Mellin transforms and asymptotics: Harmonic sums Phillipe Flajolet, Xavier Gourdon, Philippe Dumas Die Theorie der reziproken Funktionen und Integrale ist ein centrales Gebiet, welches manche anderen Gebiete der Analysis miteinander verbindet. Reporter : Ilya Posov Saint-Petersburg State University Faculty of Mathematics and Mechanics 1 Joint Advanced Student School 2004 Hjalmar Mellin Contents • • • • 2 Mellin transform and its basic properties Direct mapping Converse mapping Harmonic sums Joint Advanced Student School 2004 Robert Hjalmar Mellin Born: 1854 in Liminka, Northern Ostrobothnia, Finland Died: 1933 3 Joint Advanced Student School 2004 Some terminology • Analytic function f ( s) c0 c1 ( s s0 ) c2 ( s s0 ) 2 • Meromorphic function • Open strip a , b 4 Joint Advanced Student School 2004 Mellin transform M [ f ( x); s ] f ( s ) f ( x) x dx s 1 * 0 f ( x) O( x ) x 0 u f ( x) O( x v ) x fundamental strip f * (s) exists in the strip u, v 5 Joint Advanced Student School 2004 Mellin transform example 1 f ( x) 1 x 1 O(1) x 0 1 x 1 O( x 1 ) x 1 x s 1 x * f (s) dx 1 x sin s 0 6 fundamental strip : u 0 v 1 u, v 0,1 Joint Advanced Student School 2004 Gamma function f ( x) e x e x O(1) x 0 e x b O( x ) b 0 x f (s) * e x s 1 x dx ( s ) s( s ) ( s 1) 0 fundamental strip : u 0 v u, v 0, 7 Joint Advanced Student School 2004 Transform of step function 0, x 0,1 H( x) 1, x 1, H( x) O(1) x 0 b H( x) O( x ) b 0 x H ( x) * 0 1 1 H ( x) x dx x dx , s 0, s 0 s 1 s 1 1 H( x) 1 H( x), H ( x) , s , 0 s * 8 Joint Advanced Student School 2004 Basic properties (1/2) f ( x) f (s) , x f ( x) f * ( s ) , f (x ) f (1/ x) f ( x) k k f (k x) 9 * s f f * ( s ) 1 * 1 s * f (s) , 0 , , s * f k k (s) Joint Advanced Student School 2004 0 Basic properties (2/2) f ( x) f * (s) , f ( x) log x d * f (s) ds , f ( x) sf ( s ) d f ( x) dx ( s 1) f ( s 1) 1, 1 x 0 10 f (t )dt , * * 1 * f ( s 1) s Joint Advanced Student School 2004 d x dx Zeta function M k k f ( k x); s k k s f * ( s) x e x 2 x 3 x g ( x) e e e ... x 1 e x k 1, k k , f ( x) e 1 1 1 g (s) s s s 1 2 3 s 1, * 11 x M e ; s ( s )( s) Joint Advanced Student School 2004 Some Mellin tranforms e x ( s ) 0, e x 1 ( s ) 1, 0 12 s 0, ( s ) ( s ) 1, e x2 1 2 e x 1 e x 1 1 x log(1 x) H( x) 10 x 1 x (log x) k H( x) 12 sin s s sin s 1 s (1) k k ! ( s ) k 1 0,1 1, 0 0, , k Joint Advanced Student School 2004 Inversion Theorem 1 Let f ( x) be integrable with fundamential strip , . Let c and f * (c i t ) is integrable, then the equality 1 c i 2 i c i f * ( s ) x s ds f ( x) holds almost everywhere. 13 Joint Advanced Student School 2004 Laurent expansion ( s) k c ( s s ) k 0 k r c r 0 Pole of order r if r>0 Analytic in s0 if r 0 Example : 1 1 2 3( s 1) ( s0 1) 2 s ( s 1) s 1 1 1 1 2 1 ( s0 0) 2 s ( s 1) s s 14 Joint Advanced Student School 2004 Singular element Definition 1 A singular element of ( s) at s0 is an initial sum of Laurent expansion truncated at terms of O(1) or smaller : 1 (s) 2 s ( s 1) s 0 1 1 1 2 s s 1 s 1 2 3(s 1) s 1 1 1 1 1 s.e. at s0 =0 : 2 , 2 1 , s s s s 1 1 1 s.e. at s0 = 1 : , 2 , 2 3( s 1) , s 1 s 1 s 1 15 Joint Advanced Student School 2004 Singular expansion Definition 2 Let ( s) be meromorfic in with including all the poles of ( s) in . A singular expansion of ( s ) in is a formal sum of singular elements of ( s ) at all points of Notation : ( s) ^ E ( s ) 1 ^ 2 s ( s 1) 16 1 1 1 1 2 s 1 s s 0 2 s 1 s s 1 Joint Advanced Student School 2004 s 2, 2 Singular expansion of gamma function s( s ) ( s 1) ( s m 1) ( s ) s ( s 1)( s 2) ( s m) Thus ( s ) has poles at the points s m with m (1) m 1 ( s ) m! s m (1) k 1 ( s ) ^ k! s k k 0 s poles of gamma function 17 Joint Advanced Student School 2004 Direct mapping (1/3) Theorem 2 Let f ( x) have a transform f * ( s) with nonempty fundamental strip . f ( x) ( k )A c k x (log x) k O( x ) x 0 k , Then f * ( s) is continuable to a meromorphic function in the strip where it admits the singular expansion f * (s) ^ ( k )A 18 c k (1) k k ! ( s ) k 1 ( s ) Joint Advanced Student School 2004 Direct mapping (2/3) f ( x) f * ( s) Order at 0: O(x ) Leftmost boundary of f.s. at ( s ) Order at +: O(x ) Rightmost boundary of f.s. at ( s) Expansion till O( x ) at 0 Meromorphic continuation till ( s) Expansion till O( x ) at + Meromorphic continuation till ( s) 19 Joint Advanced Student School 2004 Direct mapping (3/3) f ( x) f * ( s) Term x a ( log x) k at 0 (1) k k ! Pole with s.e. ( s a ) k 1 (1) k ! Term x ( log x) at + Pole with s.e. k 1 (s a) 1 a Term x at 0 Pole with s.e. sa 1 a Term x log x at 0 Pole with s.e. (s a)2 k a 20 k Joint Advanced Student School 2004 Example 0 f ( x) e x x 2 x3 1 x 2! 3! (1) j j x O x M 1 j! x 0 j 0 M f * ( s ) ( s ), s 0, f * ( s ) is meromorphically continuable to M 1, j ( 1) 1 * f (s) ^ j! s j j 0 M s M 1, finally (1) j 1 ( s ) ^ j! s j j 0 s poles of gamma function 21 Joint Advanced Student School 2004 Example 1 x e * f ( x) , f ( s ) ( s ) ( s ) s 1, x 1 e e x xj 1 B j 1 , B0 1, B1 , x 1 e x 0 j 1 ( j 1)! 2 B j 1 1 ( s ) ( s) ^ j 1 ( j 1)! s j (1) j 1 ( s ) ^ j! s j j 0 s s 1 1 Bm 1 ( s) ^ s , , m) s 1 2 m 1 result: s ) is meromorphic in with the only pole at s0 1 22 Joint Advanced Student School 2004 Example 2 1 f ( x) (1) n x n 1 x x 0 n 0 1/ x (1) n 1 x n 1 1/ x x n 1 f * ( s) , s 0,1 sin x (1) n f ( s) ^ , s ,1 (continuation to the left of the f.s.) n0 s n * n 1 ( 1) f * ( s ) ^ , s 0, (continuation to the right of the f.s.) n 1 s n f ( s) ^ sin x * 23 (1) n n s n (s ) Joint Advanced Student School 2004 Example 3 (nonexplicit transform) 1 1 7 139 6 5473 8 1 x2 x4 x x O( x10 ) x 0 4 96 5760 645120 cosh x f * ( s ) has a fundamental strip 0, f ( x) 1 1 1 7 1 139 1 5473 1 s 10, s 4 s 2 96 s 4 5760 s 6 645120 s 8 1 1 1 7 1 139 1 5473 1 * f (s) ^ s s 4 s 2 96 s 4 5760 s 6 645120 s 8 f * (s) ^ 24 Joint Advanced Student School 2004 Converse mapping (1/3) Theorem 3 Let f ( x) C(0, ) have a transform f * ( s) with nonempty fundamental strip . Let f * ( s) be meromorphically continuable to with a finite number of poles there, and be analytic on ( s) . with r 1 when s in . Let f * ( s) O s 25 r Joint Advanced Student School 2004 Converse mapping (2/3) Theorem 3 (continue) * If f ( x) ^ ( k ) A d k 1 (s )k s k , Then an asymptotic expansion of f ( x) at 0 is ( 1) k 1 k 1 f ( x ) d k x (log x) O( x ) ( k ) A (k 1)! 26 Joint Advanced Student School 2004 Converse mapping (3/3) f * (s) f ( x) Pole at Term in asymptotic expansion x left of f.s. expansion at 0 right of f.s expansion at + Simple pole 1 s 1 right: s Multiple pole left: left: 1 ( s ) k 1 right: 27 1 ( s ) k 1 x at 0 x at + Logarifmic factor (1) k x (log x) k at 0 k! ( 1) k x (log x) k at + k! Joint Advanced Student School 2004 Example 4 ( s ) s ) s) , analytic in strip 0, (1) j ( j 1) 1 s) ^ j! ( ) s j j 0 f ( x) 1 / 2i 2 i / 2i s , ( s ) x s ds - original function (1) j ( j 1) j f ( x) x O( x M 1 2 ) j! ( ) j 0 M x0 f ( x) (1 x) has the same expansion at 0 f ( x) (1 x) ( x), where (x) O( x M ) M 0 28 Joint Advanced Student School 2004 Example 5 ( s) (1 s) sin s s 0,1 1 ( s) ^ (1) n ! sn n 0 s ,1 n f ( x) n n ( 1) n ! x - the expansion is only asymptotic! n 0 29 M f ( x) (1) n ! x O( x n n M 1 2 n 0 et In fact f ( x) dt 1 xt 0 ) x 0 Joint Advanced Student School 2004 Harmonic sums Definition 3 G ( x) j g ( k x) harmonic sum j j amplitudes j frequencies s ) j j s The Dirichlet series j M g ( x ); s s g * ( s ) (separation property) G* (s) (s) g * (s) 30 Joint Advanced Student School 2004 Harmonic sum formula The Mellin transform of the harmonic sum G ( x) k g ( k x) is defined in the intersection k of the the fundamental strip of g( x) and the domain of absolute convergence of the Dirichlet series ( s) k k s (which is of the form k ( s ) a for some real a ) G * ( s ) s ) g * ( s ) 31 Joint Advanced Student School 2004 Example 6 1 1 x / k 1 1 x 1 h( x ) , k , k , g ( x) k x k 1 k 1 x / k k k 1 x k 1 k 1 1 1 h( n) H n 1 2 3 n ( s ) k k k 1 s k 1 s (1 s ) k 1 h ( s ) ( s ) g ( s ) s ) sin s * * s 1,0 1 1 (s) , (1 s ) s 1 s 1 * k 1 k ) h ( s ) ^ 2 (1) s 1, s k 1 sk s Hn 32 (1) k Bk 1 log n k nk k 1 log n 1 1 1 4 2n 12n 120n Joint Advanced Student School 2004 Example 7 x l ( x) log x 1) x log 1 n 1 n 1 n 1, n , g ( x) x log(1 x) n s ) k k n 1 s n s s ) n 1 l ( s ) s ) g ( s ) s ) * x s 2, n * Simple poles in positive integers , s 2, 1 Double poles in 0 and -1 s sin s 1 1 1 log 2 * l (s) ^ 2s 2 2 ( s 1) s 1) s ( 1) n 1 n) n 1 n( s n) 1 B2 n 1 l ( x) log( x !) x x log x (1 x log x log 2 2 n 1 2 n 1 2 n(2 n 1) x x x log( x !) log x e 33 B2 n 1 2 n 1 n 1 2n(2n 1) x 2 x Joint Advanced Student School 2004 Example 8 e nx Lw ( x) w (polylogarithm Liw ( z ) n 1 z n n w ) w k n 1 n 1 n w , k n, g ( x) e x n s ) ( s k ), Lk * ( s ) ( s k ) s ) s 1, Lk * ( s ) ^ (1) 1 n k n) n! n0 n k 1 (1) k 1 1 H k 1 2 s n (k 1)! ( s k 1) s k 1 s , (1) k 1 k 1 Lk ( x) x [ log x H k 1 ] (k 1)! L1 2 ( x) 34 x (1) n0 1 ( n) n 2 n! (1) n0 n k 1 xn Joint Advanced Student School 2004 n k n) n! xn Example 9 modified theta function w ( x) n 1 e n2 x2 nw 1 x2 , n w , n n, g ( x) e n 1 s ( s ) s 1) s 0, 2 2 double pole at s 0 and simple poles at s 2m * 1 1 1 1 1 1 (s) ^ 2 s s 12 s 2 240 s 4 s 1 2 1 4 1 ( x) log x x x x0 12 240 * 1 1 s 1 1 0 ( s) s) 0 O( x M ) x 0 2 2 2 x 2 * 35 Joint Advanced Student School 2004 Example 10 D ( x) d (k )e kx , k d (k ), k k , g ( x) e x k 1 s ) k k k 1 s d (k ) s ( s) k 1 k D* ( s ) s ) ( s ) 2 1 1 (2k 1) 1 * D (s) ^ 2 s 1 4 s k 0 2k 1! s 2k 1 ( s 1) D( x) 36 1 1 2 (2k 1) 2 k 1 ( log x x x 4 k 0 2k 1 ! Joint Advanced Student School 2004 The end 37 Joint Advanced Student School 2004
© Copyright 2026 Paperzz