10 0 Greedy 28 b) Steps in Dijkstra’s algorithm 1. Dist (1) = 0, From (1) = 1 2. Dist (5) = 10, From (5) = 1 1 1 10 5 50 10 30 100 2 20 10 5 4 5 30 100 5 4 50 2 20 10 3 Young CS 331 D&A of Algo. 50 3 50 Greedy 29 3. Dist (4) = 20, From (4) = 5 4. Dist (3) = 30, From (3) = 1 1 1 10 30 100 5 10 50 2 10 50 15 Young CS 331 D&A of Algo. 4 10 30 10 3 50 3 1 1 3 2 35 1 5 4 20 5 5. Dist (2) = 35, From (2) = 3 Shortest paths from source 1 13 2 20 10 5 4 30 100 5 20 50 5 50 30 100 2 20 10 5 4 Greedy 50 3 30 3. Optimal Storage on Tapes The problem: Given n programs to be stored on tape, the lengths of these n programs are l1, l2 , . . . , ln respectively. Suppose the programs are stored in the order of i1, i2 , . . . , in Let tj be the time to retrieve program ij. Assume that the tape is initially positioned at the beginning. tj is proportional to the sum of all lengths of programs stored in front of the program ij. Young CS 331 D&A of Algo. Greedy 31 n 1 The goal is to minimize MRT (Mean Retrieval Time), t j n j 1 j n i.e. want to minimize li k j 1 k 1 Ex: n 3, (l1 , l 2 , l3 ) (5,10,3) There are n! = 6 possible orderings for storing them. 1 2 3 4 5 6 order total retrieval time MRT 123 132 213 231 312 321 5+(5+10)+(5+10+3)=38 5+(5+3)+(5+3+10)=31 10+(10+5)+(10+5+3)=43 10+(10+3)+(10+3+5)=41 3+(3+5)+(3+5+10)=29 3+(3+10)+(3+10+5)=34 38/3 31/3 43/3 41/3 29/3 34/3 Smallest Note: The problem can be solved using greedy strategy, just always let the shortest program goes first. ( Can simply get the right order by using any sorting algorithm) Young CS 331 D&A of Algo. Greedy 32 Analysis: Try all combination: O( n! ) Shortest-length-First Greedy method: O (nlogn) Shortest-length-First Greedy method: Sort the programs s.t. l1 l2 . . . ln and call this ordering L. Next is to show that the ordering L is the best Proof by contradiction: Suppose Greedy ordering L is not optimal, then there exists some other permutation I that is optimal. I = (i1, i2, … in) Young CS 331 D&A of Algo. a < b, s.t. lia lib (otherwise I = L) Greedy 33 Interchange ia and ib in and call the new list I : x I … ia ia+1 ia+2 … ib … … ia … SWAP I … ib ia+1 ia+2 x In I, Program ia+1 will take less (lia- lib) time than in I to be retrieved In fact, each program ia+1 , …, ib-1 will take less (lia- lib) time For ib, the retrieval time decreases x + lia For ia, the retrieval time increases x + lib totalRT ( I ) totalRT ( I ) (b a 1)(lia lib ) ( x lia ) ( x lib ) (b a)(lia lib ) 0 () Therefore, greedy ordering L is optimal Young CS 331 D&A of Algo. Greedy Contradiction!! 34 4. Knapsack Problem The problem: Given a knapsack with a certain capacity M, n objects, are to be put into the knapsack, each has a weight w1 , w2 ,, wn and a profit if put in the knapsack p1 , p 2 , , p n . The goal is find ( x1 , x2 ,, xn ) where 0 xi 1 n s.t. px i 1 i n i is maximized and w x i 1 i i M Note: All objects can break into small pieces or xi can be any fraction between 0 and 1. Young CS 331 D&A of Algo. Greedy 35 Example: n3 M 20 ( w1 , w2 , w3 ) (18,15,10) ( p1 , p 2 , p3 ) (25,24,15) Greedy Strategy#1: Profits are ordered in nonincreasing order (1,2,3) 2 ( x1 , x2 , x3 ) (1, ,0) 15 3 2 pi xi 25 1 24 15 0 28.2 15 i 1 Young CS 331 D&A of Algo. Greedy 36 Greedy Strategy#2: Weights are ordered in nondecreasing order (3,2,1) 2 ( x1 , x2 , x3 ) (0, ,1) 3 3 2 p x 25 0 24 15 1 31 i i 3 i 1 Greedy Strategy#3: p/w are ordered in nonincreasing order (2,3,1) p1 25 1.4 w1 18 p2 24 1.6 (2,3,1) w2 15 p3 15 1.5 w3 10 1 ( x1 , x2 , x3 ) ( 0, 1, ) 2 3 Optimal solution pi xi 25 0 24 1 15 Young CS 331 D&A of Algo. i 1 Greedy 1 31.5 2 37 Analysis: p p1 p2 n Sort the p/w, such that w1 w2 wn Show that the ordering is the best. Proof by contradiction: Given some knapsack instance pn p1 p2 Suppose the objects are ordered s.t. w w w 1 2 n let the greedy solution beX ( x1 , x2 , xn ) Show that this ordering is optimal Case1: X (1,1,,1) it’s optimal n Case2:X (1,1, , x j , 0, , 0 ) s.t. wi xi M i 1 where 0 x j 1 Young CS 331 D&A of Algo. Greedy 38 Assume X is not optimal, and then there exists Y ( y1 , y 2 ,, y n ) n n i 1 i 1 s.t. pi y i pi xi and Y is optimal examine X and Y, let yk be the 1st one in Y that yk xk. X ( x1 , x2 ,, xk 1 , xk ,, xn ) y k xk yk < xk same Y ( y1 , y 2 ,, y k 1 , y k ,, y n ) Now we increase yk to xk and decrease as many of ( y k 1 ,, y n ) as necessary, so that the capacity is still M. Young CS 331 D&A of Algo. Greedy 39 Let this new solution be Z ( z1 , z 2 ,, z n ) where zi xi 1 i k and ( z k yk ) wk n n pz p y i 1 i i i 1 i i n (y i k 1 ( z k y k ) pk pk pi wk wi zi ) wi i n (y i k 1 i zi ) pi i k 1 pk pi ( ) wi wk 0 n n pk pi zi pi yi ( z k yk ) wk ( yi zi ) wi pi yi i 1 i 1 i k 1 wk i 1 n n Young CS 331 D&A of Algo. Greedy 40 So, if profit ( z ) profit ( y ) () else profit ( z ) profit ( y ) (Repeat the same process. At the end, Y can be transformed into X. X is also optimal. Contradiction! ) Young CS 331 D&A of Algo. Greedy 41
© Copyright 2026 Paperzz