MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS 1. Given a

MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
MIKE TODD
Abstract. Given a multimodal interval map ๐‘“ : ๐ผ โ†’ ๐ผ and a Hoฬˆlder potential
๐œ‘ : ๐ผ โ†’ โ„, we study the dimension spectrum for equilibrium states of ๐œ‘. The
main tool here is inducing schemes, used to overcome the presence of critical
points. The key issue is to show that enough points are โ€˜seenโ€™ by a class of
inducing schemes. We also compute the Lyapunov spectrum. We obtain the
strongest results when ๐‘“ is a Collet-Eckmann map, but our analysis also holds
for maps satisfying much weaker growth conditions along critical orbits.
1. Introduction
Given a metric space ๐‘‹ and a probability measure ๐œ‡ on ๐‘‹, the pointwise dimension
of ๐œ‡ at ๐‘ฅ โˆˆ ๐‘‹ is de๏ฌned as
๐‘‘๐œ‡ (๐‘ฅ) := lim
๐‘Ÿโ†’0+
log ๐œ‡(๐ต๐‘Ÿ (๐‘ฅ))
log ๐‘Ÿ
if the limit exists, where ๐ต๐‘Ÿ (๐‘ฅ) is a ball of radius ๐‘Ÿ around ๐‘ฅ. This tells us how concentrated a measure is around a point ๐‘ฅ; the more concentrated, the lower the value
of ๐‘‘๐œ‡ (๐‘ฅ). For an endomorphism ๐‘“ : ๐‘‹ โ†’ ๐‘‹, we will study the pointwise dimension
of ๐‘“ -invariant measures ๐œ‡. In particular we will be interested in equilibrium states
๐œ‡๐œ‘ for ๐œ‘ : ๐‘‹ โ†’ โ„ in a certain class of potentials (see below for de๏ฌnitions).
For any ๐ด โŠ‚ ๐‘‹, we let dim๐ป (๐ด) denote the Hausdor๏ฌ€ dimension of ๐ด. We let
{
}
log ๐œ‡๐œ‘ (๐ต๐‘Ÿ (๐‘ฅ))
๐’ฆ๐œ‘ (๐›ผ) := ๐‘ฅ : lim
= ๐›ผ , ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) := dim๐ป (๐’ฆ๐œ‘ (๐›ผ)),
log ๐‘Ÿ
๐‘Ÿโ†’0+
and
}
log ๐œ‡๐œ‘ (๐ต๐‘Ÿ (๐‘ฅ))
does not exist .
log ๐‘Ÿ
๐‘Ÿโ†’0
Then we can make a multifractal decomposition:
โ€ฒ
๐’ฆ๐œ‘
:=
{
๐‘ฅ : lim+
โ€ฒ
๐‘‹ = ๐’ฆ๐œ‘
โˆช (โˆช๐›ผโˆˆโ„ ๐’ฆ๐œ‘ (๐›ผ)) .
The function ๐’Ÿ๐’ฎ ๐œ‘ is known as the dimension spectrum of ๐œ‡๐œ‘ . The study of this
function ๏ฌts into the more general theory of thermodynamic formalism which also
gives us information on the statistical properties of the system such as return time
statistics, large deviations and decay of correlations.
2000 Mathematics Subject Classi๏ฌcation. 37E05, 37D25, 37D35, 37C45,
Key words and phrases. Multifractal spectra, thermodynamic formalism, interval maps, nonuniformly hyperbolicity, Lyapunov exponents, Hausdor๏ฌ€ dimension.
This work was supported by FCT grant SFRH/BPD/26521/2006 and also by FCT through
CMUP.
1
2
MIKE TODD
These ideas are generally well understood in the case of uniformly hyperbolic systems, see [P]. The dimension spectrum can be described in terms of the pressure
function, which we de๏ฌne below. A common way to prove this in uniformly hyperbolic cases is to code the system using a ๏ฌnite Markov shift, and then exploit
the well developed theory of thermodynamic formalism and dimension spectra for
Markov shifts, see for example [PW2]. For non-uniformly hyperbolic dynamical
systems this approach can be more complicated since we often need to code by
countable Markov shifts. As has been shown by Sarig [S1, S3], Iommi [I1, I2] and
Pesin and Zhang [PZ] among others, in going from ๏ฌnite to countable Markov shifts,
more exotic behaviour, including โ€˜phase transitionsโ€™, appears.
The coding used in non-uniformly hyperbolic cases usually arises from an โ€˜inducing
schemeโ€™: that is, for some part of the phase space, iterates of the original map
are taken, and the resulting โ€˜induced mapโ€™ is considered. The induced maps are
Markov, and so the theory of countable Markov shifts as in [HMU, I1] can be used.
In some cases the induced map can be a ๏ฌrst return map to an interval, but this is
not always so.
There has been a lot of success with the inducing approach in the case of MannevillePomeau maps. These are interval maps which are expanding everywhere, except
at a parabolic ๏ฌxed point. The presence of the parabolic point leads to phase
transitions as mentioned above. Multifractal analysis, of the dimension spectrum
and the Lyapunov spectrum (see below), of these examples has been carried out
by Pollicott and Weiss [PoWe], Nakaishi [Na] and Gelfert and Rams [GR]. In the
๏ฌrst two of these papers, inducing schemes were used (in the third one, the fact
that the original system is Markov is used extensively). The inducing schemes used
are ๏ฌrst return maps to a certain natural domain. The points of the original phase
space which the inducing schemes do not โ€˜seeโ€™ is negligible, consisting only of the
(countable) set preimages of the parabolic point. We also mention a closely related
theory for certain Kleinian groups by Kesseboฬˆhmer and Stratmann [KeS].
In the case of multimodal maps with critical points, if the critical orbits are dense
then there is no way that useful inducing schemes can be ๏ฌrst return maps to
intervals. Moreover, the set of points which the inducing schemes do not โ€˜seeโ€™ can,
in principle, be rather large. In these cases the thermodynamic formalism has a
lot of exotic behaviour: phase transitions brought about due to some polynomial
growth condition were discussed by Bruin and Keller in [BK] and shown in more
detail by Bruin and Todd [BT4]. Multiple phase transitions, which are due to
renormalisations rather than any growth behaviour, were proved by Dobbs [D2].
In this paper we develop a multifractal theory for maps with critical points by de๏ฌning inducing schemes which provide us with su๏ฌƒcient information on the dimension
spectrum. The main idea is that points with large enough pointwise Lyapunov exponent must be โ€˜seenโ€™ by certain inducing schemes constructed in [BT4]. These
inducing schemes are produced via the Markov extension known as the Hofbauer
extension, also known as the Hofbauer tower. This structure was developed by Hofbauer and Keller, see for example [H1, H2, K2]. Their principle applications were
for interval maps. The theory for higher dimensional cases was further developed by
Buzzi [Bu]. Once we have produced these inducing schemes, we can use the theory
of multifractal analysis developed by Iommi in [I1] for the countable Markov shift
case. Note that points with zero pointwise Lyapunov exponent cannot be โ€˜seenโ€™ by
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
3
measures which are compatible to an inducing scheme, but in our case such sets
turn out to be negligible.
There is a further property which useful inducing schemes must have: not only
must they see su๏ฌƒciently many points, but also they must be well understood from
the perspective of the thermodynamic formalism. Speci๏ฌcally, given a potential ๐œ“,
we need its induced version on the inducing scheme to ๏ฌt into the framework of
Sarig [S2]. In [PSe, BT2, BT4] this was essentially translated into having โ€˜good tail
behaviourโ€™ of the equilibrium states for the induced potentials.
Our main theorem states that, as in the expanding case, for a large class of multimodal maps, the multifractal spectrum can be expressed in terms of the Legendre
transform of the pressure function for important sets of parameters ๐›ผ. The ColletEckmann case is closest to the expanding case, and here we indeed get exactly the
same kind of graph for ๐›ผ 7โ†’ ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) as in the expanding case for the values of ๐›ผ
we consider. In the non-Collet Eckmann case, we expect the graph of ๐’Ÿ๐’ฎ ๐œ‘ to be
qualitatively di๏ฌ€erent from the expanding case, as shown for the related Lyapunov
spectrum in [Na] and [GR]. We note that singular behaviour of the Lyapunov
spectrum was also observed by Bohr and Rand [BoR] for the special case of the
quadratic Chebyshev polynomial.
The results presented here can be seen as an extension of some of the ideas in [H3],
in which the full analysis of the dimension spectrum was only done for uniformly
expanding interval maps. See also [Y] for maps with weaker expansion properties.
Moreover, Hofbauer, Raith and Steinberger [HRS] proved the equality of various
thermodynamic quantities for non-uniformly expanding interval maps, using โ€˜essential multifractal dimensionsโ€™. However, the full analysis in the non-uniformly
expanding case, including the expression of the dimension spectrum in terms of
some Legendre transform, was left open.
1.1. Key de๏ฌnitions and main results. Given a dynamical system ๐‘“ : ๐‘‹ โ†’ ๐‘‹,
we let
โ„ณ = โ„ณ(๐‘“ ) := {๐‘“ -invariant probability measures on ๐‘‹}
and
โ„ณ๐‘’๐‘Ÿ๐‘” = โ„ณ๐‘’๐‘Ÿ๐‘” (๐‘“ ) := {๐œ‡ โˆˆ โ„ณ : ๐œ‡ is ergodic}.
For a potential ๐œ‘ : ๐‘‹ โ†’ โ„, the pressure is de๏ฌned as
{
}
โˆซ
โˆซ
๐‘ƒ (๐œ‘) := sup โ„Ž๐œ‡ + ๐œ‘ ๐‘‘๐œ‡ : โˆ’ ๐œ‘ ๐‘‘๐œ‡ < โˆž
๐œ‡โˆˆโ„ณ
where โ„Ž๐œ‡ denotes the metric entropy with respect to ๐œ‡. Note that by the ergodic
decomposition, we can just take the above supremum over โ„ณ๐‘’๐‘Ÿ๐‘” . We let โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
denote the topological entropy of ๐‘“ , whichโˆซ is equal to ๐‘ƒ (0), see [K4]. A measure
๐œ‡ which โ€˜achieves the pressureโ€™, i.e., โ„Ž๐œ‡ + ๐œ‘ ๐‘‘๐œ‡ = ๐‘ƒ (๐œ‘), is called an equilibrium
state.
Let โ„ฑ be the collection of ๐ถ 3 multimodal interval maps ๐‘“ : ๐ผ โ†’ ๐ผ where ๐ผ = [0, 1],
satisfying:
a) the critical set Crit = Crit(๐‘“ ) consists of ๏ฌnitely many critical point ๐‘ with critical order 1 < โ„“๐‘ < โˆž, i.e., ๐‘“ (๐‘ฅ) = ๐‘“ (๐‘) + (๐‘”(๐‘ฅ โˆ’ ๐‘))โ„“๐‘ for some di๏ฌ€eomorphisms
๐‘” : โ„ โ†’ โ„ with ๐‘”(0) = 0 and ๐‘ฅ close to ๐‘;
4
MIKE TODD
b) ๐‘“ has no parabolic cycles;
c) ๐‘“ is topologically transitive on ๐ผ;
d) ๐‘“ ๐‘› (Crit) โˆฉ ๐‘“ ๐‘š (Crit) = โˆ… for ๐‘š โˆ•= ๐‘›.
Remark 1. Conditions c) and d) are for ease of exposition, but not crucial. In
particular, Condition c) excludes that ๐‘“ is renormalisable. For multimodal maps
satisfying a) and b), the set ฮฉ consists of ๏ฌnitely many components ฮฉ๐‘˜ , on each of
which ๐‘“ is topologically transitive, see [MS, Section III.4]. In the case where there
is more than one transitive component in ฮฉ, for example the renormalisable case,
the analysis presented here can be applied to any one of the transitive components
consisting of intervals. We also note that in this case ฮฉ contains a (hyperbolic)
Cantor set outside components of ฮฉ which consist of intervals. The work of Dobbs
[D2] shows that renormalisable maps these hyperbolic Cantor sets can give rise
to singular behaviour in the thermodynamic formalism (phase transitions in the
pressure function ๐‘ก 7โ†’ ๐‘ƒ (๐‘ก๐œ‘)) not accounted for by the behaviour of critical points
themselves. For these components we could apply a version of the usual hyperbolic
theory to study the dimension spectra.
We include condition b) in order to apply the distortion theorem, [SV, Theorem C].
Alternatively, we could assume negative Schwarzian derivative, since this added to
the transitivity assumption implies that there are no parabolic points.
Condition d) rules out one critical point mapping onto another. Alternatively, it
would be possible to consider these critical points as a โ€˜blockโ€™, but to simplify the
exposition, we will not do that here. Condition d) also rules out critical points being
preperiodic.
We de๏ฌne the lower/upper pointwise Lyapunov exponent as
๐‘›โˆ’1
๐‘›โˆ’1
1โˆ‘
1โˆ‘
๐‘—
log โˆฃ๐ท๐‘“ (๐‘“ (๐‘ฅ))โˆฃ, and ๐œ†๐‘“ (๐‘ฅ) := lim sup
log โˆฃ๐ท๐‘“ (๐‘“ ๐‘— (๐‘ฅ))โˆฃ
๐œ†๐‘“ (๐‘ฅ) := lim inf
๐‘›โ†’โˆž ๐‘›
๐‘›โ†’โˆž ๐‘›
๐‘—=0
๐‘—=0
respectively. If ๐œ†๐‘“ (๐‘ฅ) = ๐œ†๐‘“ (๐‘ฅ), then we write this as ๐œ†๐‘“ (๐‘ฅ). For a measure ๐œ‡ โˆˆ
โ„ณ๐‘’๐‘Ÿ๐‘” , we let
โˆซ
๐œ†๐‘“ (๐œ‡) := log โˆฃ๐ท๐‘“ โˆฃ ๐‘‘๐œ‡
denote the Lyapunov exponent of the measure. Since our de๏ฌnition of โ„ฑ will
exclude the presence of attracting cycles, [Pr] implies that ๐œ†๐‘“ (๐œ‡) โฉพ 0 for all ๐‘“ โˆˆ โ„ฑ
and ๐œ‡ โˆˆ โ„ณ.
For ๐œ† โฉพ 0, we denote the โ€˜good Lyapunov exponentโ€™ sets by
๐ฟ๐บ๐œ† := {๐‘ฅ : ๐œ†๐‘“ (๐‘ฅ) > ๐œ†} and ๐ฟ๐บ๐œ† := {๐‘ฅ : ๐œ†๐‘“ (๐‘ฅ) > ๐œ†}.
We de๏ฌne
หœ ๐œ‘ (๐›ผ) := ๐’ฆ๐œ‘ (๐›ผ) โˆฉ ๐ฟ๐บ0 and ๐’Ÿ๐’ฎ
หœ๐œ‘ (๐›ผ) := dim๐ป (๐’ฆ
หœ ๐œ‘ (๐›ผ)).
๐’ฆ
As well as assuming that our maps ๐‘“ are in โ„ฑ, we will also sometimes impose
certain growth conditions on ๐‘“ :
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
5
โˆ™ An exponential growth condition (Collet-Eckmann): there exist ๐ถ๐ถ๐ธ , ๐›ฝ๐ถ๐ธ > 0,
โˆฃ๐ท๐‘“ ๐‘› (๐‘“ (๐‘))โˆฃ โฉพ ๐ถ๐ถ๐ธ ๐‘’๐›ฝ๐ถ๐ธ ๐‘› for all ๐‘ โˆˆ Crit and ๐‘› โˆˆ โ„•.
(1)
โˆ™ A polynomial growth condition: There exist ๐ถ๐‘ƒ > 0 > 0 and ๐›ฝ๐‘ƒ > 2โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ )
so that
โˆฃ๐ท๐‘“ ๐‘› (๐‘“ (๐‘))โˆฃ โฉพ ๐ถ๐‘ƒ ๐‘›๐›ฝ๐‘ƒ for all ๐‘ โˆˆ Crit and ๐‘› โˆˆ โ„•.
(2)
โˆ™ A simple growth condition:
โˆฃ๐ท๐‘“ ๐‘› (๐‘“ (๐‘))โˆฃ โ†’ โˆž for all ๐‘ โˆˆ Crit.
(3)
In all of these cases, [BRSS] implies that there is a unique absolutely continuous
invariant probability measure (acip). This measure has positive entropy by [MS,
Exercise V.1.4] and [SV, Proposition 7].
We will consider potentials โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ and also ๐œ–-Hoฬˆlder potentials ๐œ‘ : ๐ผ โ†’ โ„
satisfying
sup ๐œ‘ โˆ’ inf ๐œ‘ < โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ).
(4)
Without loss of generality, we will also assume that ๐‘ƒ (๐œ‘) = 0. Note that our results
do not depend crucially on ๐œ– โˆˆ (0, 1], so we will ignore the precise value of ๐œ– from
here on.
Remark 2. We would like to emphasise that (4) may not be easy to remove as an
assumption on our class of Hoฬˆlder potentials if all the results we present here are
to go through. For example, in the setting of Manneville-Pomeau maps, in [BT2,
Section 6] it was shown that for any ๐œ€ > 0, there exists a Hoฬˆlder potential ๐œ‘ with
sup ๐œ‘ โˆ’ inf ๐œ‘ = โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) + ๐œ€ and for which the equilibrium state is a Dirac measure
on the ๏ฌxed point (which is not seen by any inducing scheme).
We brie๏ฌ‚y sketch some properties of these maps and potentials. For details, see
Propositions 2 and 3. As we will see below, we are interested in potentials of the
form โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐›พ๐œ‘. By [BT4] if ๐‘“ satis๏ฌes (1) then there exist ๐‘ก1 < 1 < ๐‘ก2 such
that for each ๐‘ก โˆˆ (๐‘ก1 , ๐‘ก2 ) there is an equilibrium state ๐œ‡โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ for โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ. If
๐‘“ only satis๏ฌes (2) then we take ๐‘ก2 = 1. Combining [BT4] and [BT2], for Hoฬˆlder
potentials ๐œ‘ we have equilibrium states ๐œ‡โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ+๐›พ๐œ‘ for โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐›พ๐œ‘ if ๐‘ก is
close to 1 and ๐›พ is close to 0. Also, by [BT2], if (3) holds and ๐œ‘ is a Hoฬˆlder potential
satisfying (4), then there are equilibrium states ๐œ‡โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ+๐›พ๐œ‘ for โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐›พ๐œ‘
if ๐‘ก is close to 0 and ๐›พ is close to 1. These equilibrium states are unique. As
explained in the appendix, (3) is assumed in [BT2] in order to ensure that the
induced versions of ๐œ‘ are su๏ฌƒciently regular, so if this regularity can be shown
another way, for example in the simple case that ๐œ‘ is a constant everywhere, this
condition can be omitted.
We de๏ฌne the auxiliary function
๐‘‡๐œ‘ (๐‘ž) := inf{๐‘ก : ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) = 0}.
(5)
If ๐‘‡๐œ‘ (๐‘ž) is ๏ฌnite, we set
๐œ“๐‘ž := โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘.
If ๐‘ƒ (๐œ‘) = 0 then ๐‘‡๐œ‘ (1) = 0. As we will show in Lemma 2, the map ๐‘ž 7โ†’ ๐‘‡๐œ‘ (๐‘ž) is
strictly decreasing on [0, 1]. Moreover, by Ledrappier [L, Theorem 3], if there is an
6
MIKE TODD
acip then it is an equilibrium state for ๐‘ฅ 7โ†’ โˆ’ log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ and so ๐‘‡๐œ‘ (0) = 1. It may
be the case that for some values of ๐‘ž, ๐‘‡๐œ‘ (๐‘ž) = โˆž. For example, let ๐‘“ โˆˆ โ„ฑ be a
unimodal map not satisfying (1). Then as in [NS], ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) = 0 for all ๐‘ก โฉพ 1.
If we set ๐œ‘ to be the constant potential, then ๐‘ƒ (๐œ‘) = 0 implies ๐œ‘ โ‰ก โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) since
then ๐‘ƒ (๐œ‘) = ๐‘ƒ (0) โˆ’ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) = 0. For such ๐œ‘ and for ๐‘ž < 0, then ๐‘‡๐œ‘ (๐‘ž) = โˆž.
For โ„Ž a convex function, we say that (โ„Ž, ๐‘”) form a Fenchel pair if
๐‘”(๐‘) = sup{๐‘๐‘ฅ โˆ’ โ„Ž(๐‘ฅ)}.
๐‘ฅ
In this case, ๐‘” is known as the Legendre-Fenchel transform of โ„Ž. If โ„Ž is convex and
๐ถ 1 then the function ๐‘” is called the Legendre transform of โ„Ž and
๐‘”(๐›ผ) = ๐‘ž๐›ผ โˆ’ โ„Ž(๐‘ž) were ๐‘ž is such that ๐›ผ = โˆ’๐ทโ„Ž(๐‘ž).
If ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) then [BRSS] guarantees the existence and uniqueness of an
acip ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ and we let
โˆซ
โˆ’ ๐œ‘ ๐‘‘๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ
.
๐›ผ๐‘Ž๐‘ :=
๐œ†๐‘“ (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )
Theorem A. Suppose that ๐‘“ โˆˆ โ„ฑ is a map satisfying (3) and ๐œ‘ : ๐ผ โ†’ โ„ is a
Hoฬˆlder potential satisfying (4), and with ๐‘ƒ (๐œ‘) = 0. If the equilibrium state ๐œ‡๐œ‘ is
not equal to the acip then there exist open sets ๐‘ˆ, ๐‘‰ โŠ‚ โ„ so that ๐‘‡๐œ‘ is di๏ฌ€erentiable
หœ๐œ‘ (๐›ผ) is minus the Legendre
on ๐‘‰ and for ๐›ผ โˆˆ ๐‘ˆ , the dimension spectrum ๐›ผ 7โ†’ ๐’Ÿ๐’ฎ
transform of ๐‘ž 7โ†’ ๐‘‡๐œ‘ (๐‘ž). Moreover,
หœ๐œ‘ (dim๐ป (๐œ‡๐œ‘ )) = dim๐ป (๐œ‡๐œ‘ );
(a) ๐‘ˆ contains a neighbourhood of dim๐ป (๐œ‡๐œ‘ ), and ๐’Ÿ๐’ฎ
(b) if ๐‘“ satis๏ฌes (2), then ๐‘ˆ contains both a neighbourhood of dim๐ป (๐œ‡๐œ‘ ), and
หœ๐œ‘ (๐›ผ๐‘Ž๐‘ ) = 1;
a one-sided neighbourhood of ๐›ผ๐‘Ž๐‘ , where ๐’Ÿ๐’ฎ
(c) if ๐‘“ satis๏ฌes (1), then ๐‘ˆ contains both a neighbourhood of dim๐ป (๐œ‡๐œ‘ ) and
of ๐›ผ๐‘Ž๐‘ .
Furthermore, for all ๐›ผ โˆˆ ๐‘ˆ there is a unique equilibrium state ๐œ‡๐œ“๐‘ž for the potential
หœ ๐›ผ ) = 1, where ๐›ผ = โˆ’๐ท๐‘‡๐œ‘ (๐‘ž). This measure has full dimension on
๐œ“๐‘ž so that ๐œ‡๐œ“๐‘ž (๐’ฆ
หœ
หœ ๐›ผ ).
๐’ฆ๐›ผ , i.e., dim๐ป (๐œ‡๐œ“๐‘ž ) = dim๐ป (๐’ฆ
Note that by Hofbauer and Raith [HR], dim๐ป (๐œ‡๐œ‘ ) =
Ledrappier [L, Theorem 3], dim๐ป (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ ) =
โ„Ž๐œ‡๐œ‘
๐œ†๐‘“ (๐œ‡๐œ‘ ) ,
โ„Ž๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ
๐œ†๐‘“ (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )
and as shown by
= 1.
In Section 6 we consider the situation where ๐œ‘ is the constant potential, which we
recall that since ๐‘ƒ (๐œ‘) = 0, must be of the form ๐œ‘ โ‰ก โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ). In that setting, as
noted above ๐‘‡๐œ‘ is in๏ฌnite for ๐‘ž < 0 when ๐‘“ is unimodal and does not satisfy (1).
หœ๐œ‘ to behave di๏ฌ€erently to the expanding
Therefore, in that case we would expect ๐’Ÿ๐’ฎ
case for ๐›ผ > ๐›ผ๐‘Ž๐‘ . This is why we only deal with a one-sided neighbourhood of ๐›ผ๐‘Ž๐‘
in (b). See also Remark 8 for more information on this.
หœ๐œ‘ (๐›ผ) is zero
If, contrary to the assumptions of Theorem A, ๐œ‡๐œ‘ = ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ then ๐’Ÿ๐’ฎ
for every ๐›ผ โˆˆ โ„, except at ๐›ผ = dim๐ป (๐œ‡๐œ‘ ), where it takes the value 1. As in Remark 6 below, for a multimodal map ๐‘“ and a constant potential, this can only occur
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
7
when ๐‘“ has preperiodic critical points, for example when ๐‘“ is the quadratic Chebyshev polynomial. In view of LivsฬŒic theory for non-uniformly hyperbolic dynamical
systems, in particular the results in [BHN, Section 5], we expect ๐œ‡๐œ‘ โˆ•= ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ
for multimodal maps with in๏ฌnite critical orbit for more general Hoฬˆlder potentials
๐œ‘.
According to [BS], if (1) holds then there exists ๐œ† > 0 so that the nonwandering
set ฮฉ is contained in ๐ฟ๐บ๐œ† โˆช (โˆช๐‘›โฉพ0 ๐‘“ โˆ’๐‘› (Crit)). Therefore we have the following
corollary. Note that here the neighbourhood ๐‘ˆ is as in case (c) of Theorem A.
Corollary B. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes the Collet-Eckmann condition (1) and
๐œ‘ : ๐ผ โ†’ โ„ is a Hoฬˆlder potential satisfying (4) and with ๐‘ƒ (๐œ‘) = 0. If the equilibrium
state ๐œ‡๐œ‘ is not equal to the acip then there exist open sets ๐‘ˆ, ๐‘‰ โŠ‚ โ„ so that ๐‘‡๐œ‘
is di๏ฌ€erentiable on ๐‘‰ , ๐‘ˆ contains dim๐ป (๐œ‡๐œ‘ ) and 1, and so that for ๐›ผ โˆˆ ๐‘ˆ the
dimension spectrum ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) is minus the Legendre transform of ๐‘‡๐œ‘ .
หœ๐œ‘ (๐›ผ) = ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) it is enough to show that โ€˜enough points
In fact, to ensure that ๐’Ÿ๐’ฎ
iterate into a ๏ฌnite set of levels of the Hofbauer extension in๏ฌnitely oftenโ€™. As
in [K2], one way of guaranteeing this is to show that a large proportion of the
sets we are interested in โ€˜go to large scaleโ€™ in๏ฌnitely often. Graczyk and Smirnov
[GS] showed that for rational maps of the complex plane satisfying a summability
condition, this is true. Restricting their result to real polynomials, we have the
following Corollary, which we explain in more detail in Section 5.1.
Corollary C. Suppose that ๐‘“ โˆˆ โ„ฑ extends to a polynomial on โ„‚ with no parabolic
points, all critical points in ๐ผ, and satisfying (2). Moreover, suppose that ๐œ‘ : ๐ผ โ†’ โ„
is a Hoฬˆlder potential satisfying (4) and ๐‘ƒ (๐œ‘) = 0. If the equilibrium state ๐œ‡๐œ‘ is
not equal to the acip then there exist sets ๐‘ˆ, ๐‘‰ โŠ‚ โ„ such that ๐‘ˆ contains a onesided neighbourhood of ๐›ผ๐‘Ž๐‘ , ๐‘‡๐œ‘ is di๏ฌ€erentiable on ๐‘‰ , and for ๐›ผ โˆˆ ๐‘ˆ the dimension
spectrum ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) is minus the Legendre transform of ๐‘‡๐œ‘ . Moreover, if dim๐ป (๐œ‡๐œ‘ ) >
โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ )
๐›ฝ๐‘ƒ โˆ’1 then the same is true for any ๐›ผ in a neighbourhood of dim๐ป (๐œ‡๐œ‘ ).
โ€ฒ
Barreira and Schmeling [BaS] showed that in many situations the set ๐’ฆ๐œ‘
has full
Hausdor๏ฌ€ dimension. As the following proposition states, this is also the case in
our setting. The proof follows almost immediately from [BaS], but we give some
details in Section 5.
Proposition 1. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) and ๐œ‘ : ๐ผ โ†’ โ„ is a Hoฬˆlder
โ€ฒ
potential satisfying (4) and with ๐‘ƒ (๐œ‘) = 0. Then dim๐ป (๐’ฆ๐œ‘
) = 1.
Theorem A also allows us to compute the Lyapunov spectrum. The results in this
case are in Section 6.
For ease of exposition, in most of this paper the potential ๐œ‘ is assumed to be Hoฬˆlder.
In this case existence of an equilibrium state ๐œ‡๐œ‘ was proved by Keller [K1]. However,
as we show in the appendix, all the results here hold for a class of potentials (๐‘†๐‘‰ ๐ผ)
considered in [BT2]. Since we need information on the corresponding ๐œ‘-conformal
measures for our potentials ๐œ‘, as an auxiliary result, we prove the existence of
conformal measures ๐‘š๐œ‘ for potentials ๐œ‘ in the set ๐‘†๐‘‰ ๐ผ. Moreover, we show that
๐‘‘๐œ‡
for the corresponding equilibrium states ๐œ‡๐œ‘ , the density ๐‘‘๐‘š๐œ‘๐œ‘ is uniformly bounded
away from 0 and โˆž. This is used here in order to compare ๐‘‘๐œ‡ฮฆ (๐‘ฅ) and ๐‘‘๐œ‡๐œ‘ (๐‘ฅ), where
8
MIKE TODD
๐œ‡ฮฆ is the equilibrium state for an inducing scheme (๐‘‹, ๐น ), with induced potential
ฮฆ : ๐‘‹ โ†’ โ„ (see below for more details). The equality of ๐‘‘๐œ‡ฮฆ (๐‘ฅ) and ๐‘‘๐œ‡๐œ‘ (๐‘ฅ) for
๐‘ฅ โˆˆ ๐‘‹ is not immediate in either the case ๐œ‘ is Hoฬˆlder or the case ๐œ‘ satis๏ฌes ๐‘†๐‘‰ ๐ผ.
This is in contrast to the situation where the inducing schemes are simply ๏ฌrst
return maps, in which case ๐œ‡ฮฆ is simply a rescaling of the original measure ๐œ‡๐œ‘ and
hence ๐‘‘๐œ‡ฮฆ (๐‘ฅ) = ๐‘‘๐œ‡๐œ‘ (๐‘ฅ). However, we will prove that for the inducing schemes used
here, this rescaling property is still true of the conformal measures ๐‘š๐œ‘ and ๐‘šฮฆ ,
which then allows us to compare ๐‘‘๐œ‡ฮฆ (๐‘ฅ) and ๐‘‘๐œ‡๐œ‘ (๐‘ฅ). It is interesting to note that
the proof of existence of a conformal measure also goes through for potentials of
the form ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ.
Note: After this work was completed, it was communicated to me that J. RiveraLetelier and W. Shen have proved a result ([RS, Corollary 6.3]) which implies that
หœ๐œ‘ (๐›ผ) with ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) throughout. For some details on this see
we can replace ๐’Ÿ๐’ฎ
Section 5.1.
Acknowledgements: I would like to thank H. Bruin, N. Dobbs, G. Iommi, T. Jordan,
W. Shen and an anonymous referee for useful comments on earlier versions of this
paper. I would also like to thank them and D. Rand for fruitful conversations.
2. The maps, the measures and the inducing schemes
Let (๐‘‹, ๐‘“ ) be a dynamical system and ๐œ‘ : ๐‘‹ โ†’ [โˆ’โˆž, โˆž] be a potential. For use
later, we let
๐‘†๐‘› ๐œ‘(๐‘ฅ) := ๐œ‘(๐‘ฅ) + โ‹… โ‹… โ‹… + ๐œ‘ โˆ˜ ๐‘“ ๐‘›โˆ’1 (๐‘ฅ).
We say that a measure ๐‘š, is conformal for (๐‘‹, ๐‘“, ๐œ‘) if ๐‘š(๐‘‹) = 1, and for any Borel
set ๐ด so that ๐‘“ : ๐ด โ†’ ๐‘“ (๐ด) is a bijection,
โˆซ
๐‘š(๐‘“ (๐ด)) =
๐‘’โˆ’๐œ‘ ๐‘‘๐‘š
๐ด
(or equivalently, ๐‘‘๐‘š(๐‘“ (๐‘ฅ)) = ๐‘’
โˆ’๐œ‘(๐‘ฅ)
๐‘‘๐‘š(๐‘ฅ)).
2.1. Hofbauer extensions. We next de๏ฌne the Hofbauer extension, sometimes
also known as a Hofbauer tower. The setup we present here can be applied to
general dynamical systems, since it only uses the structure of dynamically de๏ฌned
cylinders. An alternative way of thinking of the Hofbauer extension speci๏ฌcally for
the case of multimodal interval maps, which explicitly makes use of the critical set,
is presented in [BB].
We ๏ฌrst consider the dynamically de๏ฌned cylinders. We let ๐’ซ0 := ๐ผ and ๐’ซ๐‘› denote
the collection of maximal intervals C๐‘› so that ๐‘“ ๐‘› : C๐‘› โ†’ ๐‘“ ๐‘› (C๐‘› ) is a homeomorphism. We let C๐‘› [๐‘ฅ] denote the member of ๐’ซ๐‘› containing ๐‘ฅ. If ๐‘ฅ โˆˆ โˆช๐‘›โฉพ0 ๐‘“ โˆ’๐‘› (Crit)
there may be more than one such interval, but this ambiguity will not cause us any
problems here.
The Hofbauer extension is de๏ฌned as
โŠ” โŠ”
๐ผห† :=
๐‘“ ๐‘˜ (C๐‘˜ )/ โˆผ
๐‘˜โฉพ0 C๐‘˜ โˆˆ๐’ซ๐‘˜
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
9
โ€ฒ
where ๐‘“ ๐‘˜ (C๐‘˜ ) โˆผ ๐‘“ ๐‘˜ (C๐‘˜โ€ฒ ) as components of the disjoint union ๐ผห† if ๐‘“ ๐‘˜ (C๐‘˜ ) =
โ€ฒ
๐‘“ ๐‘˜ (C๐‘˜โ€ฒ ) as subsets in ๐ผ. Let ๐’Ÿ be the collection of domains of ๐ผห† and ๐œ‹ : ๐ผห† โ†’ ๐ผ
be the natural inclusion map. A point ๐‘ฅ
ห† โˆˆ ๐ผห† can be represented by (๐‘ฅ, ๐ท) where
ห† we can denote the domain ๐ท โˆˆ ๐’Ÿ it
๐‘ฅ
ห† โˆˆ ๐ท for ๐ท โˆˆ ๐’Ÿ and ๐‘ฅ = ๐œ‹(ห†
๐‘ฅ). Given ๐‘ฅ
ห† โˆˆ ๐ผ,
belongs to by ๐ท๐‘ฅห† .
The map ๐‘“ห† : ๐ผห† โ†’ ๐ผห† is de๏ฌned by
๐‘“ห†(ห†
๐‘ฅ) = ๐‘“ห†(๐‘ฅ, ๐ท) = (๐‘“ (๐‘ฅ), ๐ทโ€ฒ )
if there are cylinder sets C๐‘˜ โŠƒ C๐‘˜+1 such that ๐‘ฅ โˆˆ ๐‘“ ๐‘˜ (C๐‘˜+1 ) โŠ‚ ๐‘“ ๐‘˜ (C๐‘˜ ) = ๐ท and
๐ทโ€ฒ = ๐‘“ ๐‘˜+1 (C๐‘˜+1 ). In this case, we write ๐ท โ†’ ๐ทโ€ฒ , giving (๐’Ÿ, โ†’) the structure of a
directed graph. Therefore, the map ๐œ‹ acts as a semiconjugacy between ๐‘“ห† and ๐‘“ :
๐œ‹ โˆ˜ ๐‘“ห† = ๐‘“ โˆ˜ ๐œ‹.
ห† the copy of ๐ผ in ๐ผห† by ๐ท0 . For ๐ท โˆˆ ๐’Ÿ, we de๏ฌne lev(๐ท)
We denote the โ€˜baseโ€™ of ๐ผ,
to be the length of the shortest path ๐ท0 โ†’ โ‹… โ‹… โ‹… โ†’ ๐ท starting at the base ๐ท0 . For
each ๐‘… โˆˆ โ„•, let ๐ผห†๐‘… be the compact part of the Hofbauer extension de๏ฌned by the
disjoint union
๐ผห†๐‘… := โŠ”{๐ท โˆˆ ๐’Ÿ : lev(๐ท) โฉฝ ๐‘…}.
For maps in โ„ฑ, we can say more about the graph structure of (๐’Ÿ, โ†’) since Lemma
1 of [BT4] implies that if ๐‘“ โˆˆ โ„ฑ then there is a closed primitive subgraph ๐’Ÿ๐’ฏ of ๐’Ÿ.
That is, for any ๐ท, ๐ทโ€ฒ โˆˆ ๐’Ÿ๐’ฏ there is a path ๐ท โ†’ โ‹… โ‹… โ‹… โ†’ ๐ทโ€ฒ ; and for any ๐ท โˆˆ ๐’Ÿ๐’ฏ ,
if there is a path ๐ท โ†’ ๐ทโ€ฒ then ๐ทโ€ฒ โˆˆ ๐’Ÿ๐’ฏ too. We can denote the disjoint union of
these domains by ๐ผห†๐’ฏ . The same lemma says that if ๐‘“ โˆˆ โ„ฑ then ๐œ‹(๐ผห†๐’ฏ ) = ฮฉ and ๐‘“ห†
is transitive on ๐ผห†๐’ฏ .
Given ๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” , we say that ๐œ‡ lifts to ๐ผห† if there exists an ergodic ๐‘“ห†-invariant
probability measure ๐œ‡
ห† on ๐ผห† such that ๐œ‡
ห† โˆ˜ ๐œ‹ โˆ’1 = ๐œ‡. For ๐‘“ โˆˆ โ„ฑ, if ๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” and
ห† see [K2, BK].
๐œ†(๐œ‡) > 0 then ๐œ‡ lifts to ๐ผ,
For convenience later, we let ๐œ„ := ๐œ‹โˆฃโˆ’1
๐ท0 . Note that there is a natural distance
function ๐‘‘๐ผห† within domains ๐ท (but not between them) induced from the Euclidean
metric on ๐ผ.
2.2. Inducing schemes. We say that (๐‘‹, ๐น, ๐œ ) is an inducing scheme for (๐ผ, ๐‘“ ) if
โˆ™ ๐‘‹ is an interval containing a ๏ฌnite or countable collection of disjoint intervals ๐‘‹๐‘–
such that ๐น maps each ๐‘‹๐‘– di๏ฌ€eomorphically onto ๐‘‹, with bounded distortion
on all iterates (i.e. there exists ๐พ > 0 so that for if ๐‘ฅ, ๐‘ฆ are in the same domain
of ๐น ๐‘› then 1/๐พ โฉฝ ๐ท๐น ๐‘› (๐‘ฅ)/๐ท๐น ๐‘› (๐‘ฆ) โฉฝ ๐พ);
โˆ™ ๐œ โˆฃ๐‘‹๐‘– = ๐œ๐‘– for some ๐œ๐‘– โˆˆ โ„• and ๐น โˆฃ๐‘‹๐‘– = ๐‘“ ๐œ๐‘– . If ๐‘ฅ โˆˆ
/ โˆช๐‘– ๐‘‹๐‘– then ๐œ (๐‘ฅ) = โˆž.
The function ๐œ : โˆช๐‘– ๐‘‹๐‘– โ†’ โ„• is called the inducing time. It may happen that ๐œ (๐‘ฅ) is
the ๏ฌrst return time of ๐‘ฅ to ๐‘‹, but that is certainly not the general case. For ease
of notation, we will often write (๐‘‹, ๐น ) = (๐‘‹, ๐น, ๐œ ). In this paper we can always
assume that every inducing scheme is uniformly expanding.
10
MIKE TODD
Given an inducing scheme (๐‘‹, ๐น, ๐œ ), we say that a measure ๐œ‡๐น on ๐‘‹ is a lift of ๐œ‡
on ๐ผ if for all ๐œ‡-measurable subsets ๐ด โŠ‚ ๐ผ,
๐œ‡(๐ด) = โˆซ
๐‘– โˆ’1
โˆ‘ ๐œโˆ‘
1
๐œ‡๐น (๐‘‹๐‘– โˆฉ ๐‘“ โˆ’๐‘˜ (๐ด)).
๐œ ๐‘‘๐œ‡๐น ๐‘–
๐‘‹
(6)
๐‘˜=0
Conversely, given a measure ๐œ‡๐น for (๐‘‹, ๐น ), we say that ๐œ‡๐น projects to ๐œ‡ if (6)
holds. We denote
{
}
(๐‘‹, ๐น )โˆž := ๐‘ฅ โˆˆ ๐‘‹ : ๐œ (๐น ๐‘˜ (๐‘ฅ)) is de๏ฌned for all ๐‘˜ โฉพ 0 .
We call a measure ๐œ‡ compatible to the inducing scheme (๐‘‹, ๐น, ๐œ ) if
โˆ™ ๐œ‡(๐‘‹) > 0 and ๐œ‡(๐‘‹ โˆ– (๐‘‹, ๐น )โˆž ) = 0; and
โˆซ
โˆ™ there exists a measure ๐œ‡๐น which projects to ๐œ‡ by (6), and in particular ๐‘‹ ๐œ ๐‘‘๐œ‡๐น <
โˆž.
For a potential ๐œ‘ : ๐ผ โ†’ โ„, we de๏ฌne the induced potential ฮฆ : ๐‘‹ โ†’ โ„ for an
inducing scheme (๐‘‹, ๐น, ๐œ ) as
ฮฆ(๐‘ฅ) := ๐‘†๐œ (๐‘ฅ) ๐œ‘(๐‘ฅ) = ๐œ‘(๐‘ฅ) + . . . + ๐œ‘ โˆ˜ ๐‘“ ๐œ (๐‘ฅ)โˆ’1 (๐‘ฅ)
whenever ๐œ (๐‘ฅ) < โˆž. We denote ฮฆ๐‘– := sup๐‘ฅโˆˆ๐‘‹๐‘– ฮฆ(๐‘ฅ). Note that sometimes we
will abuse notation and write (๐‘‹, ๐น, ฮฆ) when we are particularly interested in the
induced potential for the inducing scheme. The following is known as Abramovโ€™s
formula, see for example [Z, PSe].
โˆซ
Lemma 1. Let ๐œ‡๐น be an ergodic invariant measure on (๐‘‹,
(โˆซ ๐น, ๐œ ) )such that ๐œ ๐‘‘๐œ‡๐น <
๐œ ๐‘‘๐œ‡๐น โ„Ž๐œ‡ (๐‘“ ). Moreover,
โˆž and with projected measure ๐œ‡. Then โ„Ž๐œ‡๐น (๐น ) =
if
๐œ‘
:
๐ผ
โ†’
โ„
is
a
potential,
and
ฮฆ
the
corresponding
induced potential, then
(โˆซ
)โˆซ
โˆซ
ฮฆ ๐‘‘๐œ‡๐น =
๐œ ๐‘‘๐œ‡๐น
๐œ‘ ๐‘‘๐œ‡.
Fixing ๐‘“ , we let
โ„ณ+ := {๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” : ๐œ†๐‘“ (๐œ‡) > 0}, and for ๐œ€ > 0, โ„ณ๐œ€ := {๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” : โ„Ž๐œ‡ โฉพ ๐œ€}.
For a proof of the following result, see [BT4, Theorem 3].
Theorem 1. If ๐‘“ โˆˆ โ„ฑ and ๐œ‡ โˆˆ โ„ณโˆซ+ , then there is an inducing scheme (๐‘‹, ๐น, ๐œ )
and a measure ๐œ‡๐น on ๐‘‹ such that ๐‘‹ ๐œ ๐‘‘๐œ‡๐น < โˆž. Here ๐œ‡๐น is the lifted measure
of ๐œ‡ (i.e., ๐œ‡ and ๐œ‡๐น are related by (6)). Moreover, (๐‘‹, ๐น )โˆž = ๐‘‹ โˆฉ ฮฉ.
Conversely, if (๐‘‹,
โˆซ ๐น, ๐œ ) is an inducing scheme and ๐œ‡๐น an ergodic ๐น -invariant measure such that ๐‘‹ ๐œ ๐‘‘๐œ‡๐น < โˆž, then ๐œ‡๐น projects to a measure ๐œ‡ โˆˆ โ„ณ+ .
The proof of the above theorem uses the theory of [B, Section 3]. The main idea
is that the Hofbauer extension can be used to produce inducing schemes. We pick
ห† โŠ‚ ๐ผห†๐’ฏ and use a ๏ฌrst return map to ๐‘‹
ห† to give the inducing scheme on ๐‘‹ := ๐œ‹(๐‘‹).
ห†
๐‘‹
We will always choose ๐‘‹ to be a cylinder in ๐’ซ๐‘› , for various values of ๐‘› โˆˆ โ„•. As
ห† and thus the inducing schemes they give rise to, will be of two
in [BT4], sets ๐‘‹,
types.
ห† is an interval in a single domain ๐ท โˆˆ ๐’Ÿ๐’ฏ . Then for ๐‘ฅ โˆˆ ๐‘‹
Type A: The set ๐‘‹
ห† so that ๐œ‹(ห†
there exists a unique ๐‘ฅ
ห† โˆˆ๐‘‹
๐‘ฅ) = ๐‘ฅ. Then ๐œ (๐‘ฅ) is de๏ฌned as the ๏ฌrst
ห†
ห† so that ๐‘‹ โˆˆ ๐’ซ๐‘› for some ๐‘›, and ๐‘‹
ห† is compactly
return time of ๐‘ฅ
ห† to ๐‘‹. We choose ๐‘‹
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
11
contained in ๐ท. These properties mean that (๐‘‹, ๐น, ๐œ ) is an inducing scheme which
is extendible. That is to say, letting ๐‘‹ โ€ฒ = ๐œ‹(๐ท), for any domain ๐‘‹๐‘– of (๐‘‹, ๐น ) there
is an extension of ๐‘“ ๐œ๐‘– to ๐‘‹๐‘–โ€ฒ โŠƒ ๐‘‹๐‘– so that ๐‘“ ๐œ๐‘– : ๐‘‹๐‘–โ€ฒ โ†’ ๐‘‹ โ€ฒ is a homeomorphism. By
the distortion [SV, Theorem C(2)], this means that (๐‘‹, ๐น ) has uniformly bounded
ห† โˆ‚๐ท).
distortion, with distortion constant depending on ๐›ฟ := ๐‘‘๐ผห†(๐‘‹,
Type B: We ๏ฌx ๐›ฟ > 0 and some interval ๐‘‹ โˆˆ ๐’ซ๐‘› for some ๐‘›. We say that
the interval ๐‘‹ โ€ฒ is a ๐›ฟ-scaled neighbourhood of ๐‘‹ if, denoting the left and right
components of ๐‘‹ โ€ฒ โˆ– ๐‘‹ by ๐ฟ and ๐‘… respectively, we have โˆฃ๐ฟโˆฃ, โˆฃ๐‘…โˆฃ = ๐›ฟโˆฃ๐‘‹โˆฃ. We ๏ฌx
ห† = โŠ”{๐ท โˆฉ ๐œ‹ โˆ’1 (๐‘‹) : ๐ท โˆˆ ๐’Ÿ๐’ฏ , ๐œ‹(๐ท) โŠƒ ๐‘‹ โ€ฒ }. Let ๐‘Ÿ ห† denote
such an ๐‘‹ โ€ฒ and let ๐‘‹
๐‘‹
ห† Given ๐‘ฅ โˆˆ ๐‘‹, for any ๐‘ฅ
ห† with ๐œ‹(ห†
the ๏ฌrst return time to ๐‘‹.
ห† โˆˆ๐‘‹
๐‘ฅ) = ๐‘ฅ, we set
๐œ (๐‘ฅ) = ๐‘Ÿ๐‘‹ห† (ห†
๐‘ฅ). In [B] it is shown that by the setup, this time is independent of the
โ€ฒ
๐œ๐‘–
choice of ๐‘ฅ
ห† in ๐œ‹โˆฃโˆ’1
: ๐‘‹๐‘–โ€ฒ โ†’ ๐‘‹ โ€ฒ
ห† (๐‘ฅ). Also for each ๐‘‹๐‘– there exists ๐‘‹๐‘– โŠƒ ๐‘‹๐‘– so that ๐‘“
๐‘‹
is a homeomorphism, and so, again by the Koebe Lemma, ๐น has uniformly bounded
distortion, with distortion constant depending on ๐›ฟ.
We will need to deal with both kinds of inducing scheme since we want information
on the tail behaviour, i.e., the measure of {๐œ โฉพ ๐‘›} for di๏ฌ€erent measures. As in
Propositions 2 and 3 below, for measures close to ๐œ‡๐œ‘ we have good tail behaviour
for schemes of type A; and for measures close to the acip ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ we have good
tail behaviour for schemes of type B. We would like to point out that any type
A inducing time ๐œ1 can be expressed as โˆซa power of a type B inducing time ๐œ2 ,
i.e., ๐œ1 = ๐œ2๐‘ where ๐‘ : ๐‘‹ โ†’ โ„•. Moreover, ๐‘ ๐‘‘๐œ‡1 < โˆž for the induced measure ๐œ‡1
for the type A inducing scheme. This type of relation is considered by Zweimuฬˆller
[Z].
2.3. Method of proof. The main di๏ฌƒculty in the proof of Theorem A is to get an
upper bound on the dimension spectrum in terms of ๐‘‡๐œ‘ . To do this, we show that
there are inducing schemes which have su๏ฌƒcient multifractal information to give
หœ๐œ‘ . Then we can use Iommiโ€™s main theorem in [I1], which
an upper bound on ๐’Ÿ๐’ฎ
gives upper bounds in terms of the ๐‘‡ for the inducing scheme. It is the use of these
inducing schemes which is the key to this paper.
We ๏ฌrst show in Section 3 that for a given range of ๐›ผ there
โˆซ are inducing schemes
which are compatible to any measure ๐œ‡ which has โ„Ž๐œ‡ + ๐œ“๐‘ž ๐‘‘๐œ‡ su๏ฌƒciently large,
where ๐‘ž depends on ๐›ผ. In doing this we will give most of the theory of thermodynamic formalism needed in this paper. For example, we show the existence of
equilibrium states on ๐’ฆ๐›ผ which will turn out to have full dimension (these also give
the lower bound for ๐’Ÿ๐’ฎ ๐œ‘ ).
In Section 4, we prove that given ๐œ† > 0, there is a ๏ฌnite set of inducing schemes that
โ€˜seesโ€™ all points ๐‘ฅ โˆˆ ๐ผ with ๐œ†๐‘“ (๐‘ฅ) โฉพ ๐œ†, up to set of small Hausdor๏ฌ€ dimension. This
means that we can ๏ฌx inducing schemes which contain all the relevant measures,
as above, and also contain the multifractal data. Then in Section 5 we prove
Theorem A and Proposition 1. In Section 6 we show how our results immediately
give us information on the Lyapunov spectrum. In the appendix we show that
pointwise dimensions for induced measures and the original ones are the same, also
extending our results to potentials in the class ๐‘†๐‘‰ ๐ผ.
12
MIKE TODD
3. The range of parameters
In this section we determine what ๐‘ˆ is in Theorem A. In order to do so, we
must introduce most of the theory of the thermodynamical properties for inducing
schemes required in this paper. The ๏ฌrst step is to show that if ๐›ผ(๐‘ž) โˆˆ ๐‘ˆ , then the
equilibrium states for ๐œ“๐‘ž are forced to have positive entropy. By Theorem 1, this
ensures that the equilibrium states must be compatible to some inducing scheme,
and thus we will be able to use Iommiโ€™s theory. In order to do this we need to show
that ๐‘‡๐œ‘ (๐‘ž) is ๏ฌnite for ๐‘ž โฉพ 0.
Lemma 2. Let ๐‘“ โˆˆ โ„ฑ and ๐œ‘ : ๐ผ โ†’ โ„ be a potential satisfying (4) and with
๐‘ƒ (๐œ‘) = 0. If ๐‘ž โฉพ 0 then the function ๐‘‡๐œ‘ (๐‘ž) is ๏ฌnite. If (1) holds then ๐‘‡๐œ‘ (๐‘ž) is
also ๏ฌnite for all ๐‘ž in a neighbourhood of 0. In any case, ๐‘‡๐œ‘ is strictly decreasing
on (0, 1).
Proof. We begin without needing to assume (1). We ๏ฌrst show that our assumptions
imply that ๐œ‘ < 0. By (4) and ๐‘ƒ (๐œ‘) = 0, we have
โˆซ
0 = ๐‘ƒ (๐œ‘) โฉพ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) + ๐œ‘ ๐‘‘๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) โฉพ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) + inf ๐œ‘ > sup ๐œ‘
where ๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) denotes the measure of maximal entropy (for more details of this
measure, see Section 6). Hence ๐œ‘ < 0 as required.
If ๐‘ž โฉพ 0 then ๐‘ž๐œ‘ โฉฝ 0. Therefore,
๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) โฉฝ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ).
Since ๐‘ƒ (โˆ’ log โˆฃ๐ท๐‘“ โˆฃ) โฉฝ 0 and ๐‘ก 7โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) is decreasing, this implies that
๐‘‡๐œ‘ (๐‘ž) โฉฝ 1. It remains to check ๐‘‡๐œ‘ (๐‘ž) โˆ•= โˆ’โˆž.
We have
๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) โฉพ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž inf ๐œ‘) = ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) + ๐‘ž inf ๐œ‘.
It is easy to show that
lim ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) = โˆž.
๐‘กโ†’โˆ’โˆž
Hence there exists ๐‘ก0 < 0 such that
๐‘ƒ (โˆ’๐‘ก0 log โˆฃ๐ท๐‘“ โˆฃ) โˆ’ ๐‘ž inf ๐œ‘ > 0.
That is
๐‘ƒ (โˆ’๐‘ก0 log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) > 0,
so ๐‘‡๐œ‘ (๐‘ž) โˆˆ [๐‘ก0 , 1]. Since the function ๐‘ก โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) is continuous, the
Intermediate Value Theorem implies that there exists ๐‘‡๐œ‘ (๐‘ž) โˆˆ [๐‘ก0 , 1] such that
๐‘‡๐œ‘ (๐‘ž) = inf{๐‘ก โˆˆ โ„ : ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) = 0},
as required.
If (1) holds then there exists ๐‘ก1 > 1 such that ๐‘ƒ (โˆ’๐‘ก1 log โˆฃ๐ท๐‘“ โˆฃ) = โˆ’๐œ€ < 0 and so for
๐‘ž โˆˆ (๐œ€/ inf ๐œ‘, 0)
๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) โฉฝ ๐‘ƒ (โˆ’๐‘ก1 log โˆฃ๐ท๐‘“ โˆฃ) + ๐‘ž inf ๐œ‘ < 0,
so ๐‘‡๐œ‘ (๐‘ž) โฉฝ ๐‘ก1 . The lower bound on ๐‘‡๐œ‘ (๐‘ž) follows as above.
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
13
To show that ๐‘‡๐œ‘ is decreasing, note that since ๐œ‘ < 0, if ๐‘ž, ๐‘ž + ๐œ€ โˆˆ (0, 1),
๐‘ƒ (โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + (๐‘ž + ๐œ€)๐œ‘) โฉฝ ๐‘ƒ (โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) + ๐œ€ sup ๐œ‘ < 0.
Since by [Pr], for any measure ๐œ‡ โˆˆ โ„ณ, ๐œ†(๐œ‡) โฉพ 0 this implies that ๐‘‡๐œ‘ (๐‘ž + ๐œ€) <
๐‘‡๐œ‘ (๐‘ž).
โ–ก
We let
{
๐บ๐œ€ (๐œ‘) :=
โˆซ
๐‘ž : โˆƒ๐›ฟ < 0 such that โ„Ž๐œ‡ +
}
๐œ“๐‘ž ๐‘‘๐œ‡ > ๐›ฟ โ‡’ โ„Ž๐œ‡ > ๐œ€ .
The next lemma shows that most of the relevant parameters ๐‘ž which we are interested in must lie in ๐บ๐œ€ (๐œ‘).
Lemma 3. Let ๐‘“ โˆˆ โ„ฑ and ๐œ‘ : ๐ผ โ†’ โ„ be a potential satisfying (4) and with
๐‘ƒ (๐œ‘) = 0. Suppose that (3) holds for ๐‘“ . There exist ๐œ€ > 0, ๐‘ž1 < 1 < ๐‘ž2 so
that (๐‘ž1 , ๐‘ž2 ) โŠ‚ ๐บ๐œ€ (๐œ‘). If we take ๐œ€ > 0 arbitrarily close to 0 then we can take ๐‘ž1
arbitrarily close to 0. If (1) holds then [0, 1] โŠ‚ (๐‘ž1 , ๐‘ž2 ).
Proof. We ๏ฌrst prove the existence of ๐‘ž1 < 1 such that (๐‘ž1 , 1] โŠ‚ ๐บ๐œ€ (๐œ‘). As in the
proof of Lemma 2, we have ๐œ‘ < 0. Let ๐‘ž1 be any value in (0, 1]. Then suppose that
for some ๐›ฟ < 0, a measure ๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” has
โˆซ
โ„Ž๐œ‡ + โˆ’๐‘‡๐œ‘ (๐‘ž1 ) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž1 ๐œ‘ ๐‘‘๐œ‡ > ๐›ฟ
for ๐‘‡๐œ‘ as in (5). Recall that by [Pr], ๐œ†(๐œ‡) โฉพ 0 since we excluded the possibility of
attracting cycles for maps ๐‘“ โˆˆ โ„ฑ. Then
โˆซ
โ„Ž๐œ‡ > ๐›ฟ + ๐‘‡๐œ‘ (๐‘ž1 ) log โˆฃ๐ท๐‘“ โˆฃ โˆ’ ๐‘ž1 ๐œ‘ ๐‘‘๐œ‡ โฉพ ๐›ฟ + ๐‘ž1 โˆฃ sup ๐œ‘โˆฃ > 0.
If ๐‘ž1 was chosen very close to 0 then ๐œ€ > 0 must be chosen small too.
We can similarly show the existence of ๐‘ž2 > 1 such that [1, ๐‘ž2 ) โŠ‚ ๐บ๐œ€ (๐œ‘), the only
di๏ฌ€erence in this case being that ๐‘ž > 1 implies that ๐‘‡๐œ‘ (๐‘ž) < 0. So we can take ๐œ‡
as above and obtain
โˆซ
โˆซ
โ„Ž๐œ‡ > ๐›ฟ + ๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ โˆ’ ๐‘ž๐œ‘ ๐‘‘๐œ‡ โฉพ ๐›ฟ + ๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ ๐‘‘๐œ‡ + ๐‘žโˆฃ sup ๐œ‘โˆฃ.
โˆซ
Since ๐‘‡๐œ‘ (๐‘ž) is close to 0 for ๐‘ž close to 1 and since log โˆฃ๐ท๐‘“ โˆฃ ๐‘‘๐œ‡ < log sup๐‘ฅโˆˆ๐ผ โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ,
for ๐‘ž2 > 1 close to 1, the above must be strictly positive.
Suppose now that (1) holds. Then by [BS], there exists
โˆซ ๐œ‚ > 0 so that any invariant
measure ๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” must have ๐œ†๐‘“ (๐œ‡) > ๐œ‚. So if โ„Ž๐œ‡ + โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘ ๐‘‘๐œ‡ > ๐›ฟ,
then
โˆซ
โ„Ž๐œ‡ > ๐›ฟ +
๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ โˆ’ ๐‘ž๐œ‘ ๐‘‘๐œ‡ โฉพ ๐›ฟ + ๐‘‡๐œ‘ (๐‘ž)๐œ‚ + ๐‘žโˆฃ sup ๐œ‘โˆฃ.
For ๐‘ž close to 0, ๐‘‡๐œ‘ (๐‘ž) must be close to 1, so we can choose ๐›ฟ and ๐‘ž1 < 0 so that
the lemma holds.
โ–ก
The sets Cover(๐œ€) and SCover(๐œ€): Let ๐œ€ > 0. By [BT4, Remark 6] there exists
ห† โŠ‚ ๐ผห†๐’ฏ so that ๐œ‡ โˆˆ โ„ณ๐œ€ implies that ๐œ‡
ห† > ๐œ‚. Moreover
๐œ‚ > 0 and a compact set ๐ธ
ห†(๐ธ)
ห†
ห†
ห†
ห† is
๐ธ can be taken inside ๐ผ๐‘… โˆ– ๐ต๐›ฟ (โˆ‚ ๐ผ) for some ๐‘… โˆˆ โ„• and ๐›ฟ > 0. (Here ๐ต๐›ฟ (โˆ‚ ๐ผ)
ห†
a ๐›ฟ-neighbourhood of โˆ‚ ๐ผ with respect to the distance function ๐‘‘๐ผห†). As in [BT4,
14
MIKE TODD
ห† can be covered with sets ๐‘‹
ห†1, . . . , ๐‘‹
ห† ๐‘› so that each ๐‘‹
ห† ๐‘˜ acts as the set
Section 4.2], ๐ธ
ห†
which gives the inducing schemes (๐‘‹๐‘˜ , ๐น๐‘˜ ) (where ๐‘‹๐‘˜ = ๐œ‹(๐‘‹๐‘˜ )) as in Theorem 1.
We will suppose that these sets are either all of type A, or all of type B. This
means that any ๐œ‡ โˆˆ โ„ณ๐œ€ must be compatible to at least one of (๐‘‹๐‘˜ , ๐น๐‘˜ ). We denote
ห†1, . . . , ๐‘‹
ห† ๐‘› } and the corresponding set of schemes by ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€)
๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€) = {๐‘‹
if we are dealing with type A inducing schemes. Similarly we use ๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€) and
๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€) for type B inducing schemes. If a result applies to schemes of both
types then we omit the superscript.
We let {๐‘‹๐‘˜,๐‘– }๐‘– denote the domains of the inducing scheme (๐‘‹๐‘˜ , ๐น๐‘˜ ) and we denote
the value of ๐œ๐‘˜ on ๐‘‹๐‘˜,๐‘– by ๐œ๐‘˜,๐‘– . Given (๐‘‹๐‘˜ , ๐น๐‘˜ , ๐œ๐‘˜ ), we let ฮจ๐‘ž,๐‘˜ denote the induced
potential for ๐œ“๐‘ž .
From this setup, given ๐‘ž โˆˆ ๐บ๐œ€ (๐œ‘) there mustโˆซ exist a sequence of measures {๐œ‡๐‘› }๐‘› โŠ‚
โ„ณ๐œ€ and a scheme (๐‘‹๐‘˜ , ๐น๐‘˜ ) so that โ„Ž๐œ‡๐‘› + ๐œ“๐‘ž ๐‘‘๐œ‡๐‘› โ†’ ๐‘ƒ (๐œ“๐‘ž ) = 0 and ๐œ‡๐‘› are all
compatible to (๐‘‹๐‘˜ , ๐น๐‘˜ ). Later this fact will allow us to use [BT4, Proposition 1] to
study equilibrium states for ๐œ“๐‘ž .
If ๐œ : ๐ผ โ†’ โ„ is some potential and (๐‘‹, ๐น ) is an inducing scheme with induced
potential ฮฅ : ๐‘‹ โ†’ โ„, we let ฮฅ๐‘– := sup๐‘ฅโˆˆ๐‘‹๐‘– ฮฅ(๐‘ฅ). We let ๐’ซ๐‘˜๐น be the set of ๐‘˜cylinders generated by (๐‘‹, ๐น ). We de๏ฌne the ๐‘˜th variation as
๐‘‰๐‘˜ (ฮฅ) := sup {โˆฃฮฅ(๐‘ฅ) โˆ’ ฮฅ(๐‘ฆ)โˆฃ : ๐‘ฅ, ๐‘ฆ โˆˆ C๐‘˜ }.
C๐‘˜ โˆˆ๐’ซ๐‘˜๐น
We say that ฮฅ is locally Hoฬˆlder continuous if there exists ๐›ผ > 0 so that ๐‘‰๐‘˜ (ฮฅ) =
๐‘‚(๐‘’โˆ’๐›ผ๐‘˜ ). We let
โˆ‘
โˆ‘
๐‘0 (ฮฅ) :=
๐‘’ฮฅ๐‘– , and ๐‘0โˆ— (ฮฅ) :=
๐œ๐‘– ๐‘’ฮฅ๐‘– .
(7)
๐‘–
๐‘–
As in [S2], if ฮฅ is locally Hoฬˆlder continuous, then ๐‘0 (ฮฅ) < โˆž implies ๐‘ƒ (ฮฅ) < โˆž.
We say that a measure ๐œ‡ satis๏ฌes the Gibbs property with constant ๐‘ƒ โˆˆ โ„ for
(๐‘‹, ๐น, ฮฅ) if there exists ๐พฮฆ , ๐‘ƒ โˆˆ โ„ so that
๐œ‡(C๐‘› )
1
โฉฝ ๐‘† ฮฅ(๐‘ฅ)โˆ’๐‘›๐‘ƒ โฉฝ ๐พฮฆ
๐‘›
๐พฮฆ
๐‘’
for every ๐‘›-cylinder C๐‘› โˆˆ ๐’ซ๐‘›๐น and all ๐‘ฅ โˆˆ C๐‘› .
The following is the main result of [BT2] (in fact it is proved for a larger class of
potentials there).
Proposition 2. Given ๐‘“ โˆˆ โ„ฑ satisfying (3) and ๐œ‘ : ๐ผ โ†’ โ„ a Hoฬˆlder potential
satisfying (4) and with ๐‘ƒ (๐œ‘) = 0, then for any ๐œ€ > 0 and any (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€)
with induced potential ฮฆ:
โˆ‘
(a) There exists ๐›ฝฮฆ > 0 such that ๐œ๐‘– =๐‘› ๐‘’ฮฆ๐‘– = ๐‘‚(๐‘’โˆ’๐‘›๐›ฝฮฆ );
(b) ฮฆ is locally Hoฬˆlder continuous and ๐‘ƒ (ฮฆ) = 0;
(c) There exists a unique ฮฆ-conformal measure ๐‘šฮฆ , and a unique equilibrium state
๐œ‡ฮฆ for (๐‘‹, ๐น, ฮฆ).
๐‘‘๐œ‡ฮฆ
โฉฝ ๐ถฮฆ ;
(d) There exists ๐ถฮฆ so that ๐ถ1ฮฆ โฉฝ ๐‘‘๐‘š
ฮฆ
(e) There exists a unique equilibrium state (๐œ‡๐œ‘ for (๐ผ, ๐‘“, ๐œ‘);
)
(f ) The map ๐‘ก 7โ†’ ๐‘ƒ (๐‘ก๐œ‘) is analytic for ๐‘ก โˆˆ
โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
sup ๐œ‘โˆ’inf ๐œ‘ , sup ๐œ‘โˆ’inf ๐œ‘
.
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
15
The existence of the equilibrium state ๐œ‡๐œ‘ under even weaker conditions than these
was proved by Keller [K1]. However, we need all of the properties above to complete
our analysis of the dimension spectrum of ๐œ‡๐œ‘ .
The following is proved in [BT4]. For the same result for unimodal maps satisfying
(1) see [BK], which used tools from [KN].
Proposition 3. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes (2) and let
๐œ“(๐‘ฅ) = ๐œ“๐‘ก (๐‘ฅ) := โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ โˆ’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ).
Then there exists ๐‘ก0 < 1 such that for any ๐‘ก โˆˆ (๐‘ก0 , 1) there is ๐œ€ = ๐œ€(๐‘ก) > 0 so that
for any (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€) with induced potential ฮจ:
โˆ‘
(a) There exists ๐›ฝ๐ท๐น > 0 such that ๐œ๐‘– =๐‘› ๐‘’ฮจ๐‘– = ๐‘‚(๐‘’โˆ’๐‘›๐›ฝ๐ท๐น );
(b) ฮจ is locally Hoฬˆlder continuous and ๐‘ƒ (ฮจ) = 0;
(c) There exists a unique ฮจ-conformal measure ๐‘šฮจ , and a unique equilibrium state
๐œ‡ฮจ for (๐‘‹, ๐น, ฮจ);
๐‘‘๐œ‡ฮจ
(d) There exists ๐ถฮจ so that ๐ถ1ฮจ โฉฝ ๐‘‘๐‘š
โฉฝ ๐ถฮจ ;
ฮจ
(e) There exists a unique equilibrium state ๐œ‡๐œ“ for (๐ผ, ๐‘“, ๐œ“) and thus for (๐ผ, ๐‘“, โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ);
(f ) The map ๐‘ก 7โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) is analytic in (๐‘ก0 , 1).
If ๐‘“ โˆˆ โ„ฑ satis๏ฌes (1), then this proposition can be extended so that ๐‘ก can be taken
in a two-sided neighbourhood of 1.
In Proposition 2 both ๐‘šฮฆ and ๐œ‡ฮฆ satisfy the Gibbs property, and in Proposition 3
both ๐‘šฮจ and ๐œ‡ฮจ satisfy the Gibbs property: in all these cases, the Gibbs constant ๐‘ƒ
is 0. By the Gibbs property, part (a) of Proposition 2 and 3 imply that ๐œ‡ฮฆ ({๐œ = ๐‘›})
and ๐œ‡ฮจ ({๐œ = ๐‘›}) respectively decay exponentially. These systems are referred to
as having exponential tails.
One consequence of the ๏ฌrst item in both of these propositions, as noted in [BT2,
Theorem 10] and [BT4, Theorem 5], is that we can consider combinations of the
potentials above: ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ + ๐‘ ๐œ‘(๐‘ฅ) โˆ’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ ๐œ‘). We can derive
the same results for this potential for ๐‘ก close to 1 and ๐‘  su๏ฌƒciently close to 0, or
alternatively for ๐‘  close to 1 and ๐‘ก su๏ฌƒciently close to 0. Note that by [KN, BK] this
can also be shown in the setting of unimodal maps satisfying (1) with potentials ๐œ‘
of bounded variation.
If (๐‘‹, ๐น ) is an inducing scheme with induced potential ฮฆ : ๐‘‹ โ†’ โ„, we de๏ฌne
๐‘ƒ ๐ต๐œ€ (ฮฆ) := {๐‘ž โˆˆ ๐บ๐œ€ (๐œ‘) : โˆƒ๐›ฟ > 0 s.t. ๐‘0โˆ— (ฮจ๐‘ž + ๐œ ๐›ฟ) < โˆž} .
Lemma 4. For (๐‘‹๐‘˜ , ๐น๐‘˜ ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€), if ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (ฮฆ๐‘˜ ) then ๐‘ƒ (ฮจ๐‘ž,๐‘˜ ) = 0. Moreover, there is an equilibrium state ๐œ‡ฮจ๐‘ž,๐‘˜ for (๐‘‹๐‘˜ , ๐น๐‘˜ , ฮจ๐‘ž,๐‘˜ ) and the corresponding
projected equilibrium state ๐œ‡๐œ“๐‘ž is compatible to any (๐‘‹๐‘— , ๐น๐‘— ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€).
In this lemma, ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€) can be ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€) or ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€). Note that by [BT4,
Proposition 1], if for any (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€) and ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (ฮฆ), then there exists
an equilibrium state ๐œ‡ฮจ๐‘ž for (๐‘‹, ๐น, ฮจ๐‘ž ), as well as a unique equilibrium state ๐œ‡๐œ“๐‘ž
for (๐ผ, ๐‘“, ๐œ“๐‘ž ).
16
MIKE TODD
Proof. Firstly we have ๐‘ƒ (ฮจ๐‘ž,๐‘˜ ) = 0 for the inducing scheme (๐‘‹๐‘˜ , ๐น๐‘˜ ) by Case 3 of
[BT4, Proposition 1]. Secondly we can replace (๐‘‹๐‘˜ , ๐น๐‘˜ ) with any inducing scheme
(๐‘‹๐‘— , ๐น๐‘— ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€) by [BT4, Lemma 9].
โ–ก
This lemma means that if ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (ฮฆ๐‘˜ ) for (๐‘‹๐‘˜ , ๐น๐‘˜ ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€), then ๐‘ž โˆˆ
๐‘ƒ ๐ต๐œ€ (ฮฆ๐‘— ) for any (๐‘‹๐‘— , ๐น๐‘— ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€). Therefore, we can denote this set of ๐‘ž by
๐‘ƒ ๐ต๐œ€๐ด (๐œ‘). Since the same argument holds for inducing schemes of type B, we can
analogously de๏ฌne the set ๐‘ƒ ๐ต๐œ€๐ต (๐œ‘). Note that ๐œ€โ€ฒ < ๐œ€ implies ๐‘ƒ ๐ต๐œ€โ€ฒ (๐œ‘) โŠƒ ๐‘ƒ ๐ต๐œ€ (๐œ‘).
We de๏ฌne
๐‘ƒ ๐ต(๐œ‘) := โˆช๐œ€>0 ๐‘ƒ ๐ต๐œ€ (๐œ‘).
Remark 3. The structure of inducing schemes here means that we could just ๏ฌx a
single inducing scheme which has all the required thermodynamic properties in this
section. However, in Section 4 we need to consider all the inducing schemes here
in order to investigate the dimension spectrum.
In [I1], the following conditions are given:
๐‘ž โˆ— := inf{๐‘ž : there exists ๐‘ก โˆˆ โ„ such that ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐น โˆฃ + ๐‘žฮฆ) โฉฝ 0},
(note that for the inducing schemes it is possible to ๏ฌnd measures with arbitrarily
large Lyapunov exponent so pressure can be in๏ฌnite), and
{
inf{๐‘ก โˆˆ โ„ : ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐น โˆฃ + ๐‘žฮฆ) โฉฝ 0} if ๐‘ž โฉพ ๐‘ž โˆ— ,
๐‘‡ฮฆ (๐‘ž) :=
โˆž
if ๐‘ž < ๐‘ž โˆ— .
The following is the main result of [I1, Theorem 4.1]. We can apply it to our
schemes (๐‘‹, ๐น ) since they can be seen as the full shift on countably many symbols
(ฮฃ, ๐œŽ). In applying this theorem, we choose the metric ๐‘‘ฮฃ on ฮฃ to be compatible
with the Euclidean metric on ๐‘‹.
Theorem 2. Suppose that (ฮฃ, ๐œŽ) is the full shift on countably many symbols and
ฮฆ : ฮฃ โ†’ โ„ is locally Hoฬˆlder continuous. The dimension spectrum ๐›ผ 7โ†’ ๐’Ÿ๐’ฎ ฮฆ (๐›ผ) is
minus the Legendre transform of ๐‘ž 7โ†’ ๐‘‡ฮฆ (๐‘ž).
If we know that an inducing scheme has su๏ฌƒciently high, but not in๏ฌnite, pressure
for the potential ฮจ๐‘ž then, as we will show, the measures we are interested in are all
compatible to this inducing scheme. This leads to ๐‘‡ฮฆ de๏ฌned above being equal to
๐‘‡๐œ‘ as de๏ฌned in (5), as in the following proposition.
Proposition 4. Suppose that ๐‘“ โˆˆ โ„ฑ is a map satisfying (3) and ๐œ‘ : ๐ผ โ†’ โ„ is
a Hoฬˆlder potential satisfying (4). Let ๐œ€ > 0. For all ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€๐ด (๐œ‘), if (๐‘‹, ๐น ) โˆˆ
๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€) with induced potential ฮฆ, then ๐‘‡ฮฆ (๐‘ž) = ๐‘‡๐œ‘ (๐‘ž). Similarly for type B
inducing schemes.
Moreover,
(a) there exists ๐œ€ > 0 and ๐‘ž0 < 1 < ๐‘ž1 so that (๐‘ž0 , ๐‘ž1 ) โŠ‚ ๐‘ƒ ๐ต๐œ€๐ด (๐œ‘);
(b) if ๐‘“ satis๏ฌes (2), then for all ๐œ€ > 0 there exist 0 < ๐‘ž2 < ๐‘ž3 so that (๐‘ž2 , ๐‘ž3 ) โŠ‚
๐‘ƒ ๐ต๐œ€๐ต (๐œ‘) (taking ๐œ€ small, ๐‘ž2 can be taken arbitrarily close to 0);
(c) if ๐‘“ satis๏ฌes (1), for all small ๐œ€ > 0 there exist ๐‘ž2 < 0 < ๐‘ž3 so that
(๐‘ž2 , ๐‘ž3 ) โŠ‚ ๐‘ƒ ๐ต๐œ€๐ต (๐œ‘).
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
17
In this proof, and later in the paper, given a set ๐ด and a function ๐‘” : ๐ด โ†’ โ„ we let
โˆฃ๐‘”โˆฃโˆž = sup โˆฃ๐‘”(๐‘ฅ)โˆฃ.
๐‘ฅโˆˆ๐ด
Proof. By Lemma 4, for ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (๐œ‘), and any (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€), ๐‘ƒ (ฮจ๐‘ž ) = 0.
The Abramov formula in Lemma 1 implies that
โˆซ
0 = โ„Ž๐œ‡๐œ“๐‘ž (๐‘“ ) + โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘ ๐‘‘๐œ‡๐œ“๐‘ž
(
)(
)
โˆซ
1
= โˆซ
โ„Ž๐œ‡ฮจ๐‘ž (๐น ) + โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐น โˆฃ + ๐‘žฮฆ ๐‘‘๐œ‡ฮจ๐‘ž
๐œ ๐‘‘๐œ‡ฮจ๐‘ž
and hence ๐‘‡ฮฆ (๐‘ž) โฉฝ ๐‘‡๐œ‘ (๐‘ž) on ๐‘ƒ ๐ต๐œ€ (๐œ‘). Since log โˆฃ๐ท๐น โˆฃ is uniformly positive, we also
know that ๐‘ก 7โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐น โˆฃ + ๐‘žฮฆ) is strictly decreasing in ๐‘ก and hence ๐‘‡ฮฆ (๐‘ž) =
๐‘‡๐œ‘ (๐‘ž) on ๐‘ƒ ๐ต๐œ€ (๐œ‘).
By Lemma 4, for ๐œ€ > 0, in order to check if ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (๐œ‘) and thus prove (a), (b) and
(c), we only need to check if ๐‘ž โˆˆ ๐‘ƒ ๐ต๐œ€ (ฮฆ) for one scheme (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€). We
will show that the estimate for ๐‘0โˆ— (ฮจ๐‘ž ) is a sum of exponentially decaying terms,
which is enough to show that there exists ๐›ฟ > 0 so that ๐‘0โˆ— (ฮจ๐‘ž + ๐›ฟ๐œ ) < โˆž.
As in the proof of Lemma 3, (4) and ๐‘ƒ (๐œ‘) = 0 imply that ๐œ‘ < 0. Recall that by
de๏ฌnition, ๐‘ƒ (โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘) = 0. Given (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€), by the local
Hoฬˆlder continuity of every ฮจ๐‘ž , there exists ๐ถ > 0 such that for ๐‘0โˆ— as in (7),
โˆ‘
โˆ‘ โˆ‘
๐‘0โˆ— (ฮจ๐‘ž ) :=
๐œ๐‘– ๐‘’โˆ’๐‘‡๐œ‘ (๐‘ž) log โˆฃ๐ท๐น๐‘– โˆฃ+๐‘žฮฆ๐‘– โฉฝ ๐ถ
๐‘›
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž) ๐‘’๐‘žฮฆ๐‘– .
๐‘›
๐‘–
๐œ๐‘– =๐‘›
We will ๏ฌrst assume only that ๐‘“ satis๏ฌes (3) and that ๐‘ž is close to 1. In this case
we workโˆ‘
with inducing schemes of type A. By Proposition 2(a), there exists ๐›ฝฮฆ > 0
so that ๐œ๐‘– =๐‘› ๐‘’ฮฆ๐‘– = ๐‘‚(๐‘’โˆ’๐‘›๐›ฝฮฆ ).
Case 1: ๐‘ž near 1 and ๐‘ž > 1. In this case ๐‘‡๐œ‘ (๐‘ž) < 0. Since โˆฃ๐‘‹๐‘– โˆฃ โฉพ (โˆฃ๐ท๐‘“ โˆฃโˆž )โˆ’๐œ๐‘– ,
โˆ‘
โˆ‘
โˆ‘
๐‘0โˆ— (ฮจ๐‘ž ) โฉฝ ๐ถ
๐‘›(โˆฃ๐ท๐‘“ โˆฃโˆž )๐‘›โˆฃ๐‘‡๐œ‘ (๐‘ž)โˆฃ
๐‘’๐‘žฮฆ๐‘– โฉฝ ๐ถ โ€ฒ
๐‘›(โˆฃ๐ท๐‘“ โˆฃโˆž )๐‘›โˆฃ๐‘‡๐œ‘ (๐‘ž)โˆฃ ๐‘’โˆ’๐‘›๐‘ž๐›ฝฮฆ .
๐‘›
๐œ๐‘– =๐‘›
๐‘›
Since for ๐‘ž near to 1, ๐‘‡๐œ‘ (๐‘ž) is close to 0, the terms on the right decay exponentially,
proving the existence of ๐‘ž1 > 1 in part (a).
Case 2: ๐‘ž near 1 and ๐‘ž < 1. In this case ๐‘‡๐œ‘ (๐‘ž) > 0. By the Hoฬˆlder inequality there
exists ๐ถ โ€ฒ > 0 such that
)1โˆ’๐‘ž
(
)๐‘ž (
โˆ‘
โˆ‘
โˆ‘
๐‘‡๐œ‘ (๐‘ž)
โˆ—
ฮฆ๐‘–
1โˆ’๐‘ž
๐‘0 (ฮจ๐‘ž ) โฉฝ ๐ถ
๐‘›
๐‘’
โˆฃ๐‘‹๐‘– โˆฃ
๐‘›
๐œ๐‘– =๐‘›
๐œ๐‘– =๐‘›
(
โฉฝ๐ถ
โ€ฒ
โˆ‘
๐‘›
โฉฝ ๐ถโ€ฒ
โˆ‘
๐‘›๐‘’
โˆ’๐‘ž๐‘›๐›ฝฮฆ
โˆ‘
โˆฃ๐‘‹๐‘– โˆฃ
๐‘‡๐œ‘ (๐‘ž)
1โˆ’๐‘ž
)1โˆ’๐‘ž
๐œ๐‘– =๐‘›
๐‘›๐‘’โˆ’๐‘ž๐‘›๐›ฝฮฆ #{๐œ๐‘– = ๐‘›}1โˆ’๐‘ž .
๐‘›
As explained in [BT4], for any ๐œ‚ > 0 there exists ๐ถ๐œ‚ > 0 such that #{๐œ๐‘– = ๐‘›} โฉฝ
๐ถ๐œ‚ ๐‘’๐‘›(โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )+๐œ‚) . For ๐‘ž close to 1, 1 โˆ’ ๐‘ž is close to 0 so the terms ๐‘’โˆ’๐‘›๐‘ž๐›ฝฮฆ dominate
the estimate for ๐‘0โˆ— (ฮจ๐‘ž ), which completes the proof of part (a) of the proposition.
18
MIKE TODD
Next we assume that ๐‘“ satis๏ฌes (2) and ๐‘ž > 0 is close to 0. In this case we work
with inducing schemes of type B.
Case 3: ๐‘ž near 0 and ๐‘ž > 0. In this caseโˆ‘๐‘‡๐œ‘ (๐‘ž) < 1 and ๐‘‡๐œ‘ (๐‘ž) is close to 1. By
[BT4, Proposition 3], if ๐‘ก is close to 1 then ๐œ๐‘– =๐‘› โˆฃ๐‘‹๐‘– โˆฃ๐‘ก is uniformly bounded. Thus,
as in Case 2,
(
)๐‘ž (
)1โˆ’๐‘ž
(
)๐‘ž
โˆ‘
โˆ‘
โˆ‘
โˆ‘
๐‘‡๐œ‘ (๐‘ž)
โˆ—
ฮฆ๐‘–
ฮฆ
๐‘0 (ฮจ๐‘ž ) โฉฝ ๐ถ
๐‘›
๐‘’
โˆฃ๐‘‹๐‘– โˆฃ 1โˆ’๐‘ž
=๐‘‚ ๐‘›
๐‘’ ๐‘– .
๐‘›
๐œ๐‘– =๐‘›
๐œ๐‘– =๐‘›
๐œ๐‘– =๐‘›
โˆ‘
โˆ’๐‘›๐›ฝฮฆ
ฮฆ๐‘–
As in Case 2, there exists ๐›ฝฮฆ > 0 so that ๐œ๐‘– =๐‘› ๐‘’ = ๐‘‚(๐‘’
), which implies
๐‘0โˆ— (ฮจ๐‘ž ) can be estimated by exponentially decaying terms, proving (b).
Case 4: ๐‘ž near 0 and ๐‘ž < 0. This can only be considered when ๐‘“ satis๏ฌes (1). In
this
1. Note that by Proposition 3(a), there exists ๐›ฝ๐ท๐น > 0 so that
โˆ‘ case ๐‘‡๐œ‘ (๐‘ž) > โˆ’๐‘›๐›ฝ
๐ท๐น
โˆฃ๐‘‹
โˆฃ
=
๐‘‚(๐‘’
). Thus,
๐‘–
๐œ๐‘– =๐‘›
(
)๐‘‡๐œ‘ (๐‘ž)
(
)
โˆ‘
โˆ‘
โˆ‘
โˆ—
๐‘ž๐‘› inf ๐œ‘
๐‘›[๐‘ž inf ๐œ‘โˆ’๐‘‡๐œ‘ (๐‘ž)๐›ฝ๐ท๐น ]
๐‘0 (ฮจ๐‘ž ) โฉฝ ๐ถ
๐‘›๐‘’
โˆฃ๐‘‹๐‘– โˆฃ
=๐‘‚
๐‘›๐‘’
.
๐‘›
๐œ๐‘– =๐‘›
๐‘›
For ๐‘ž close to 0 we have ๐‘ž inf ๐œ‘ โˆ’ ๐‘‡๐œ‘ (๐‘ž)๐›ฝ๐ท๐น < 0 and so ๐‘0โˆ— (ฮจ๐‘ž ) can be estimated
by exponentially decaying terms, proving (c).
โ–ก
Corollary 1. The map ๐‘‡๐œ‘ is convex analytic on ๐‘ƒ ๐ต๐œ€๐ด (๐œ‘) โˆช ๐‘ƒ ๐ต๐œ€๐ต (๐œ‘).
Proof. As shown in [I1, Proposition 4.3], for ฮฆ the induced potential for ๐œ‘ with
respect to an inducing scheme (๐‘‹, ๐น ), ๐‘‡ฮฆ , when it is ๏ฌnite, is analytic and convex.
Since ๐‘‡๐œ‘ (๐‘ž) = ๐‘‡ฮฆ (๐‘ž) for ๐‘ƒ ๐ต๐œ€๐ด (๐œ‘) โˆช ๐‘ƒ ๐ต๐œ€๐ต (๐œ‘), these properties pass to ๐‘‡๐œ‘ .
โ–ก
4. Inducing schemes see most points with positive Lyapunov Exponent
The purpose of this section is to show that if we are only interested in those sets
for which the Lyapunov exponent is bounded away from 0, then there are inducing
schemes which contain all the multifractal data for these sets. This is the content
of the following proposition.
โ€ฒ
Proposition 5. For all ๐œ†, ๐‘  > 0 there exist ๐œ€ = ๐œ€(๐œ†, ๐‘ ) > 0, a set ๐ฟ๐บ๐œ† โŠ‚ ๐ฟ๐บ๐œ† , and
โ€ฒ
an inducing scheme (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ด (๐œ€) so that dim๐ป (๐ฟ๐บ๐œ† โˆ– ๐ฟ๐บ๐œ† ) โฉฝ ๐‘  and for
โ€ฒ
all ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† there exists ๐‘˜ โฉพ 0 so that ๐‘“ ๐‘˜ (๐‘ฅ) โˆˆ (๐‘‹, ๐น )โˆž . There is also an inducing
scheme in ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€) with the same property.
By the structure of the inducing schemes outlined above, we can replace ๐œ€ with
any ๐œ€โ€ฒ โˆˆ (0, ๐œ€). This means that if there is a set ๐ด โŠ‚ ๐ผ and ๐œ† > 0 so that
dim๐ป (๐ด โˆฉ ๐ฟ๐บ๐œ† ) > 0 then there is an inducing scheme (๐‘‹, ๐น ) so that dim๐ป (๐ด โˆฉ
๐ฟ๐บ๐œ† โˆฉ(๐‘‹, ๐น )โˆž ) = dim๐ป (๐ดโˆฉ๐ฟ๐บ๐œ† ). Hence the multifractal information for ๐ดโˆฉ๐ฟ๐บ๐œ†
can be found using (๐‘‹, ๐น ). We remark that by Lemma 4, for ๐œ† > 0 and ๐‘ž โˆˆ ๐‘ƒ ๐ต(๐œ‘),
if dim๐ป (๐’ฆ๐›ผ โˆฉ ๐ฟ๐บ๐œ† ) > 0 then we can ๏ฌx an inducing scheme (๐‘‹, ๐น ) such that
dim๐ป (๐’ฆ๐›ผ โˆฉ ๐ฟ๐บ๐œ† โˆฉ (๐‘‹, ๐น )โˆž ) = dim๐ป (๐’ฆ๐›ผ โˆฉ ๐ฟ๐บ๐œ† ).
For the proof of Proposition 5 we will need two lemmas.
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
19
Partly for completeness and partly in order to ๏ฌx notation, we recall the de๏ฌnition
of Hausdor๏ฌ€ measure and dimension. For ๐ธ โŠ‚ ๐ผ and ๐‘ , ๐›ฟ > 0, we let
{
}
โˆ‘
๐ป๐›ฟ๐‘  (๐ธ) := inf
diam(๐ด๐‘– )๐‘ 
๐‘–
where the in๏ฌmum is taken over collections {๐ด๐‘– }๐‘– which cover ๐ธ and with diam(๐ด๐‘– ) <
๐›ฟ. Then the ๐‘ -Hausdor๏ฌ€ measure of ๐ธ is de๏ฌned as ๐ป ๐‘  (๐ธ) := lim sup๐›ฟโ†’0 ๐ป๐›ฟ๐‘  (๐ธ).
The Hausdor๏ฌ€ dimension is then dim๐ป (๐ธ) := sup{๐‘  : ๐ป ๐‘  (๐ธ) = โˆž}.
โ€ฒ
Lemma 5. For all ๐œ†, ๐‘  > 0 there exists ๐œ‚ > 0, ๐‘… โˆˆ โ„• and ๐ฟ๐บ๐œ† โŠ‚ ๐ฟ๐บ๐œ† so that
โ€ฒ
โ€ฒ
dim๐ป (๐ฟ๐บ๐œ† โˆ– ๐ฟ๐บ๐œ† ) โฉฝ ๐‘ , and ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† implies
}
1 {
lim sup # 1 โฉฝ ๐‘˜ โฉฝ ๐‘› : ๐‘“ห†๐‘˜ (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… > ๐œ‚.
๐‘˜
๐‘˜
Note on the proof: It is important here that we can prove this lemma for ๐ฟ๐บ๐œ†
rather than ๐ฟ๐บ๐œ† . Otherwise Proposition 5 and, for example, our main corollaries
would not hold. We would like to brie๏ฌ‚y discuss why we can prove this result for
๐ฟ๐บ๐œ† rather than ๐ฟ๐บ๐œ† . The argument we use in the proof is similar to arguments
which show that under some condition on pointwise Lyapunov exponents for ๐‘šalmost every point, there is an invariant measure absolutely continuous with respect
to ๐‘š. Here ๐‘š is usually a conformal measure. For example in [BT1, Theorem 4] we
showed that if ๐‘š(๐ฟ๐บ๐œ† ) > 0 for a conformal measure ๐‘š then โ€˜most pointsโ€™ spend a
positive frequency of their orbit in a compact part of the Hofbauer extension, and
hence there is an absolutely continuous invariant measure ๐œ‡ โ‰ช ๐‘š. In that case
it was convenient to use ๐ฟ๐บ๐œ† rather than ๐ฟ๐บ๐œ† . In [K3], and in a similar proof
in [MS, Theorem V.3.2], ๐‘š is Lebesgue measure and the ergodicity of ๐‘š is used
to allow them to weaken assumptions and to consider ๐ฟ๐บ๐œ† instead. In our case
here, we cannot use a property like ergodicity, but on the other hand we do not
need points to enter a compact part of the extension with positive frequency (which
is essentially what is required in all the above cases), but simply in๏ฌnitely often.
Hence we can use ๐ฟ๐บ๐œ† instead.
For the proof of the lemma we will need the following result from [BRSS, Theorem
4]. Here ๐‘š denotes Lebesgue measure, and as above โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ ) is the maximal critical
order of all critical points of ๐‘“ .
Proposition 6. If ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) then there exists ๐พ0 > 0 so that for any
Borel set ๐ด,
1
๐‘š(๐‘“ โˆ’๐‘› (๐ด)) โฉฝ ๐พ0 ๐‘š(๐ด) 2โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ ) .
Remark 4. For ๐‘“ โˆˆ โ„ฑ, such a theorem holds whenever there is an acip ๐œ‡ with
๐‘‘๐œ‡
density ๐œŒ = ๐‘‘๐‘š
โˆˆ ๐ฟ1+๐›ฟ for ๐›ฟ > 0. Standard arguments show that transitivity implies
that there exists ๐œ€ > 0 such that ๐œŒ โฉพ ๐œ€. Then
โˆซ
1
1
1
โˆ’๐‘›
โˆ’๐‘›
๐‘š(๐‘“ (๐ด)) โฉฝ ๐œ‡(๐‘“ (๐ด)) = ๐œ‡(๐ด) =
1๐ด ๐œŒ ๐‘‘๐‘š
๐œ€
๐œ€
๐œ€
๐›ฟ
1
(โˆซ
) 1+๐›ฟ
(โˆซ
) 1+๐›ฟ
๐›ฟ
1
โฉฝ
1๐ด ๐‘‘๐‘š
๐œŒ1+๐›ฟ ๐‘‘๐‘š
โฉฝ ๐ถ๐‘š(๐ด) 1+๐›ฟ ,
๐œ€
for some ๐ถ > 0.
20
MIKE TODD
Proof of Lemma 5. For this proof we use ideas of [K2], see also [BT1]. We also use
the notation โˆฃ โ‹… โˆฃ to denote the length of a connected interval. We suppose that
dim๐ป (๐ฟ๐บ๐œ† ) > 0, otherwise there is nothing to prove. We ๏ฌx ๐‘  โˆˆ (0, dim๐ป (๐ฟ๐บ๐œ† )).
Throughout this proof, we write โ„“๐‘š๐‘Ž๐‘ฅ = โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ ).
For ๐›พ โฉพ 0 and ๐‘› โˆˆ โ„•, let ๐ฟ๐บ๐‘›๐›พ := {๐‘ฅ : โˆฃ๐ท๐‘“ ๐‘› (๐‘ฅ)โˆฃ โฉพ ๐‘’๐›พ๐‘› }.
For ๐‘ฅ โˆˆ ๐ผ, we de๏ฌne
{
freq(๐‘…, ๐œ‚, ๐‘›) :=
}
1 {
๐‘ฅ : # 0 โฉฝ ๐‘˜ < ๐‘› : ๐‘“ห†๐‘˜ (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… โฉฝ ๐œ‚
๐‘›
}
and
{
freq(๐‘…, ๐œ‚) :=
}
}
1 {
๐‘˜
ห†
ห†
๐‘ฆ : lim sup # 1 โฉฝ ๐‘˜ โฉฝ ๐‘› : ๐‘“ (๐œ„(๐‘ฆ)) โˆˆ ๐ผ๐‘… < ๐œ‚ .
๐‘˜
๐‘˜
For ๐œ†0 โˆˆ (0, ๐œ†), ๐‘…, ๐‘› โฉพ 1 and ๐œ‚ > 0 we consider the set
๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚) := ๐ฟ๐บ๐‘›๐œ†0 โˆฉ freq(๐‘…, ๐œ‚, ๐‘›).
If ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† โˆฉ freq(๐‘…, ๐œ‚) then there exists arbitrarily large ๐‘› โˆˆ โ„• so that โˆฃ๐ท๐‘“ ๐‘› (๐‘ฅ)โˆฃ โฉพ
๐‘’๐œ†0 ๐‘› , and ๐‘ฅ โˆˆ freq(๐‘…, ๐œ‚, ๐‘›). Hence
โˆฉโˆช
freq(๐‘…, ๐œ‚) โˆฉ ๐ฟ๐บ๐œ† โŠ‚
๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚).
๐‘˜ ๐‘›โฉพ๐‘˜
This means we can estimate the Hausdor๏ฌ€ dimension of freq(๐‘…, ๐œ‚) โˆฉ ๐ฟ๐บ๐œ† through
estimates on dim๐ป (๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚)).
We let ๐’ซ๐ธ,๐‘› denote the collection of cylinder sets of ๐’ซ๐‘› which intersect ๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚).
We will compute ๐ป๐›ฟ๐‘  (๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚)) using the natural structure of the dynamical cylinders ๐’ซ๐‘› . First note that by [H2, Corollary 1] (see also, for example, the proof of
[BT1, Theorem 4]), for all ๐›พ > 0 there exist ๐‘… โฉพ 1 and ๐œ‚ > 0 so that #๐’ซ๐ธ,๐‘› โฉฝ ๐‘’๐›พ๐‘›
for all large ๐‘›. In [BT1] this type of estimate was su๏ฌƒcient to show that conformal
measure โ€˜liftedโ€™ to the Hofbauer extension. The Hausdor๏ฌ€ measure is more di๏ฌƒcult to handle, since distortion causes more problems. Here we use an argument of
[BT3] to deal with the distortion. We will make some conditions on ๐›พ, depending
on ๐‘  and ๐œ† below.
Let ๐‘›(๐›ฟ) โˆˆ โ„• be so that ๐‘› โฉพ ๐‘›(๐›ฟ) implies โˆฃC๐‘› โˆฃ < ๐›ฟ for all C๐‘› โˆˆ ๐’ซ๐‘› .
We choose any ๐›พ โˆˆ (0, ๐œ†๐‘ /16โ„“2๐‘š๐‘Ž๐‘ฅ ) and ๐œƒ := 4๐›พโ„“2๐‘š๐‘Ž๐‘ฅ /๐‘ . For ๐‘ฅ โˆˆ ๐ผ, let
{
}
๐‘‰๐‘› [๐‘ฅ] := ๐‘ฆ โˆˆ C๐‘› [๐‘ฅ] : ๐‘‘(๐‘“ ๐‘› (๐‘ฆ), โˆ‚๐‘“ ๐‘› (C๐‘› [๐‘ฅ])) < ๐‘’โˆ’๐œƒ๐‘› โˆฃ๐‘“ ๐‘› (C๐‘› [๐‘ฅ])โˆฃ .
For a point ๐‘ฅ โˆˆ ๐ธ๐œ†0 ,๐‘…,๐‘› , we say that ๐‘ฅ is in Case 1 if ๐‘ฅ โˆˆ ๐‘‰๐‘› [๐‘ฅ], and in Case 2
otherwise. We consider the measure of points in these di๏ฌ€erent sets separately.
Case 1: For ๐‘ฅ โˆˆ ๐ผ, we denote the part of ๐‘“ ๐‘› (C๐‘› [๐‘ฅ]) which lies within ๐‘’โˆ’๐œƒ๐‘› โˆฃ๐‘“ ๐‘› (C๐‘› [๐‘ฅ])โˆฃ
of the boundary of ๐‘“ ๐‘› (C๐‘› [๐‘ฅ]) by ๐ต๐‘‘๐‘› [๐‘ฅ]. We will estimate the Lebesgue measure
of the pullback ๐‘“ โˆ’๐‘› (๐ต๐‘‘๐‘› [๐‘ฅ]). Note that this set consists of more than just the pair
of connected components C๐‘› [๐‘ฅ] โˆฉ ๐‘‰๐‘› [๐‘ฅ].
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
21
Clearly, ๐‘š(๐ต๐‘‘๐‘› [๐‘ฅ]) โฉฝ 2๐‘’โˆ’๐œƒ๐‘› ๐‘š(๐‘“ ๐‘› (C๐‘› [๐‘ฅ])). Hence from Proposition 6, we have the
(rather rough) estimate
[
] 1
๐‘š(๐‘‰๐‘› [๐‘ฅ]) โฉฝ ๐‘š(๐‘“ โˆ’๐‘› (๐ต๐‘‘๐‘› [๐‘ฅ])) โฉฝ ๐พ0 2๐‘’โˆ’๐œƒ๐‘› ๐‘š(๐‘“ ๐‘› (C๐‘› [๐‘ฅ])) 2โ„“2๐‘š๐‘Ž๐‘ฅ
โฉฝ 2๐พ0 ๐‘’
โˆ’ 2โ„“2๐œƒ๐‘›
๐‘š๐‘Ž๐‘ฅ
= 2๐พ0 ๐‘’โˆ’
2๐›พ๐‘›
๐‘ 
.
Case 2: Let Cฬƒ๐‘› [๐‘ฅ] := C๐‘› [๐‘ฅ] โˆ– ๐‘‰๐‘› [๐‘ฅ]. As in the proof of [BT3, Lemma 15], the
intermediate value theorem and the Koebe lemma allow us to estimate
(
)2
1 + ๐‘’โˆ’๐‘›๐œƒ
1
โˆฃCฬƒ๐‘› [๐‘ฅ]โˆฃ
โฉฝ
.
โˆ’๐‘›๐œƒ
๐‘›
๐‘’
โˆฃ๐ท๐‘“ ๐‘› (๐‘ฅ)โˆฃ
โˆฃ๐‘“ (Cฬƒ๐‘› [๐‘ฅ])โˆฃ
Hence for all large ๐‘›,
โˆฃCฬƒ๐‘› [๐‘ฅ]โˆฃ โฉฝ 2๐‘’2๐œƒ๐‘› ๐‘’โˆ’๐œ†๐‘› .
By our choice of ๐›พ,
๐œ†
โˆฃCฬƒ๐‘› [๐‘ฅ]โˆฃ โฉฝ 2๐‘’โˆ’๐‘› 2 .
If we assume that ๐‘› โฉพ ๐‘›(๐›ฟ), the sets ๐‘‰๐‘› [๐‘ฅ] โŠ‚ C๐‘› [๐‘ฅ] โˆˆ ๐’ซ๐ธ,๐‘› in Case 1 and Cฬƒ๐‘› [๐‘ฅ] โŠ‚
C๐‘› [๐‘ฅ] โˆˆ ๐’ซ๐ธ,๐‘› in Case 2 form a ๐›ฟ-cover of ๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚). This implies that for ๐‘› large,
(
)
๐œ†๐‘ 
๐ป๐›ฟ๐‘  (๐ธ๐œ†0 ,๐‘…,๐‘› (๐œ‚)) โฉฝ 4๐‘’๐›พ๐‘› ๐‘’โˆ’๐‘› 2 + ๐พ0 ๐‘’โˆ’2๐›พ๐‘› .
By our choice of ๐›พ, this is uniformly bounded in ๐‘›. Since we can make the above
estimate for all small ๐›ฟ, we get that
)
(
dim๐ป ๐ฟ๐บ๐œ† โˆฉ freq(๐‘…, ๐œ‚) โฉฝ ๐‘ .
โ€ฒ
So the set ๐ฟ๐บ๐œ† := ๐ฟ๐บ๐œ† โˆ– freq(๐‘…, ๐œ‚) has the required property.
โ–ก
ห† where we
Let {๐œ€๐‘› }๐‘› be a positive sequence decreasing to 0 and let ๐ต๐‘› := ๐ต๐œ€๐‘› (โˆ‚ ๐ผ),
use the distance function ๐‘‘๐ผห† as described in Section 2.1.
Lemma 6. For any ๐‘… โˆˆ โ„• and ๐œ‚ > 0, there exists ๐‘ (๐‘…, ๐œ‚) โˆˆ โ„• so that for ๐‘ฅ โˆˆ ๐ผ,
if
}
1 {
lim sup # 1 โฉฝ ๐‘— โฉฝ ๐‘˜ : ๐‘“ห†๐‘— (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… > ๐œ‚,
๐‘˜
๐‘˜
then ๐‘“ห†๐‘— (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… โˆ– ๐ต๐‘ in๏ฌnitely often.
Proof. In a Hofbauer extension, if a point ๐‘ฅ
ห† โˆˆ ๐ผห† is very close to โˆ‚ ๐ผห† then its ๐‘“ห†ห†
orbit shadows a point in โˆ‚ ๐ผ for a very long time, and so it must spend a long time
high up in the Hofbauer extension. Therefore we can choose ๐‘, ๐‘ โˆˆ โ„• so that
ห† โˆฉ ๐ผห†๐‘… implies that
๐‘ฅ
ห† โˆˆ ๐ต๐‘ (โˆ‚ ๐ผ)
}
1 {
๐‘“ห†๐‘ (ห†
๐‘ฅ) โˆˆ ๐ผห† โˆ– ๐ผห†๐‘… and # 1 โฉฝ ๐‘— โฉฝ ๐‘ : ๐‘“ห†๐‘— (ห†
๐‘ฅ) โˆˆ ๐ผห†๐‘… < ๐œ‚.
(8)
๐‘
Suppose, for a contradiction, that ๐‘˜ is the last time that, for ๐‘ฅ โˆˆ ๐ผ, ๐‘“ห†๐‘˜ (๐œ„(๐‘ฅ)) โˆˆ
๐ผห†๐‘… โˆ– ๐ต๐‘ . Then if ๐‘“ห†๐‘— (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… for ๐‘— > ๐‘˜ then ๐‘“ห†๐‘— (๐œ„(๐‘ฅ)) must be contained in ๐ต๐‘ .
Hence by (8), we have
}
1 {
lim sup # 1 โฉฝ ๐‘— โฉฝ ๐‘˜ : ๐‘“ห†๐‘— (๐œ„(๐‘ฅ)) โˆˆ ๐ผห†๐‘… < ๐œ‚,
๐‘˜
๐‘˜
a contradiction.
โ–ก
22
MIKE TODD
โ€ฒ
Proof of Proposition 5. We choose ๐‘…, ๐‘ โˆˆ โ„•, ๐ฟ๐บ๐œ† as in Lemmas 5 and 6 so that
โ€ฒ
for any ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† , ๐œ„(๐‘ฅ) enters ๐ผห†๐‘… โˆ– ๐ต๐‘ in๏ฌnitely often.
In the following we can deal with either inducing schemes of type A or type B. We
ห† We denote the set of
can choose ๐œ€ > 0 so small that ๐ผห†๐‘… โˆ– ๐ต๐‘ โŠ‚ โˆช๐‘‹โˆˆ๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€)
๐‘‹.
ห†
ห†
ห†
ห†
ห† โˆž . Therefore,
points ๐‘ฅ
ห† โˆˆ ๐ผ so that the orbit of ๐‘ฅ
ห† enters ๐‘‹ โŠ‚ ๐ผ in๏ฌnitely often by ๐‘‹
โ€ฒ
โˆž
ห† ๐‘˜ โˆˆ ๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ(๐œ€) so that ๐œ„(๐‘ฅ) โˆˆ ๐‘‹
ห† . Thus
for ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† , there exists ๐‘‹
๐‘˜
๐‘› {
}
โˆช
โ€ฒ
โ€ฒ
ห† ๐‘˜โˆž .
๐ฟ๐บ๐œ† =
๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† : ๐œ„(๐‘ฅ) โˆˆ ๐‘‹
๐‘˜=1
ห† ๐‘˜ so that
Therefore, we can choose a particular ๐‘‹
{
}
โ€ฒ
โ€ฒ
ห† ๐‘˜โˆž ,
dim๐ป (๐ฟ๐บ๐œ† ) = dim๐ป ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† : ๐œ„(๐‘ฅ) โˆˆ ๐‘‹
as required.
โ–ก
5. Proof of main results
For a potential ๐œ‘ : ๐ผ โ†’ โ„, if the Birkho๏ฌ€ average lim๐‘›โ†’โˆž ๐‘†๐‘› ๐œ‘(๐‘ฅ)
exists, then we
๐‘›
denote this limit by ๐‘†โˆž๐œ‘(๐‘ฅ). If ฮฆ is some induced potential, we let ๐‘†โˆžฮฆ(๐‘ฅ) be the
equivalent average for the inducing scheme.
Remark 5. Let ๐‘“ โˆˆ โ„ฑ satisfy (3) and ๐œ‘ be a Hoฬˆlder potential satisfying (4) and
๐‘ƒ (๐œ‘) = 0. Proposition 2 implies that there exists an equilibrium state ๐œ‡๐œ‘ , but also
for an inducing scheme (๐‘‹, ๐น ), it must have ๐‘ƒ (ฮฆ) = 0 for the induced potential ฮฆ.
In fact this is only stated for type A inducing schemes in Proposition 2, but will we
prove this for type B schemes as well in Lemma 11.
For ๐‘ฅ โˆˆ ๐‘‹, we de๏ฌne
log ๐œ‡ฮฆ (C๐น
๐‘› [๐‘ฅ])
๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) := lim
๐‘›โ†’โˆž โˆ’ log โˆฃ๐ท๐น ๐‘› (๐‘ฅ)โˆฃ
if the limit exists. Here C๐น
๐‘› [๐‘ฅ] is the ๐‘›-cylinder at ๐‘ฅ with respect to the inducing
scheme (๐‘‹, ๐น ). Since ๐‘ƒ (ฮฆ) = 0, the Gibbs property of ๐œ‡ฮฆ implies
๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) = lim
๐‘›โ†’โˆž
๐‘†๐‘› ฮฆ(๐‘ฅ)
โˆ’ log โˆฃ๐ท๐น ๐‘› (๐‘ฅ)โˆฃ
whenever one of the limits on the right exists. Also note that if both ๐‘†โˆžฮฆ(๐‘ฅ) and
๐œ†๐น (๐‘ฅ) exist then ๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) also exists. Suppose that ๐‘†โˆžฮฆ(๐‘ฅ) exists. It was shown by
Pollicott and Weiss [PoWe, Proposition 3] that if we also know
โˆ™ ๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) exists, then ๐‘‘๐œ‡ฮฆ (๐‘ฅ) and ๐œ†๐น (๐‘ฅ) exist and ๐‘‘๐œ‡ฮฆ (๐‘ฅ) = ๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) =
โˆ™ ๐‘‘๐œ‡ฮฆ (๐‘ฅ) exists, then ๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) and ๐œ†๐น (๐‘ฅ) exist and ๐‘‘ห‡๐œ‡ฮฆ (๐‘ฅ) = ๐‘‘๐œ‡ฮฆ (๐‘ฅ) =
Note that for ๐‘ฅ โˆˆ (๐‘‹, ๐น )โˆž we can write
(
๐œ‘๐‘›๐‘˜ (๐‘ฅ)
๐‘›๐‘˜
)
๐‘†๐‘› ฮฆ(๐‘ฅ)
)
=(
โˆ’ log โˆฃ๐ท๐‘“ ๐‘›๐‘˜ (๐‘ฅ)โˆฃ
โˆ’ log โˆฃ๐ท๐น ๐‘› (๐‘ฅ)โˆฃ
๐‘›๐‘˜
๐‘†โˆžฮฆ(๐‘ฅ)
โˆ’๐œ†๐น (๐‘ฅ) ;
๐‘†โˆžฮฆ(๐‘ฅ)
โˆ’๐œ†๐น (๐‘ฅ) .
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
23
where ๐‘›๐‘˜ = ๐œ ๐‘˜ (๐‘ฅ). Hence we can replace any assumption on the existence of ๐‘†โˆžฮฆ(๐‘ฅ)
and ๐œ†๐น (๐‘ฅ) above by the existence of ๐‘†โˆž๐œ‘(๐‘ฅ) and ๐œ†๐‘“ (๐‘ฅ).
Let
โˆซ
โˆซ
๐œ‘ ๐‘‘๐œ‡๐œ“๐‘ž
ฮฆ ๐‘‘๐œ‡ฮจ๐‘ž
๐›ผ(๐‘ž) := โˆ’ โˆซ
= โˆ’โˆซ
.
log โˆฃ๐ท๐‘“ โˆฃ ๐‘‘๐œ‡๐œ“๐‘ž
log โˆฃ๐ท๐น โˆฃ ๐‘‘๐œ‡ฮจ๐‘ž
For the proof Theorem A we will need two propositions relating the pointwise
dimension for the induced measure and the original measure. The reason we need
to do this here is that the induced measure ๐œ‡ฮฆ is not, as it would be if the inducing
scheme were a ๏ฌrst return map, simply a rescaling of ๐œ‡๐œ‘ .
Proposition 7. Given ๐‘“ โˆˆ โ„ฑ and a Hoฬˆlder potential ๐œ‘ : ๐ผ โ†’ โ„ satisfying (4) and
๐‘ƒ (๐œ‘) = 0, then there exists an equilibrium state ๐œ‡๐œ‘ and a ๐œ‘-conformal measure ๐‘š๐œ‘
and ๐ถ๐œ‘ > 0 so that
1
๐‘‘๐œ‡๐œ‘
โฉฝ
โฉฝ ๐ถ๐œ‘ .
๐ถ๐œ‘
๐‘‘๐‘š๐œ‘
Notice that this implies that ๐‘‘๐‘š๐œ‘ = ๐‘‘๐œ‡๐œ‘ and, by the conformality of ๐‘š๐œ‘ , ๐‘‘๐œ‡๐œ‘ (๐‘ฅ) =
๐‘‘๐œ‡๐œ‘ (๐‘“ ๐‘› (๐‘ฅ)) for all ๐‘› โˆˆ โ„•.
This proposition follows from [K1]. However, as we mentioned in the introduction, we can also prove the existence of conformal measures under slightly different hypotheses on the map and the potential. The class of potentials we can
deal with include discontinuous potentials satisfying (4), as well as potentials ๐‘ฅ 7โ†’
โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ for ๐‘ก close to 1. Since this is of independent interest, we will provide
a proof of this in the appendix. A generalised version of the following result is also
proved in the appendix.
Proposition 8. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) and ๐œ‘ : ๐ผ โ†’ โ„ is a Hoฬˆlder
potential satisfying (4) and ๐‘ƒ (๐œ‘) = 0. For any inducing scheme (๐‘‹, ๐น ) either of
type A or type B, with induced potential ฮฆ : ๐‘‹ โ†’ โ„, for the equilibrium states ๐œ‡๐œ‘
for (๐ผ, ๐‘“, ๐œ‘) and ๐œ‡ฮฆ for (๐‘‹, ๐น, ฮฆ), there exists ๐ถฮฆโ€ฒ > 0 so that
๐‘‘๐œ‡ฮฆ
1
โฉฝ
โฉฝ ๐ถฮฆโ€ฒ .
๐ถฮฆโ€ฒ
๐‘‘๐œ‡๐œ‘
Our last step before proving Theorem A is to show that the function ๐‘‡๐œ‘ as in (5)
is strictly convex, which will mean that ๐’Ÿ๐’ฎ ๐œ‘ is strictly convex also, and the sets ๐‘ˆ
will contain non-trivial intervals.
Lemma 7. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) and ๐œ‘ is a Hoฬˆlder potential satisfying
(4). Then either there exists ๐›ฟ > 0 such that ๐‘‡๐œ‘ is strictly convex in
๐‘ƒ ๐ต(๐œ‘) โˆฉ ((โˆ’๐›ฟ, ๐›ฟ) โˆช (1 โˆ’ ๐›ฟ, 1 + ๐›ฟ)) ,
or ๐œ‡๐œ‘ = ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ .
Remark 6. For the particular case when ๐‘“ โˆˆ โ„ฑ and ๐œ‘ is a constant potential, in
which case ๐‘ƒ (๐œ‘) = 0 implies ๐œ‘ โ‰ก โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ), Lemma 7 says that ๐‘‡๐œ‘ is not convex if
and only if ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ = ๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) . By [D1, Proposition 3.1], this can only happen
if ๐‘“ has ๏ฌnite postcritical set. We have excluded such maps from โ„ฑ.
24
MIKE TODD
Proof of Lemma 7. Suppose that ๐‘‡๐œ‘ is not strictly convex on some interval ๐‘ˆ intersecting a neighbourhood of ๐‘ƒ ๐ต(๐œ‘) โˆฉ [0, 1]. Since ๐‘‡๐œ‘ is necessarily convex, in ๐‘ˆ
it must be a๏ฌƒne. We will observe that for all ๐‘ž โˆˆ ๐‘ˆ , the equilibrium state for ๐œ“๐‘ž
is the same. We will then show that [0, 1] โŠ‚ ๐‘ˆ . Since (3) holds, and hence there is
an acip ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ , this means that ๐œ‡๐œ‘ โ‰ก ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ .
Our assumptions on ๐‘ˆ imply that there exists ๐‘ž0 โˆˆ ๐‘ˆ so that for a relevant inducing
scheme (๐‘‹, ๐น ), there exists ๐›ฝ > 0 so that ๐œ‡ฮจ๐‘ž0 {๐œ โฉพ ๐‘›} = ๐‘‚(๐‘’โˆ’๐›ฝ๐‘› ). Moreover,
๐ท๐‘‡๐œ‘ (๐‘ž) is some constant ๐›พ โˆˆ โ„ for all ๐‘ž โˆˆ ๐‘ˆ . As in for example โˆซ[PW1, Section
๐œ‘ ๐‘‘๐œ‡๐œ“
II] or [P, Chapter 7 p.211] the di๏ฌ€erentiability of ๐‘‡๐œ‘ implies that ๐œ†(๐œ‡๐œ“ )๐‘ž = โˆ’๐›พ
๐‘ž
for
all ๐‘ž โˆˆ ๐‘ˆ . Since by de๏ฌnition ๐‘ƒ (๐œ“๐‘ž ) = 0, for ๐‘ž0 โˆˆ ๐‘ˆ , any measure ๐œ‡ with
โˆซ
๐œ‘ ๐‘‘๐œ‡
๐‘‡ (๐‘ž )
= ๐œ‘๐‘ž0 0 must be an equilibrium state for ๐œ“๐‘ž0 . Since there is a unique
๐œ†(๐œ‡)
measure for ๐œ“๐‘ž0 we must have ๐›พ =
๐‘‡๐œ‘ (๐‘ž0 )
๐‘ž0
and ๐œ‡๐œ“๐‘ž = ๐œ‡๐œ“๐‘ž0 for all ๐‘ž โˆˆ ๐‘ˆ .
By Proposition 4 there exists ๐›ฟ > 0 such that (1 โˆ’ ๐›ฟ, 1 + ๐›ฟ) โŠ‚ ๐‘ƒ ๐ต(๐œ‘) and (0, ๐›ฟ) โŠ‚
๐‘ƒ ๐ต(๐œ‘). If, moreover, ๐‘ƒ ๐ต(๐œ‘) contains a neighbourhood of 0 then we can adjust
๐›ฟ > 0 so that (โˆ’๐›ฟ, ๐›ฟ) โŠ‚ ๐‘ƒ ๐ต(๐œ‘).
Case 1: Suppose that ๐‘ˆ โˆฉ ๐‘ƒ ๐ต(๐œ‘) โˆฉ (1 โˆ’ ๐›ฟ, 1 + ๐›ฟ) โˆ•= โˆ…. Since by Proposition 4, ๐‘‡๐œ‘ is
analytic in this interval, ๐‘‡๐œ‘ must be a๏ฌƒne in the whole of (1 โˆ’ ๐›ฟ, 1 + ๐›ฟ). Therefore
1 โˆˆ ๐‘ˆ . We will prove that 0 โˆˆ ๐‘ˆ . By Proposition 4 we can choose a type A inducing
scheme (๐‘‹, ๐น ) so that ๐œ‡๐œ“๐‘ž is compatible with (๐‘‹, ๐น ) for all ๐‘ž โˆˆ (1 โˆ’ ๐›ฟ, 1 + ๐›ฟ). Recall
from Proposition 2 that there exists ๐›ฝฮฆ > 0 so that ๐œ‡ฮจ1 {๐œ โฉพ ๐‘›} = ๐‘‚(๐‘’โˆ’๐›ฝฮฆ ๐‘› ).
We suppose that 0 โฉฝ ๐‘ž < 1, and hence ๐‘‡๐œ‘ (๐‘ž) โฉพ 0. We choose ๐‘ž0 > 1 โˆ’ ๐›ฟ very close
to 1 โˆ’ ๐›ฟ. Then by convexity ๐‘‡๐œ‘ (๐‘ž) โฉพ ๐‘‡๐œ‘ (๐‘ž0 ) + ๐›พ(๐‘ž โˆ’ ๐‘ž0 ). Hence, for ๐‘0โˆ— as in (7),
๐‘0โˆ— (ฮจ๐‘ž ) =
โˆ‘
โฉฝ
โˆ‘
โฉฝ
โˆ‘
๐‘›
๐‘›
๐‘›
๐‘›
โˆ‘
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž) ๐‘’๐‘žฮฆ๐‘– โฉฝ
โˆ‘
๐œ๐‘– =๐‘›
๐‘›
๐‘›
(
๐›พ(๐‘žโˆ’๐‘ž0 ) (๐‘žโˆ’๐‘ž0 )ฮฆ๐‘–
๐‘› sup โˆฃ๐‘‹๐‘– โˆฃ
๐‘’
โˆ‘
๐œ๐‘– =๐‘›
)โˆ‘
๐œ๐‘– =๐‘›
๐‘›๐‘’
๐‘›(๐‘žโˆ’๐‘ž0 ) inf ๐œ‘
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž0 )+๐›พ(๐‘žโˆ’๐‘ž0 ) ๐‘’๐‘žฮฆ๐‘–
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž0 ) ๐‘’๐‘ž0 ฮฆ๐‘–
๐œ๐‘– =๐‘›
โˆ‘
โˆฃ๐‘‹๐‘– โˆฃ
๐‘‡๐œ‘ (๐‘ž0 ) ๐‘ž0 ฮฆ๐‘–
๐‘’
.
๐œ๐‘– =๐‘›
โˆ‘
By the Gibbs property of ๐œ‡ฮจ๐‘ž0 , we can estimate ๐œ๐‘– =๐‘› โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž0 ) ๐‘’๐‘ž0 ฮฆ๐‘– by ๐œ‡ฮจ๐‘ž0 {๐œ =
๐‘›} = ๐œ‡ฮจ1 {๐œ = ๐‘›} โฉฝ ๐‘’โˆ’๐›ฝฮฆ ๐‘› . So if (๐‘ž โˆ’ ๐‘ž0 ) inf ๐œ‘ < ๐›ฝฮฆ then similarly to the proof of
Proposition 4, ๐‘ž โˆˆ ๐‘ƒ ๐ต(๐œ‘). Since ๐‘‡๐œ‘ is analytic in ๐‘ƒ ๐ต(๐œ‘), this means that ๐‘‡๐œ‘ is
still a๏ฌƒne at ๐‘ž and therefore that ๐‘ˆ was not the largest domain of a๏ฌƒnity โ€˜to the
leftโ€™. We can continue doing this until we hit the left-hand boundary of ๐‘ƒ ๐ต(๐œ‘). In
particular, this means that 0 โˆˆ ๐‘ˆ .
Case 2: Suppose that ๐‘ƒ ๐ต(๐œ‘)โˆฉ(โˆ’๐›ฟ, ๐›ฟ)โˆฉ๐‘ˆ โˆ•= โˆ…. As in Case 1, this implies [0, ๐›ฟ] โŠ‚ ๐‘ˆ .
We will prove that 1 โˆˆ ๐‘ˆ .
By Proposition 4 we can choose a type B inducing scheme (๐‘‹, ๐น ) so that ๐œ‡๐œ“๐‘ž is
compatible with (๐‘‹, ๐น ) for all ๐‘ž โˆˆ (๐›ฟ โ€ฒ , ๐›ฟ) where ๐›ฟ โ€ฒ := ๐›ฟ/2. Recall from Proposition 2
that there exists ๐›ฝ๐ท๐น > 0 so that ๐œ‡ฮจ๐›ฟโ€ฒ {๐œ โฉพ ๐‘›} = ๐‘‚(๐‘’โˆ’๐‘›๐›ฝ๐ท๐น ).
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
25
We let ๐›ฟ < ๐‘ž โฉฝ 1 and ๐‘ž0 < ๐›ฟ be very close to ๐›ฟ. Again by convexity ๐‘‡๐œ‘ (๐‘ž) โฉพ
๐‘‡๐œ‘ (๐‘ž0 ) + ๐›พ(๐‘ž โˆ’ ๐‘ž0 ). Similarly to Case 1,
โˆ‘ โˆ‘
โˆ‘ โˆ‘
๐‘0โˆ— (ฮจ๐‘ž ) =
๐‘›
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž) ๐‘’๐‘žฮฆ๐‘– โฉฝ
๐‘›
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž0 )+๐›พ(๐‘žโˆ’๐‘ž0 ) ๐‘’๐‘žฮฆ๐‘–
๐‘›
โฉฝ
โˆ‘
๐‘›
๐œ๐‘– =๐‘›
๐‘›
๐œ๐‘– =๐‘›
)โˆ‘
(
๐‘› sup โˆฃ๐‘‹๐‘– โˆฃ๐›พ(๐‘žโˆ’๐‘ž0 ) ๐‘’(๐‘žโˆ’๐‘ž0 )ฮฆ๐‘–
โˆฃ๐‘‹๐‘– โˆฃ๐‘‡๐œ‘ (๐‘ž0 ) ๐‘’๐‘ž0 ฮฆ๐‘– .
๐œ๐‘– =๐‘›
๐œ๐‘– =๐‘›
Since โˆฃ๐‘‹๐‘– โˆฃ โฉพ ๐‘’โˆ’๐œ๐‘– โˆฃ๐ท๐‘“ โˆฃโˆž ,
)
(
sup โˆฃ๐‘‹๐‘– โˆฃ๐›พ(๐‘žโˆ’๐‘ž0 ) ๐‘’(๐‘žโˆ’๐‘ž0 )ฮฆ๐‘– โฉฝ ๐‘’๐‘›(๐‘žโˆ’๐‘ž0 )(โˆ’๐›พโˆฃ๐ท๐‘“ โˆฃsup +sup ๐œ‘) .
๐œ๐‘– =๐‘›
So if (๐‘ž โˆ’ ๐‘ž0 )(โˆ’๐›พโˆฃ๐ท๐‘“ โˆฃโˆž + sup ๐œ‘) < ๐›ฝ๐ท๐น then similarly to Case 1 we can conclude
that all points in ๐‘ƒ ๐ต(๐œ‘) to the right of ๐‘ž0 are in ๐‘ˆ . In particular 1 โˆˆ ๐‘ˆ .
In both cases 1 and 2, we concluded that [0, 1] โŠ‚ ๐‘ˆ . Therefore ๐œ‡๐œ‘ โ‰ก ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ , as
required.
โ–ก
Proof of Theorem A. Let ๐ฟ๐œ‘ be the minus Legendre transform of ๐‘‡๐œ‘ as in (5) wherever these functions are well de๏ฌned.
หœ ๐‹ โฉฝ ๐‘ณ๐‹ . To get this bound, we ๏ฌrst pick a suitable
The upper bound: ํ““ํ“ข
หœ ๐œ‘ (๐›ผ(๐‘ž)) = โˆช๐‘›โฉพ1 ๐ฟ๐บ 1 โˆฉ ๐’ฆ
หœ ๐œ‘ (๐›ผ(๐‘ž)), for all
inducing scheme. Given ๐‘ž โˆˆ ๐‘ƒ ๐ต(๐œ‘), since ๐’ฆ
๐‘›
โ€ฒ
หœ ๐œ‘ (๐›ผ(๐‘ž))) โฉพ dim๐ป (๐’ฆ
หœ ๐œ‘ (๐›ผ(๐‘ž)))โˆ’๐œ‚. For
๐œ‚ > 0 there exists ๐œ† > 0 so that dim๐ป (๐ฟ๐บ๐œ† โˆฉ ๐’ฆ
หœ ๐œ‘ (๐›ผ(๐‘ž))), we take an inducing scheme (๐‘‹, ๐น ) as in Proposition 5
some ๐‘  < dim๐ป (๐’ฆ
(this can be for schemes of type A or B, whichever we need).
หœ๐œ‘ โฉฝ ๐’Ÿ๐’ฎ ฮฆ and then use Theorem 2 and Proposition 4 to
We next show that ๐’Ÿ๐’ฎ
โ€ฒ
conclude the proof of the bound. Let ๐‘ฅ โˆˆ ๐’ฆ๐œ‘ (๐›ผ) โˆฉ ๐ฟ๐บ๐œ† . By transitivity there exists
โ€ฒ
๐‘— so that ๐‘ฅ โˆˆ ๐‘“ ๐‘— (๐‘‹). Let ๐‘ฆ โˆˆ ๐‘‹ be such that ๐‘“ ๐‘— (๐‘ฆ) = ๐‘ฅ. Since ๐‘ฅ โˆˆ ๐ฟ๐บ๐œ† , we
must also have ๐‘ฆ โˆˆ (๐‘‹, ๐น )โˆž by Proposition 5. By Propositions 7 and 8, ๐‘‘๐œ‡๐œ‘ (๐‘ฅ) =
๐‘‘๐œ‡๐œ‘ (๐‘ฆ) = ๐‘‘๐œ‡ฮฆ (๐‘ฆ), so ๐‘ฆ โˆˆ ๐’ฆฮฆ (๐›ผ). Therefore,
๐‘˜
หœ ๐œ‘ (๐›ผ) โˆฉ ๐ฟ๐บโ€ฒ๐œ† โŠ‚ โˆชโˆž
๐’ฆ
๐‘˜=0 ๐‘“ (๐’ฆฮฆ (๐›ผ)).
Hence
(
)
๐‘˜
หœ๐œ‘ โˆ’ ๐œ‚ โฉฝ dim๐ป (๐’ฆ๐œ‘ (๐›ผ) โˆฉ ๐ฟ๐บโ€ฒ๐œ† ) โฉฝ dim๐ป โˆชโˆž
๐’Ÿ๐’ฎ
๐‘˜=0 ๐‘“ (๐’ฆฮฆ (๐›ผ)) .
(
)
๐‘˜
หœ
Since ๐‘“ is clearly Lipschitz, dim๐ป โˆชโˆž
๐‘˜=0 ๐‘“ (๐’ฆฮฆ (๐›ผ)) = dim๐ป (๐’ฆฮฆ (๐›ผ)), so ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) โˆ’
๐œ‚ โฉฝ ๐’Ÿ๐’ฎ ฮฆ (๐›ผ). Theorem 2 says that ๐’Ÿ๐’ฎ ฮฆ (๐›ผ(๐‘ž)) is ๐ฟฮฆ (๐›ผ), minus the Legendre
หœ๐œ‘ (๐›ผ)โˆ’๐œ‚ โฉฝ ๐ฟฮฆ (๐›ผ) = ๐ฟ๐œ‘ (๐›ผ), where the ๏ฌnal equality
transform of ๐‘‡ฮฆ . Therefore, ๐’Ÿ๐’ฎ
หœ๐œ‘ (๐›ผ) โฉฝ ๐ฟ๐œ‘ (๐›ผ).
follows from Proposition 4. Since ๐œ‚ > 0 was arbitrary, we have ๐’Ÿ๐’ฎ
หœ ๐‹ โฉพ ๐‘ณ๐‹ . We will use the Hausdor๏ฌ€ dimension of the
The lower bound: ํ““ํ“ข
equilibrium states for ๐œ“๐‘ž to give us the required upper bound here. For ๐œ‡ โˆˆ โ„ณ+ ,
by Theorem 1 there exists an inducing scheme (๐‘‹, ๐น ) which ๐œ‡ is compatible to.
This can chosen to be of type A or type B. By Proposition 8, ๐‘‘๐œ‡๐œ‘ (๐‘ฅ) = ๐‘‘๐œ‡ฮฆ (๐‘ฅ) for
any
๐‘ฅ โˆˆ (๐‘‹, ๐น )โˆž , where ฮฆ is the induced potential for (๐‘‹, ๐น ). Now suppose that
โˆซ
๐œ‘ ๐‘‘๐œ‡
๐œ†๐‘“ (๐œ‡) = โˆ’๐›ผ. Then for ๐œ‡-a.e. ๐‘ฅ, ๐‘†โˆž๐œ‘(๐‘ฅ) and ๐œ†(๐‘ฅ) exist, and by the above and
26
MIKE TODD
Remark 5, since we may choose ๐‘‹ so that for ๐‘ฅ โˆˆ (๐‘‹, ๐น )โˆž , we have
๐‘‘๐œ‡๐œ‘ (๐‘ฅ) = ๐‘‘๐œ‡ฮฆ (๐‘ฅ) =
๐‘†โˆž๐œ‘(๐‘ฅ)
= ๐›ผ.
โˆ’๐œ†๐‘“ (๐‘ฅ)
Hence ๐œ‡-a.e. ๐‘ฅ is in ๐’ฆ๐œ‘ (๐›ผ). Therefore,
โˆซ
{
}
๐œ‘ ๐‘‘๐œ‡
โ„Ž๐œ‡
หœ
๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) โฉพ sup
: ๐œ‡ โˆˆ โ„ณ+ and
= โˆ’๐›ผ .
๐œ†๐‘“ (๐œ‡)
๐œ†๐‘“ (๐œ‡)
By Lemma 4, we โˆซknow that there is an equilibrium state ๐œ‡๐œ“๐‘ž for ๐œ“๐‘ž . Then by
de๏ฌnition, โ„Ž๐œ‡๐œ“๐‘ž + โˆ’๐‘‡ (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ + ๐‘ž๐œ‘ ๐‘‘๐œ‡๐œ“๐‘ž = 0. Therefore, for ๐›ผ = ๐›ผ(๐‘ž),
โ„Ž๐œ‡๐œ“๐‘ž
๐œ†๐‘“ (๐œ‡๐œ“๐‘ž )
= ๐‘‡ (๐‘ž) + ๐‘ž๐›ผ = ๐ฟ๐œ‘ (๐›ผ).
หœ๐œ‘ (๐›ผ) โฉพ ๐ฟ๐œ‘ (๐›ผ). Putting our two bounds together, we conclude that
And hence ๐’Ÿ๐’ฎ
หœ๐œ‘ (๐›ผ) = ๐ฟ๐œ‘ (๐›ผ).
๐’Ÿ๐’ฎ
We next show (a), (b) and (c). First note that since we have assumed that ๐œ‡๐œ‘ โˆ•=
๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ , Lemma 7 means that ๐‘‡๐œ‘ is strictly convex in ๐‘ƒ ๐ต(๐œ‘). This implies that
๐‘ˆ will contain non-trivial intervals. For example, if (3) holds then ๐‘ƒ (๐œ‘) = 0 and
[HR] imply that
โˆซ
โ„Ž๐œ‡๐œ‘
๐œ‘ ๐‘‘๐œ‡๐œ‘
๐›ผ(1) = โˆ’
=
= dim๐ป (๐œ‡๐œ‘ ).
๐œ†๐‘“ (๐œ‡๐œ‘ )
๐œ†๐‘“ (๐œ‡๐œ‘ )
By Proposition 4 and Lemma 7, for any ๐›ผ close to dim๐ป (๐œ‡๐œ‘ ) there exists ๐‘ž such
หœ๐œ‘ (๐›ผ) = ๐ฟ๐œ‘ (๐›ผ).
that ๐ท๐‘‡๐œ‘ (๐‘ž) = ๐›ผ. Hence by the above, ๐’Ÿ๐’ฎ
Similarly, let us assume that (2) holds. We have
โˆซ
๐œ‘ ๐‘‘๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ
= ๐›ผ๐‘Ž๐‘ .
๐›ผ(0) = โˆ’
๐œ†๐‘“ (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )
So the arguments above, Proposition 4 and Lemma 7 imply that for any ๐›ผ < ๐›ผ๐‘Ž๐‘
หœ๐œ‘ (๐›ผ) = ๐ฟ๐œ‘ (๐›ผ). The same holds
there exists ๐‘ž such that ๐ท๐‘‡๐œ‘ (๐‘ž) = ๐›ผ, and also ๐’Ÿ๐’ฎ
for all ๐›ผ in a neighbourhood of ๐›ผ๐‘Ž๐‘ when (1) holds.
โ–ก
Proof of Proposition 1. It was pointed out in [I1, Remark 4.9] that by [BaS], for an
inducing scheme (๐‘‹, ๐น ) with potential ฮฆ : ๐‘‹ โ†’ โ„, the Hausdor๏ฌ€ dimension of the
set of points with ๐‘‘๐œ‡ฮฆ (๐‘ฅ) not de๏ฌned has the same dimension as the set of points
for which the inducing scheme is de๏ฌned for all time. So we can choose (๐‘‹, ๐น ) to
be any inducing scheme which is compatible to the acip to show that the Hausdor๏ฌ€
dimension of this set of points is 1. In fact any type A or type B inducing scheme
is compatible to the acip. By Proposition 8, if ๐‘‘๐œ‡ฮฆ (๐‘ฅ) not de๏ฌned then neither is
๐‘‘๐œ‡๐œ‘ (๐‘ฅ), so the proposition is proved.
โ–ก
5.1. Going to large scale: the proof of Corollary C. Suppose that ๐‘“ โˆˆ โ„ฑ
extends to a polynomial on โ„‚ with no parabolic points and all critical points in
๐ผ. In the context of rational maps, Graczyk and Smirnov [GS] prove numerous
results for such maps satisfying (2). For ๐›ฟ > 0, we say that ๐‘ฅ goes to ๐›ฟ-large scale
at time ๐‘› if there exists a neighbourhood ๐‘Š of ๐‘ฅ such that ๐‘“ : ๐‘Š โ†’ ๐ต๐›ฟ (๐‘“ ๐‘› (๐‘ฅ))
is a di๏ฌ€eomorphism. [GS, Theorem 3] says that there exists ๐›ฟ > 0 such that the
set of points which do not go to ๐›ฟ-large scale for an in๏ฌnite sequence of times has
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
27
(๐‘“ )
Hausdor๏ฌ€ dimension less than โ„“๐‘š๐‘Ž๐‘ฅ
๐›ฝ๐‘ƒ โˆ’1 < 1 where ๐›ฝ๐‘ƒ is de๏ฌned in (2). Here we will
sketch how this implies Corollary C.
By [K2], if ๐‘“ โˆˆ โ„ฑ and ๐‘ฅ โˆˆ ๐ผ goes to ๐›ฟ-large scale with frequency ๐›พ, then there
exists ๐‘ = ๐‘ (๐›ฟ) so that iterates of ๐œ„(๐‘ฅ) by ๐‘“ห† enter ๐ผห†๐‘ with frequency at least ๐›พ.
In [K2, BT1], this idea was used to prove that for ๐œ‡ โˆˆ โ„ณ๐‘’๐‘Ÿ๐‘” , if ๐œ‡-a.e. ๐‘ฅ goes to
๐›ฟ-large scale with some frequency greater than ๐›พ > 0, then there exists ๐œ‡
ห† an ergodic
ห† with ๐œ‡
๐‘“ห†-invariant probability measure on ๐ผ,
ห†(๐ผห†๐‘ ) > ๐›พ (so also ๐œ‡
ห†-a.e. ๐‘ฅ
ห† enters ๐ผห†๐‘
with positive frequency), and ๐œ‡ = ๐œ‡
ห† โˆ˜ ๐œ‹ โˆ’1 . By the arguments above this means that
ห† โˆˆ ๐ผห†๐‘ which is compatible to
we can build an inducing (๐‘‹, ๐น ) scheme from a set ๐‘‹
๐œ‡.
However, to prove Corollary C, we only need that su๏ฌƒciently many points ๐‘ฅ have
๐‘˜ โฉพ 0 such that ๐‘“ ๐‘˜ (๐‘ฅ) โˆˆ (๐‘‹, ๐น )โˆž , which does not necessarily mean that these
points must go to large scale with positive frequency. (Note that we already know
ห† We only need to use
that all the measures ๐œ‡ we are interested in can be lifted to ๐ผ.)
the fact, as above, that if ๐ด is the set of points which go to ๐›ฟ-large scale in๏ฌnitely
often, then there exists ๐‘… โˆˆ โ„• so that for all ๐‘ฅ โˆˆ ๐ด, ๐œ„(๐‘ฅ) enters ๐ผห†๐‘… in๏ฌnitely often.
Hence the machinery developed above โ€˜seesโ€™ all of ๐ด, up to a set of Hausdor๏ฌ€
(๐‘“ )
dimension < โ„“๐‘š๐‘Ž๐‘ฅ
๐›ฝ๐‘ƒ โˆ’1 . Since this value is < 1, for our class of rational maps, we
หœ๐œ‘ (๐›ผ) for ๐›ผ close to ๐›ผ๐‘Ž๐‘ . Similarly, if โ„“๐‘š๐‘Ž๐‘ฅ (๐‘“ ) < dim๐ป (๐œ‡๐œ‘ ) then
have ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) = ๐’Ÿ๐’ฎ
๐›ฝ๐‘ƒ โˆ’1
the same applies for ๐›ผ close to dim๐ป (๐œ‡๐œ‘ ).
Note that for rational maps as above, but satisfying (1), the same argument gives
another proof of Corollary B.
It seems likely that the analyticity condition can be weakened to include all maps
in โ„ฑ satisfying (2).
Note: Corollary 6.3 of [RS], which was written after this work was completed,
states that for all ๐‘“ โˆˆ โ„ฑ satisfying (3), the complement of the set of points let
going to large scale in๏ฌnitely often has Hausdor๏ฌ€ dimension 0. Therefore we can
หœ๐œ‘ (๐›ผ) with ๐’Ÿ๐’ฎ ๐œ‘ (๐›ผ) throughout.
replace ๐’Ÿ๐’ฎ
5.2. Points with zero Lyapunov exponent can be seen. In this section we
discuss further which points can and cannot be seen by the inducing schemes we
use here.
Suppose that (๐‘‹, ๐น, ๐œ ) is an inducing scheme of type A. Then there is a correspondห† โŠ‚ ๐ผห† such that ๐œ (๐‘ฆ) is ๐‘Ÿ ห† (ห†
ห† is such that ๐œ‹(ห†
ing set ๐‘‹
ห†โˆˆ๐‘‹
๐‘ฆ ) = ๐‘ฆ and ๐‘Ÿ๐‘‹ห† is
๐‘‹ ๐‘ฆ ) where ๐‘ฆ
ห† Then there exist points ๐‘ฅ
ห† so that ๐œ‹(๐‘“ห†๐‘˜ (๐‘ฅ)) โˆˆ Crit
the ๏ฌrst return time to ๐‘‹.
ห†โˆˆ๐‘‹
ห† for all 1 โฉฝ ๐‘— < ๐‘˜. This implies that from iterate ๐‘˜ onwards, this
and ๐‘“ห†๐‘— (ห†
๐‘ฅ) โˆˆ
/ ๐‘‹
ห† is always chosen to
orbit is always in the boundary of its domain ๐ท โˆˆ ๐’Ÿ. Since ๐‘‹
be compactly contained inside its domain ๐ท๐‘‹ห† โˆˆ ๐’Ÿ, this means that ๐‘ฅ
ห† never returns
ห† Hence for ๐‘ฅ = ๐œ‹(ห†
to ๐‘‹.
๐‘ฅ), ๐œ (๐‘ฅ) = โˆž. On the other hand, there are precritical
โˆ’1
ห†
points ๐‘ฅ with ๐‘ฅ
ห† = ๐œ‹โˆฃโˆ’1
(๐‘)
ห† (๐‘ฅ) which returns to ๐‘‹ before it hits a โ€˜critical lineโ€™ ๐œ‹
๐‘‹
for ๐‘ โˆˆ Crit. For such a point, ๐œ (๐‘ฅ) < โˆž, but for all large iterates ๐‘˜, we must
have ๐œ (๐‘“ ๐‘˜ (๐‘ฅ)) = โˆž. Hence precritical points in ๐‘‹ cannot have ๏ฌnite inducing time
28
MIKE TODD
for all iterates. This can be shown similarly for type B inducing schemes. We can
extend this to show that no precritical point is counted in our proof of Theorem A.
หœ๐œ‘ (๐›ผ) through measures on ๐’ฆ๐›ผ . In fact
Moreover, in this paper we are able to ๏ฌnd ๐’Ÿ๐’ฎ
we can only properly deal with measures which are compatible to some inducing
scheme. As in Theorem 1, the only measures we can consider are in โ„ณ+ . This
means that the set of points ๐‘ฅ with ๐œ†(๐‘ฅ) = 0 is not seen by these measures. As
pointed out above Corollary B, [BS] shows that in the Collet-Eckmann case, the
set of points with ๐œ†(๐‘ฅ) = 0 is countable and thus has zero Hausdor๏ฌ€ dimension.
(Note that even in this well-behaved case it is not yet clear that the set of points
with ๐œ†(๐‘ฅ) = 0 has zero Hausdor๏ฌ€ dimension.) The general question of what is
the Hausdor๏ฌ€ dimension of ๐ผ โˆ– ๐ฟ๐บ0 for topologically transitive maps is, to our
knowledge, open.
On the other hand, it is not always the case that given an inducing scheme (๐‘‹, ๐น, ๐œ ),
all points ๐‘ฅ โˆˆ ๐‘‹ for which ๐œ (๐น ๐‘˜ (๐‘ฅ)) < โˆž for all ๐‘˜ โฉพ 0 have positive Lyapunov
exponent. For example, we say that ๐‘“ has uniform hyperbolic structure if inf{๐œ†๐‘“ (๐‘) :
๐‘ is periodic} > 0. Nowicki and Sands [NS] showed that for unimodal maps in โ„ฑ
this condition is equivalent to (1). If we take ๐‘“ โˆˆ โ„ฑ without uniform hyperbolic
structure, then it can be shown that for any inducing scheme (๐‘‹, ๐น, ๐œ ) as above,
there is a sequence {๐‘›๐‘˜ }๐‘˜ such that
sup{log โˆฃ๐ท๐น (๐‘ฅ)โˆฃ : ๐‘ฅ โˆˆ ๐‘‹๐‘›๐‘˜ }
โ†’ 0.
๐œ๐‘›๐‘˜
There exists ๐‘ฅ โˆˆ ๐‘‹ so that ๐น ๐‘˜ (๐‘ฅ) โˆˆ ๐‘‹๐‘›๐‘˜ for all ๐‘˜. Thus ๐œ†(๐‘ฅ) โฉฝ 0, but ๐œ (๐น ๐‘˜ (๐‘ฅ)) <
โˆž for all ๐‘˜ โฉพ 0. In the light of the proof of Corollary C, we note that ๐‘ฅ goes to
โˆฃ๐‘‹โˆฃ-large scale in๏ฌnitely often, but with zero frequency.
6. Lyapunov spectrum
For ๐œ† โฉพ 0 we let
๐ฟ๐œ† = ๐ฟ๐œ† (๐‘“ ) := {๐‘ฅ : ๐œ†๐‘“ (๐‘ฅ) = ๐œ†} and ๐ฟโ€ฒ = ๐ฟโ€ฒ (๐‘“ ) := {๐‘ฅ : ๐œ†๐‘“ (๐‘ฅ) does not exist} .
The function ๐œ† 7โ†’ dim๐ป (๐ฟ๐œ† ) is called the Lyapunov spectrum. Notice that by [BS],
if ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) then if the Lyapunov exponent at a given point exists then
it must be greater than or equal to 0. In this section we explain how the results
above for pointwise dimension are naturally related to the Lyapunov spectrum. As
we show below, the equilibrium states ๐œ‡โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ found in [PSe, BT4] for certain
values of ๐‘ก, depending on the properties of ๐‘“ , are the measures of maximal dimension
sitting on the sets ๐ฟ๐œ† for some ๐œ† = ๐œ†(๐‘ก).
Recall that ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ is the acip for ๐‘“ . We denote the measure of maximal entropy
by ๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) since it is the equilibrium state for a constant potential ๐œ‘๐‘Ž (๐‘ฅ) = ๐‘Ž for
all ๐‘ฅ โˆˆ ๐ผ; and in order to ensure ๐‘ƒ (๐œ‘๐‘Ž ) = 0, we can set ๐‘Ž = โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ). We let
๐’Ÿ๐’ฎ โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐›ผ) = dim๐ป (๐’ฆโˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐›ผ)) where ๐’ฆโˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) is de๏ฌned for the measure
๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) as above.
โ„Ž
(๐‘“ )
Proposition 9. If ๐‘“ โˆˆ โ„ฑ then there exists an open set ๐‘ˆ โŠ‚ โ„ containing ๐œ†๐‘“ (๐œ‡๐‘ก๐‘œ๐‘
โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) )
(
)
so that for each ๐›ผ โˆˆ ๐‘ˆ the values of dim๐ป ๐ฟ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) = ๐’Ÿ๐’ฎ โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐›ผ) are given as
๐›ผ
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
minus the Legendre transform of ๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) at ๐›ผ. If ๐‘“ satis๏ฌes (2), then
is in the closure of ๐‘ˆ , and if ๐‘“ satis๏ฌes (1) then
โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
๐œ†๐‘“ (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )
29
โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
๐œ†๐‘“ (๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )
is contained in ๐‘ˆ .
As observed by Bohr and Rand, this proposition would have to be adapted slightly
when we are dealing with quadratic Chebyshev polynomial (which is not in our class
โ„ฑ). In this case, ๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) = ๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ , so the Lyapunov spectrum can not analytic
in a neighbourhood of 1. Note that this agrees with Lemma 7 and Remark 6.
Note that the ๏ฌrst part of the proposition makes no assumption on the growth of
โˆฃ๐ท๐‘“ ๐‘› (๐‘“ (๐‘))โˆฃ for ๐‘ โˆˆ Crit. We can rephrase the statement of this proposition as: for
the range of Lyapunov exponents ๐œ† close to that of ๐œ†(๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ ) and ๐œ†(๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ ),
1
inf (๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) + ๐‘ก๐œ†) .
๐œ† ๐‘กโˆˆโ„
The proof of this proposition follows almost exactly as in the proof of Proposition 4,
so we only give a sketch.
Proof. Given an inducing scheme (๐‘‹, ๐น ), by Remark 5, for each ๐‘ฅ โˆˆ (๐‘‹, ๐น )โˆž if
๐œ†๐‘“ (๐‘ฅ) exists then
โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )
๐œ†๐‘“ (๐‘ฅ) =
.
๐‘‘๐œ‡โˆ’๐œ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ฅ)
Here the potential is ๐œ‘ โ‰ก โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ), and the induced potential is โˆ’๐œ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ). This
means that we can get the Lyapunov spectrum directly from ๐‘‘๐œ‡โˆ’๐œ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) . As in
Proposition 8, ๐‘‘๐œ‡โˆ’๐œ โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ฅ) = ๐‘‘๐œ‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ฅ) for all ๐‘ฅ โˆˆ ๐‘‹.
Therefore it only remains to discuss the interval ๐‘ˆ , i.e. the equivalent of Proposition 4. First we note that Lemma 7 holds in this case without any assumption
on the proof of โˆฃ๐ท๐‘“ ๐‘› (๐‘“ (๐‘))โˆฃ for ๐‘ โˆˆ Crit. We ๏ฌx an inducing scheme (๐‘‹, ๐น ). That
๐‘0โˆ— (ฮจ๐‘ž + ๐›ฟ๐‘ž ๐œ ) < โˆž for some small ๐›ฟ๐‘ž > 0, for ๐‘ž in some open interval ๐‘ˆ can be
proved exactly in the same way as in the proof of Proposition 4.
โ–ก
Note that similarly to Proposition 1, the set of points for which the Lyapunov
exponent is not de๏ฌned has Hausdor๏ฌ€ dimension 1.
Remark 7. For ๐‘ก โˆˆ โ„, let ๐‘ƒ๐‘ก := ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ). It follows that ๐‘ƒ๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ž) =
๐‘žโ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ). Since ๐œ‡๐œ“๐‘ž is an equilibrium state for โˆ’๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ โˆ’ ๐‘žโ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ),
then it is also an equilibrium state for โˆ’๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ž) log โˆฃ๐ท๐‘“ โˆฃ. Therefore, the measures for ๐œ“๐‘ž are precisely those found for the potential โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ in Proposition 3
and in [BT2, Theorem 6].
Remark 8. If (1) does not hold, then Proposition 9 does not deal with ๐ฟ๐œ† for ๐œ† <
๐œ†(๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ ). This is because, at least in the unimodal case, we have no equilibrium
state with positive Lyapunov exponent for the potential ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ for ๐‘ก > 1
(i.e., there is a phase transition at 1).
Nakaishi [Na] and Gelfert and Rams [GR] consider the Lyapunov spectrum for
Manneville-Pomeau maps with an absolutely continuous invariant measure, which
has polynomial decay of correlations. Despite there being a phase transition for
๐‘ก 7โ†’ ๐‘ƒ๐‘ก at ๐‘ก = 1, they are still able to compute the Lyapunov spectrum in the regime
๐œ† โˆˆ [0, ๐œ†(๐œ‡โˆ’ log โˆฃ๐ท๐‘“ โˆฃ )). Indeed they show that dim๐ป (๐ฟ๐œ† ) = 1 for all these values of
30
MIKE TODD
๐œ†. In forthcoming work we will show that we have the same phenomenon in our
setting when (2), but not (1), holds.
Remark 9. If (1) holds then it can be computed that in the above proof, ๐‘0โˆ— (ฮจ๐‘ž +
๐›ฟ๐œ ) < โˆž whenever (1 โˆ’ ๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ž) โˆ’ ๐‘ž)โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) โˆ’ ๐›ผ๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) (๐‘ž), where ๐›ผ is the
rate of decay of ๐œ‡โˆ’ log โˆฃ๐ท๐น โˆฃ {๐œ > ๐‘›} and ๐›ฟ is some constant > 0. If ๐‘“ is a ColletEckmann map very close to the Chebyshev polynomial, then ๐‘ก 7โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ)
is close to an a๏ฌƒne map, and thus ๐‘‡โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ) is also close to an a๏ฌƒne map, then
๐‘0โˆ— (ฮจ๐‘ž + ๐›ฟ๐‘ž ๐œ ) < โˆž for all ๐‘ž in a neighbourhood of [0, 1] and for some ๐›ฟ๐‘ž > 0.
The unimodal maps considered by Pesin and Senti [PSe] have the above property
and so there exists ๐œ€ > 0 so that [0, 1] โŠ‚ ๐‘ƒ ๐ต๐œ€ (โˆ’โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ )). However, this may not be
the whole spectrum.
In [PSe], they ask if it is possible to ๏ฌnd a unimodal map ๐‘“ : ๐ผ โ†’ ๐ผ so that there is
a equilibrium state for the potential ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ for all ๐‘ก โˆˆ (โˆ’โˆž, โˆž), and that
the pressure function ๐‘ก 7โ†’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) is analytic in this interval. This would
be in order to implement a complete study of the thermodynamic formalism. As
Dobbs points out in [D2], in order to show this, even in the โ€˜most hyperbolicโ€™ cases,
one must restrict attention to measures on a subset of the phase space: otherwise
we would at least expect a phase transition in the negative spectrum.
Appendix
In this appendix we introduce a class of potentials for which the results in the rest
of the paper hold. We will also prove slightly generalised versions of Propositions 7
and 8.
Given a potential ๐œ‘, and an inducing scheme (๐‘‹, ๐น ) of type A or B, as usual we
let ฮฆ be the induced potential. If
โˆ‘
๐‘‰๐‘› (ฮฆ) < โˆž,
(9)
๐‘›
then we say that ๐œ‘ satis๏ฌes the summable variations for induced potential condition,
with respect to this inducing scheme. If ๐œ‘ satis๏ฌes this condition for every type A
or B inducing scheme (๐‘‹, ๐น ) with โˆฃ๐‘‹โˆฃ su๏ฌƒciently small, we write ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ. Note
that in [BT2, Lemma 3] it is proved that if ๐œ‘ is Hoฬˆlder and ๐‘“ โˆˆ โ„ฑ satis๏ฌes (4) then
๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ. Also in [BT2] it was proved that Proposition 2 holds for all potentials in
๐‘†๐‘‰ ๐ผ satisfying (4), with no assumptions on the growth along the critical orbits.
Proposition 7 is already known in the case that ๐œ‘ is Hoฬˆlder. For interest, we will
change the class of potentials in that proposition to those in ๐‘†๐‘‰ ๐ผ satisfying (4), as
well as to potentials of the form ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ. We also widen the class of
potentials considered in Proposition 8. We will refer to Propositions 7 and 8, but
with only the assumptions that ๐‘“ โˆˆ โ„ฑ and ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ, as Propositions 7โ€™ and 8โ€™.
Note that Proposition 8โ€™ plus [BT2, Lemma 3] implies Proposition 8. The proof of
these propositions requires three steps:
โˆ™ Proving the existence of a conformal measure ๐‘š๐œ‘ for a potential ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ
satisfying (4) and ๐‘ƒ (๐œ‘) = 0. Since we do this using the measure ๐‘šฮฆ from
Proposition 2, we only really need to prove this for inducing schemes of type
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
31
A. However, it is of independent interest that this step can also be done for
the potential ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ โˆ’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ), so we allow type B inducing
schemes also.
โˆ™ Proving that a rescaling of the measure ๐‘š๐œ‘ is also conformal for our inducing
schemes. This will be used directly in the proof of Proposition 7โ€™, so must hold
for both type A and type B inducing schemes. Note that this step works for all
of the types of potential mentioned above.
๐‘‘๐œ‡
โˆ™ Proving that the density ๐‘‘๐‘š๐œ‘๐œ‘ is bounded. We will use type A inducing schemes
to prove this. In this step, we must assume that ๐œ‘ is in ๐‘†๐‘‰ ๐ผ, satis๏ฌes (4) and
๐‘ƒ (๐œ‘) = 0.
The necessary parts of the ๏ฌrst and third of these steps are the content of Proposition 7โ€™. As above, for the proof of this proposition, we only need to use type
A inducing schemes. But we will give the proof of the existence of the conformal
measure for both types of schemes for interest. Our inducing scheme (๐‘‹, ๐น, ๐œ ) is
ห† โŠ‚ ๐ผ.
ห† Recall that if we have a type
derived from a ๏ฌrst return map to a set ๐‘‹
ห†
ห† โŠ‚ ๐ท โˆˆ ๐’Ÿ in the Hofbauer
A scheme, then ๐‘‹ is an interval in a single domain ๐‘‹
ห†
extension. In the type B case, ๐‘‹ may consist of in๏ฌnitely many such intervals. We
ห† and ๐‘… ห† = ๐‘“ห†๐‘Ÿ๐‘‹ห† . We let ๐‘‹
ห† ๐‘– denote the ๏ฌrst
let ๐‘Ÿ๐‘‹ห† be the ๏ฌrst return time to ๐‘‹
๐‘‹
return domains of ๐‘…๐‘‹ห† .
We let ๐œ‘ห† := ๐œ‘โˆ˜๐œ‹, and ๐œ‡
ห†๐œ‘,๐‘‹ห† :=
๐œ‡
ห† ๐œ‘ โˆฃ๐‘‹
ห†
ห†
๐œ‡
ห† (๐‘‹)
ห† As explained
be the conditional measure on ๐‘‹.
in [BT4], the measure ๐œ‡ฮฆ is the same as ๐œ‡
ห†๐œ‘,๐‘‹ห† โˆ˜ ๐œ‹ โˆ’1 . Proposition 2 implies that
for type A inducing schemes (๐‘‹, ๐น ), the induced potential ฮฆ has ๐‘ƒ (ฮฆ) = 0, and
there a conformal measure and equilibrium state ๐‘šฮฆ and ๐œ‡ฮฆ and ๐ถฮฆ > 0 so that
๐‘‘๐œ‡ฮฆ
1
๐ถฮฆ โฉฝ ๐‘‘๐‘šฮฆ โฉฝ ๐ถฮฆ . We show in Lemma 11 that this is also true for type B inducing
schemes.
We de๏ฌne ๐‘š
ห† ๐œ‘ โˆฃ๐‘‹ห† := ๐‘šฮฆ โˆ˜ ๐œ‹โˆฃ๐‘‹ห† . We can propagate this measure throughout ๐ผห† as
follows.
ห† with ๐‘Ÿ ห† (ห†
For ๐‘ฅ
ห†โˆˆ๐‘‹
๐‘ฅ) โˆ’ 1, we de๏ฌne
ห† (ห†
๐‘‹ ๐‘ฅ) < โˆž, for 0 โฉฝ ๐‘˜ โฉฝ ๐‘Ÿ๐‘‹
๐‘‘๐‘š
ห† ๐œ‘ (๐‘“ห†๐‘˜ (ห†
๐‘ฅ)) = ๐‘’โˆ’๐œ‘ห†๐‘˜ (ห†๐‘ฅ) ๐‘‘๐‘š
ห† ๐œ‘ โˆฃ๐‘‹ห† (ห†
๐‘ฅ).
Let (๐‘‹, ๐‘“ ) be a dynamical system and ๐œ‘ : ๐‘‹ โ†’ โ„ be a potential. We say that a
measure ๐‘š, is ๐œ‘-sigma-conformal for (๐‘‹, ๐‘“ ) if for any Borel set ๐ด so that ๐‘“ : ๐ด โ†’
๐‘“ (๐ด) is a bijection,
โˆซ
๐‘’โˆ’๐œ‘ ๐‘‘๐‘š.
๐‘š(๐‘“ (๐ด)) =
๐ด
Or equivalently ๐‘‘๐‘š(๐‘“ (๐‘ฅ)) = ๐‘’โˆ’๐œ‘(๐‘ฅ) ๐‘‘๐‘š(๐‘ฅ). So the usual conformal measures are
also sigma-conformal, but this de๏ฌnition allows us to deal with in๏ฌnite measures.
The next two lemmas apply to potentials ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ satisfying (4) and ๐‘ƒ (๐œ‘) = 0, or
of the form ๐‘ฅ 7โ†’ โˆ’๐‘ก log โˆฃ๐ท๐‘“ (๐‘ฅ)โˆฃ โˆ’ ๐‘ƒ (โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ) as in Proposition 3.
Lemma 8. Suppose that (๐‘‹, ๐น ) is a type A or type B system and ๐‘ƒ (ฮฆ) = 0.
(a) ๐‘š
ห† ๐œ‘ as de๏ฌned above is a ๐œ‘-sigma-conformal measure.
ห† ๐‘“ห†), then up to a rescaling,
(b) Given a ๐œ‘-sigma-conformal
ห†
measure ๐‘š
ห† โ€ฒ๐œ‘ for (๐ผ,
โ€ฒ
๐‘š
ห†๐œ‘ = ๐‘š
ห† ๐œ‘.
32
MIKE TODD
Proof. We ๏ฌrst prove (a). The ฮฆ-conformality of ๐‘šฮฆ implies that ๐‘š
ห† ๐œ‘ โˆฃ๐‘‹ห† is ฮฆฬ‚ห†
conformal for the system (๐‘‹, ๐‘…๐‘‹ห† , ฮฆฬ‚) for ฮฆฬ‚(ห†
๐‘ฅ) := ฮฆ(๐œ‹(ห†
๐‘ฅ)).
ห† if 0 โฉฝ ๐‘— < ๐‘Ÿ ห† (ห†
Given ๐‘ฅ
ห† โˆˆ ๐‘‹,
๐‘‹ ๐‘ฅ) โˆ’ 1, then the relation
ห† ๐‘ฅ)
๐‘‘๐‘š
ห† ๐œ‘ โˆ˜ ๐‘“ห†(๐‘“ห†๐‘— (ห†
๐‘ฅ)) = ๐‘’โˆ’๐œ‘(ห†
๐‘‘๐‘š
ห† ๐œ‘ (๐‘“ห†๐‘— (ห†
๐‘ฅ))
is immediate from the de๏ฌnition. For ๐‘— = ๐‘Ÿ๐‘‹ห† (ห†
๐‘ฅ) โˆ’ 1, then ๐‘“ห†(๐‘“ห†๐‘— (ห†
๐‘ฅ)) = ๐‘…๐‘‹ห† (ห†
๐‘ฅ) and
ห†
we obtain, for ๐‘ฅ
ห† โˆˆ ๐‘‹,
ห† ๐‘ฅ)) = ๐‘’โˆ’ฮฆฬ‚(ห†๐‘ฅ) ๐‘‘๐‘š
๐‘‘๐‘š
ห† ๐œ‘ โˆ˜ ๐‘“ห†(๐‘“ห†๐‘— (ห†
๐‘ฅ)) = ๐‘’โˆ’๐œ‘ห†๐‘— (ห†๐‘ฅ) ๐‘‘๐‘š
ห† ๐œ‘ (ห†
๐‘ฅ) = ๐‘‘๐‘š
ห† ๐œ‘ (๐‘…(ห†
ห† ๐œ‘ (ห†
๐‘ฅ)
๐‘ฅ)โˆ’1
ห† (ห†
ห†๐‘Ÿห†๐‘‹
ห†๐‘Ÿ ห† (ห†
๐‘ฅ)
(ห†
๐‘ฅ)) โˆ’๐œ‘
๐‘ฅ)โˆ’2 (ห†
ห† ๐‘“
= ๐‘’โˆ’๐œ‘(
=๐‘’
๐‘’
๐‘Ÿ
ห† ห† (ห†
๐‘ฅ)โˆ’1
โˆ’๐œ‘(
ห† ๐‘“ห† ๐‘‹
(ห†
๐‘ฅ))
๐‘‹
๐‘‘๐‘š
ห† ๐œ‘ (ห†
๐‘ฅ)
ห† ๐‘“ห†๐‘— (ห†
๐‘ฅ))
๐‘‘๐‘š
ห† ๐œ‘ (๐‘“ห†๐‘Ÿห†๐‘‹ห† (ห†๐‘ฅ)โˆ’1 (ห†
๐‘ฅ)) = ๐‘’โˆ’๐œ‘(
๐‘‘๐‘š
ห† ๐œ‘ (๐‘“ห†๐‘— (ห†
๐‘ฅ)),
as required.
ห† by de๏ฌnition ๐‘‘๐‘š
๐‘ฅ). Let
๐‘ฅ)) = ๐‘’โˆ’ฮฆฬ‚(ห†๐‘ฅ) ๐‘‘๐‘š
ห† โ€ฒ๐œ‘ (ห†
For the proof of (b), for ๐‘ฅ
ห† โˆˆ ๐‘‹,
ห† โ€ฒ๐œ‘ (๐‘…๐‘‹ห† (ห†
โ€ฒ
ห†
ห†
๐‘‹ be some domain in ๐‘‹ contained in some single domain ๐ท โˆˆ ๐’Ÿ (this is not a
โˆ’1
ห† โ€ฒ๐œ‘ โˆ˜๐œ‹๐‘‹
necessary step if the inducing scheme is of type A). This implies that ๐‘šโ€ฒ๐œ‘ := ๐‘š
ห†โ€ฒ
is ฮฆ-conformal after rescaling. As in Proposition 2, there is only one ฮฆ-conformal
ห† ๐œ‘ up to a rescaling.
โ–ก
measure for (๐‘‹, ๐น ), which implies that ๐‘š
ห† โ€ฒ๐œ‘ = ๐‘š
ห† โŠ‚ ๐ผ,
ห† we consider the system (๐‘‹,
ห† ๐‘… ห† ) where ๐‘… ห† is the ๏ฌrst return map to
Given ๐‘‹
๐‘‹
๐‘‹
ห†
ห† ๐‘… ห† ), see [K4]. Adding Kacโ€™s
๐‘‹. The measure ๐œ‡
ห†๐œ‘ is an invariant measure for (๐‘‹,
๐‘‹
Lemma to (6), for any ๐ดห† โŠ‚ ๐ผห† we have
โˆ‘
โˆ‘
ห† :=
ห† โˆฉ๐‘‹
ห† ๐‘– ).
๐œ‡
ห†๐œ‘ (๐ด)
๐œ‡
ห†๐œ‘ (๐‘“ห†โˆ’๐‘˜ (๐ด)
(10)
๐‘–
0โฉฝ๐‘˜โฉฝ๐‘Ÿ๐‘‹
ห† โˆฃ๐‘‹
ห† โˆ’1
๐‘–
ห† ๐‘– ), for 0 โฉฝ ๐‘˜ โฉฝ ๐‘Ÿ ห† โˆฃ ห† โˆ’ 1,
This means we can compare ๐‘š
ห† ๐œ‘ and ๐œ‡
ห†๐œ‘ on domains ๐‘“ห†๐‘— (๐‘‹
๐‘‹ ๐‘‹๐‘–
in a relatively simple way.
We will project the measure ๐‘š
ห† ๐œ‘ to ๐ผ. Although it is possible to show that for many
ห†
potentials we consider, ๐‘š
ห† ๐œ‘ (๐ผ) < โˆž, we allow the possibility that our conformal
measures are in๏ฌnite. This leaves the possibility to extend this theory to a wider
class of measures open. So in the following lemma, we use another way to project
๐‘š
ห† ๐œ‘.
Lemma 9. Suppose that ๐‘Œห† โŠ‚ ๐ผห†๐’ฏ is so that ๐‘Œห† = โŠ”๐‘› ๐‘Œห†๐‘› for ๐‘Œ๐‘› an interval contained
in a single domain ๐ท๐‘Œ๐‘› โˆˆ ๐’Ÿ๐’ฏ and ๐œ‹ : ๐‘Œห† โ†’ ๐ผ is a bijection. Then for ๐œˆ๐œ‘ :=
๐œˆ๐œ‘
๐‘š
ห† ๐œ‘ โˆ˜ ๐œ‹โˆฃโˆ’1
, we have ๐œˆ๐œ‘ (๐ผ) < โˆž. Moreover, ๐‘š๐œ‘ := ๐œˆ(๐ผ)
is a conformal measure for
๐‘Œห†
ห†
(๐ผ, ๐‘“, ๐œ‘), and ๐‘š๐œ‘ is independent of ๐‘Œ .
Proof. We ๏ฌrst prove that ๐œˆ๐œ‘ is independent of ๐‘Œห† , up to rescaling. In doing so, the
๐œ‘-sigma-conformal property of ๐œˆ๐œ‘ become clear. The we show that ๐œˆ๐œ‘ (๐ผ) < โˆž.
Let us pick some ๐‘Œห† , and let ๐œˆ๐œ‘ be as in the statement of the lemma. Let ๐‘ฅ โˆˆ
/
โˆช๐‘›โˆˆโ„• ๐‘“ ๐‘› (Crit). Suppose that ๐‘ฅ
ห†1 , ๐‘ฅ
ห†2 have ๐œ‹(ห†
๐‘ฅ1 ) = ๐œ‹(ห†
๐‘ฅ2 ) = ๐‘ฅ. By our condition
on ๐‘ฅ, we have ๐‘ฅ
ห†๐‘– โˆˆ
/ โˆ‚ ๐ผห† for ๐‘– = 1, 2. We denote ๐ท1 , ๐ท2 โˆˆ ๐’Ÿ to be the domains
containing ๐‘ฅ1 , ๐‘ฅ2 respectively. The independence of the measure from ๐‘Œห† follows if
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
33
ห†๐‘– := ๐œ‹ โˆ’1 (๐‘ˆ ) โˆฉ ๐ท๐‘– such
we can show for any neighbourhood ๐‘ˆ of ๐‘ฅ such that for ๐‘ˆ
ห†
ห†
ห†
that ๐‘ˆ๐‘– โ‹ ๐ท๐‘– for ๐‘– = 1, 2, we have ๐‘š
ห† ๐œ‘ (๐‘ˆ1 ) = ๐‘š
ห† ๐œ‘ (๐‘ˆ2 ).
As in [K2] there exists ๐‘› โฉพ 0 so that ๐‘“ห†๐‘› (ห†
๐‘ฅ1 ) = ๐‘“ห†๐‘› (ห†
๐‘ฅ2 ). Since we are only interested
in the in๏ฌnitesimal properties of our measures, we may assume that
โˆซ the same is
ห†1 and ๐‘ˆ
ห†2 , i.e., ๐‘“ห†๐‘› (๐‘ˆ
ห†1 ) = ๐‘“ห†๐‘› (๐‘ˆ
ห†2 ). Therefore ๐‘š
ห†1 )) = ห† ๐‘’โˆ’๐œ‘ห†๐‘› ๐‘‘๐‘š
true of ๐‘ˆ
ห† ๐œ‘ (๐‘“ห†๐‘› (๐‘ˆ
ห† ๐œ‘.
๐‘ˆ1
๐‘› ห†
๐‘› ห†
ห†
ห†
ห†
ห†
Since ๐‘š
ห† ๐œ‘ (๐‘“ (๐‘ˆ1 )) = ๐‘š
ห† ๐œ‘ (๐‘“ (๐‘ˆ2 )) and ๐œ‘ห† = ๐œ‘ โˆ˜ ๐œ‹, we have ๐‘š
ห† ๐œ‘ (๐‘ˆ1 ) = ๐‘š
ห† ๐œ‘ (๐‘ˆ2 ), as
required. So it only remains to show ๐œˆ๐œ‘ (๐ผ) < โˆž.
By the above, the ๐œ‘-sigma-conformality
ห†
of ๐‘š
ห† ๐œ‘ passes to ๐œ‘-sigma-conformality of
ห† ) for some ๐‘ˆ
ห† โŠ‚ ๐ท โˆˆ ๐’Ÿ๐’ฏ . Recall that
๐œˆ๐œ‘ . We can pick ๐‘ˆ โŠ‚ ๐ผ such that ๐‘ˆ = ๐œ‹(๐‘ˆ
๐‘š๐œ‘ was obtained from a conformal measure ๐‘šฮฆ for some inducing scheme (๐‘‹, ๐น ).
ห† is such that ๐‘ˆ
ห† โŠ‚ ๐‘“ห†๐‘˜ (๐‘‹
ห† ๐‘– ) โˆฉ ๐ท for some 0 โฉฝ ๐‘˜ โฉฝ ๐‘Ÿ ห† โˆฃ ห† โˆ’ 1
We may assume that ๐‘ˆ
๐‘‹ ๐‘‹๐‘–
ห† ) < โˆž, and so ๐œˆ๐œ‘ (๐‘ˆ ) < โˆž. Since ๐‘“ is in
and some ๐ท โˆˆ ๐’Ÿ. This implies that ๐‘š
ห† ๐œ‘ (๐‘ˆ
โ„ฑ, it is locally eventually onto, i.e., for any small open interval ๐‘Š โŠ‚ ๐ผ there exists
๐‘› โˆˆ โ„• so that ๐‘“ ๐‘› (๐‘Š ) โŠƒ ฮฉ. Therefore there exists ๐‘› so that ๐‘“ ๐‘› (๐‘ˆ ) โŠƒ ๐ผ. Then by
the ๐œ‘-sigma-conformality of ๐œˆ๐œ‘ , we have
โˆซ
๐œˆ๐œ‘ (๐ผ) = ๐œˆ๐œ‘ (๐‘“ ๐‘› (๐‘ˆ )) =
๐‘’โˆ’๐œ‘๐‘› ๐‘‘๐œˆ๐œ‘ โฉฝ ๐œˆ๐œ‘ (๐‘ˆ )๐‘’โˆ’ inf ๐œ‘๐‘› < โˆž.
๐‘ˆ
Hence ๐‘š๐œ‘ is conformal.
โ–ก
Note that combining Lemmas 8 and 9, we deduce that ๐‘š๐œ‘ is independent of the
inducing scheme that produced it. We next consider the density.
Lemma 10. For ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ satisfying (4) and ๐‘ƒ (๐œ‘) = 0,
above.
๐‘‘๐œ‡๐œ‘
๐‘‘๐‘š๐œ‘
is uniformly bounded
๐‘‘๐œ‡
Proof. Suppose that ๐‘‘๐‘š๐œ‘๐œ‘ (๐‘ฅ) > 0. We let ๐œ‹ โˆ’1 (๐‘ฅ) = {ห†
๐‘ฅ1 , ๐‘ฅ
ห†2 , . . .}, where the ordering
is by the level, i.e., lev(ห†
๐‘ฅ๐‘—+1 ) โฉพ lev(ห†
๐‘ฅ๐‘— ) for all ๐‘— โˆˆ โ„•. Then since ๐œ‡๐œ‘ = ๐œ‡
ห†๐œ‘ โˆ˜ ๐œ‹ โˆ’1 ,
โˆž
โˆ‘ ๐‘‘ห†
๐‘‘๐œ‡๐œ‘
๐œ‡๐œ‘
(ห†
๐‘ฅ๐‘— ).
(๐‘ฅ) =
๐‘‘๐‘š๐œ‘
๐‘‘๐‘š
๐œ‘โˆ˜๐œ‹
๐‘—=1
We will use this fact allied to equation (10) for return maps on the Hofbauer
extension, and the bounded distortion of the measures for these ๏ฌrst return maps
to get the bound on the density. We note that since for any ๐‘… โˆˆ โ„•, there are at
most 2#Crit domains of ๐’Ÿ of level ๐‘… (see for example [BB, Chapter 9]), there can
be at most 2#Crit elements ๐‘ฅ
ห†๐‘— of the same level.
We let (๐‘‹, ๐น ) be a type A inducing scheme with induced potential ฮฆ : ๐‘‹ โ†’ โ„.
ห† be the interval in ๐ผห† for which the ๏ฌrst return map ๐‘… ห† de๏ฌnes the inducing
Let ๐‘‹
๐‘‹
scheme (๐‘‹, ๐น ). Recall that ๐œ‡ฮฆ can be represented as
can express ๐‘šฮฆ as
that
๐‘‘๐œ‡ฮฆ
๐‘‘๐‘šฮฆ
๐‘š๐œ‘
๐‘š๐œ‘ (๐‘‹) .
๐œ‡
ห† ๐œ‘ โˆ˜๐œ‹โˆฃโˆ’1
ห†
๐‘‹
ห†
๐œ‡
ห† ๐œ‘ (๐‘‹)
and by Lemma 9, we
Moreover as in Proposition 2 there exists ๐ถฮฆ > 0 so
โฉฝ ๐ถฮฆ .
Since ๐‘…๐‘‹ห† is a ๏ฌrst return map, for each ๐‘– there exists at most one point ๐‘ฅ
ห†๐‘—,๐‘– in
๐‘˜
ห†
ห†
๐‘‹๐‘– so that ๐‘“ (ห†
๐‘ฅ๐‘—,๐‘– ) = ๐‘ฅ
ห†๐‘— for 0 โฉฝ ๐‘˜ < ๐‘Ÿ๐‘‹ห† โˆฃ๐‘‹ห† ๐‘– . We denote this value ๐‘˜ by ๐‘Ÿ๐‘—,๐‘– . Let
๐‘˜๐‘— := inf{๐‘Ÿ๐‘—,๐‘– : ๐‘– โˆˆ โ„•}.
34
MIKE TODD
By (10), ๐‘‘ห†
๐œ‡๐œ‘ (ห†
๐‘ฅ๐‘— ) =
โˆ‘
๐‘–
๐‘‘ห†
๐œ‡๐œ‘ (ห†
๐‘ฅ๐‘—,๐‘– ). By conformality, for each ๐‘–,
๐‘‘๐‘š
ห† ๐œ‘ (ห†
๐‘ฅ๐‘— ) = ๐‘’โˆ’๐œ‘ห†๐‘Ÿ๐‘—,๐‘– (ห†๐‘ฅ๐‘—,๐‘– ) ๐‘‘๐‘š
ห† ๐œ‘ (ห†
๐‘ฅ๐‘—,๐‘– ) โฉพ ๐‘’โˆ’ sup ๐œ‘๐‘Ÿ๐‘—,๐‘– ๐‘‘๐‘š
ห† ๐œ‘ (ห†
๐‘ฅ๐‘—,๐‘– ).
Therefore, letting ๐‘ฅ๐‘—,๐‘– = ๐œ‹(ห†
๐‘ฅ๐‘—,๐‘– ),
(
)
โˆ‘ ๐‘‘ห†
๐‘‘ห†
๐œ‡๐œ‘
๐œ‡๐œ‘
๐‘š๐œ‘ (๐‘‹) โˆ‘ ๐‘‘๐œ‡ฮฆ
sup ๐œ‘๐‘Ÿ๐‘—,๐‘–
(ห†
๐‘ฅ๐‘— ) โฉฝ
(ห†
๐‘ฅ๐‘—,๐‘– )๐‘’
โฉฝ
(๐‘ฅ๐‘—,๐‘– )๐‘’sup ๐œ‘๐‘Ÿ๐‘—,๐‘–
ห†
๐‘‘๐‘š
ห†๐œ‘
๐‘‘
๐‘š
ห†
๐‘‘๐‘š
๐œ‘
ฮฆ
๐œ‡
ห†
(
๐‘‹)
๐œ‘
๐‘–
๐‘–
(
)
)
(
โˆ‘
๐‘š๐œ‘ (๐‘‹)
๐‘š๐œ‘ (๐‘‹) โˆ‘
sup ๐œ‘๐‘Ÿ๐‘—,๐‘–
โฉฝ ๐ถฮฆ
๐‘’
#{๐‘– : ๐‘Ÿ๐‘—,๐‘– = ๐‘›}๐‘’๐‘› sup ๐œ‘ .
โฉฝ ๐ถฮฆ
ห†
ห†
๐œ‡
ห†๐œ‘ (๐‘‹)
๐œ‡
ห†๐œ‘ (๐‘‹)
๐‘›
๐‘–
By [H1], if lev(ห†
๐‘ฅ๐‘— ) = ๐‘… then there exist ๐ถ > 0 and ๐›พ(๐‘…) > 0 so that ๐›พ(๐‘…) โ†’ 0
as ๐‘… โ†’ โˆž and the number of ๐‘›-paths terminating at ๐ท๐‘ฅห†๐‘— โˆˆ ๐’Ÿ at most ๐ถ๐‘’๐‘›๐›พ(๐‘…) .
ห† Therefore,
Then #{๐‘– : ๐‘Ÿ๐‘—,๐‘– = ๐‘›} โฉฝ ๐ถ๐‘’๐‘›๐›พ(lev(ห†๐‘ฅ๐‘— )) . Also ๐‘˜๐‘— โฉพ lev(ห†
๐‘ฅ๐‘— ) โˆ’ lev(๐‘‹).
(
)
๐‘‘ห†
๐œ‡๐œ‘
๐‘š๐œ‘ (๐‘‹) โˆ‘ ๐‘›(๐›พ(lev(ห†๐‘ฅ๐‘— ))+sup ๐œ‘)
(ห†
๐‘ฅ๐‘— ) โฉฝ ๐ถ๐ถฮฆ
๐‘’
ห†
๐‘‘๐‘š
ห†๐œ‘
๐œ‡
ห†๐œ‘ (๐‘‹)
๐‘›โฉพ๐‘˜๐‘—
(
)
โˆ‘
๐‘š๐œ‘ (๐‘‹)
ห†
โฉฝ ๐ถ๐ถฮฆ
๐‘’(lev(ห†๐‘ฅ๐‘— )โˆ’lev(๐‘‹))(๐›พ(lev(ห†๐‘ฅ๐‘— ))+sup ๐œ‘)
๐‘’๐‘›(๐›พ(lev(ห†๐‘ฅ๐‘— ))+sup ๐œ‘) .
ห†
๐œ‡
ห†๐œ‘ (๐‘‹)
๐‘›โฉพ0
Since, as in Lemma 11, our conditions on ๐œ‘ ensure that sup ๐œ‘ < 0, there exists
๐œ… > 0, and ๐‘—0 โˆˆ โ„• so that ๐›พ(lev(ห†
๐‘ฅ๐‘— )) + sup ๐œ‘ < โˆ’๐œ… for all ๐‘— โฉพ ๐‘—0 . Since there are
at most 2#Crit points ๐‘ฅ
ห†๐‘— of any given level ๐‘…, there are only ๏ฌnitely many ๐‘— with
ห† โฉฝ 0. Moreover, there exists ๐ถ โ€ฒ > 0 so that
lev(ห†
๐‘ฅ๐‘— ) โˆ’ lev(๐‘‹)
๐‘—โˆ‘
โˆž
โˆž
0 โˆ’1
โˆ‘
โˆ‘
๐‘‘๐œ‡๐œ‘
๐‘‘ห†
๐œ‡๐œ‘
๐‘‘ห†
๐œ‡๐œ‘
(๐‘ฅ) โฉฝ
(ห†
๐‘ฅ๐‘— ) +
(ห†
๐‘ฅ๐‘— ) โฉฝ ๐ถ โ€ฒ + ๐ถ โ€ฒ
๐‘’โˆ’๐‘—๐œ…
๐‘‘๐‘š๐œ‘
๐‘‘๐‘š
โˆ˜
๐œ‹
๐‘‘๐‘š
โˆ˜
๐œ‹
๐œ‘
๐œ‘
๐‘—=1
๐‘—=๐‘—
๐‘—=๐‘—
0
which is uniformly bounded.
0
โ–ก
Proof of Proposition 7โ€™. The existence of the conformal measure ๐‘š๐œ‘ is proved in the
๐‘‘๐œ‡
above lemmas. Lemma 10 implies that the density ๐‘‘๐‘š๐œ‘๐œ‘ is uniformly bounded above.
The lower bound follows by a standard argument, which we give for completeness.
Proposition 2 implies that we can take a type A inducing scheme (๐‘‹, ๐น, ฮฆ) so that
๐‘‘๐œ‡ฮฆ
โˆ’1
๐‘‘๐‘šฮฆ is uniformly bounded below by some ๐ถฮฆ โˆˆ (0, โˆž). Also, Lemma 8 implies
๐‘š๐œ‘
that ๐‘š๐œ‘ (๐‘‹) = ๐‘šฮฆ . Since, as in the proof of Lemma 9, (๐ผ, ๐‘“ ) is locally eventually
onto, there exists ๐‘› โˆˆ โ„• so that ๐‘“ ๐‘› (๐‘‹) โŠ‚ ฮฉ. So for a small interval ๐ด โŠ‚ ฮฉ, there
exists some ๐ด๐‘– โŠ‚ ๐‘‹๐‘– so that ๐‘“ ๐‘˜ (๐ด๐‘– ) = ๐ด for some 0 โฉฝ ๐‘˜ โฉฝ ๐‘›. Then (6) implies that
(
)(
)
(
)( inf ๐œ‘๐‘› )
๐œ‡๐œ‘ (๐ด)
๐œ‡๐œ‘ (๐ด๐‘– ) inf ๐œ‘๐‘›
๐‘š๐œ‘ (๐‘‹)
๐œ‡ฮฆ (๐ด๐‘– ) inf ๐œ‘๐‘›
๐‘š๐œ‘ (๐‘‹)
๐‘’
โฉพ
๐‘’
โฉพ โˆซ
๐‘’
โฉพ โˆซ
.
๐‘š๐œ‘ (๐ด)
๐‘š๐œ‘ (๐ด๐‘– )
๐‘šฮฆ (๐ด๐‘– )
๐ถฮฆ
๐œ ๐‘‘๐œ‡ฮฆ
๐œ ๐‘‘๐œ‡ฮฆ
Hence
๐‘‘๐œ‡๐œ‘
๐‘‘๐‘š๐œ‘
is uniformly bounded below.
โ–ก
Lemma 11. Suppose that ๐‘“ โˆˆ โ„ฑ satis๏ฌes (3) and ๐œ‘ โˆˆ ๐‘†๐‘‰ ๐ผ. Then there exists
๐œ€ > 0 so that for any inducing scheme (๐‘‹, ๐น ) โˆˆ ๐‘†๐ถ๐‘œ๐‘ฃ๐‘’๐‘Ÿ๐ต (๐œ€), the induced potential
ฮฆ has ๐‘ƒ (ฮฆ) = 0.
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
35
Proof. We will apply Case 3 of [BT4, Proposition 1]. Firstly we need to show that
๐‘0 (ฮฆ) < โˆž. By Proposition 7โ€™ there exists a conformal measure ๐‘š๐œ‘ , coming from
an inducing scheme of type A in Proposition 2โ€™. By the ๐œ‘-conformality of ๐‘š๐œ‘ and
the local Hoฬˆlder
โˆ‘ continuity of ฮฆ, as in Proposition 2(b), there exists ๐ถ > 0 so that
๐‘0โˆ— (ฮฆ) โฉฝ ๐ถ ๐‘– ๐œ๐‘– ๐‘š๐œ‘ (๐‘‹๐‘– ). Then by Proposition 7โ€™ and the facts that (๐‘‹, ๐น ) was
ห† and ๐œ‡๐œ‘ = ๐œ‡
generated by a ๏ฌrst return map to some ๐‘‹
ห†๐œ‘ โˆ˜ ๐œ‹ โˆ’1 ,
โˆ‘
โˆ‘
ห† ๐‘– ).
๐‘0โˆ— (ฮฆ) โฉฝ ๐ถ๐ถ๐œ‘โ€ฒ
๐œ๐‘– ๐œ‡๐œ‘ (๐‘‹๐‘– ) = ๐ถ๐ถ๐œ‘โ€ฒ
๐‘Ÿ๐‘‹ห† โˆฃ๐‘‹ห† ๐‘– ๐œ‡
ห†๐œ‘ (๐‘‹
๐‘–
๐‘–
By Kacโ€™s Lemma this is bounded.
Now the fact that ๐œ‡๐œ‘ is compatible to (๐‘‹, ๐น ) follows simply, see for example Claim
1 in the proof of [BT4, Proposition 2]. Then Case 3 of [BT4, Proposition 1] implies
๐‘ƒ (ฮฆ) = 0.
โ–ก
Proof of Proposition 8โ€™. Suppose that (๐‘‹, ๐น ) is an inducing scheme as in the statement, with induced potential ฮฆ. If (๐‘‹, ๐น ) is of type A then by Lemma 8, the
measure ๐‘š๐œ‘ works as a conformal measure for (๐‘‹, ๐น, ฮฆ), up to renormalisation. By
Proposition 2(c), ๐‘š๐œ‘ is in fact equal to ๐‘šฮฆ up to renormalisation. By Lemma 11,
๐‘‘๐œ‡
this is also true for type B inducing schemes. Since by Proposition 7โ€™, ๐‘‘๐‘š๐œ‘๐œ‘ is
bounded above and below, and as in Proposition 2, we have ๐ถ1ฮฆ โฉฝ
ฮฆ
implies that ๐‘‘๐œ‡
๐‘‘๐œ‡๐œ‘ is also uniformly bounded above and below.
๐‘‘๐œ‡ฮฆ
๐‘‘๐‘šฮฆ
โฉฝ ๐ถฮฆ , this
โ–ก
References
[BaS] L. Barreira, J. Schmeling, Sets of โ€˜Non-Typicalโ€™ points have full topological entropy and full
Hausdor๏ฌ€ dimension, Israel J. Math. 116 (2000) 29โ€“70.
[BoR] T. Bohr, D. Rand, The entropy function for characteristic exponents, Phys. D 25 (1987)
387โ€“398.
[BB] K. Brucks, H. Bruin, Topics from oneโ€“dimensional dynamics, London Mathematical Society,
Student Texts 62 Cambridge University Press 2004.
[B] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional
dynamics, Comm. Math. Phys. 168 (1995) 571โ€“580.
[BHN] H. Bruin, M. Holland, M. Nicol, LivsฬŒic regularity for Markov systems, Ergodic Theory
Dynam. Systems 25 (2005) 1739โ€“1765.
[BK] H. Bruin, G. Keller, Equilibrium states for ๐‘†โ€“unimodal maps, Ergodic Theory Dynam.
Systems 18 (1998) 765โ€“789.
[BRSS] H. Bruin, J. Rivera-Letelier, W. Shen, S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008) 509โ€“593.
[BS] H. Bruin, S. van Strien, Expansion of derivatives in oneโ€“dimensional dynamics, Israel J.
Math. 137 (2003) 223โ€“263.
[BT1] H. Bruin, M. Todd, Markov Extensions and Lifting Measures for Complex Polynomials.
Ergodic Theory Dynam. Systems 27 (2007) 743โ€“768.
[BT2] H. Bruin, M. Todd, Equilibrium states for potentials with sup ๐œ‘ โˆ’ inf ๐œ‘ < โ„Ž๐‘ก๐‘œ๐‘ (๐‘“ ), Comm.
Math. Phys. 283 (2008) 579โ€“611.
[BT3] H. Bruin, M. Todd, Return time statistics of interval maps, Stoch. Dyn. 9 (2009) 81-100.
[BT4] H. Bruin, M. Todd, Equilibrium states for interval maps: the potential โˆ’๐‘ก log โˆฃ๐ท๐‘“ โˆฃ, Ann.
Sci. Eฬcole Norm. Sup. (4) 42 (2009) 559โ€“600.
[Bu] J. Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112
(1999) 357โ€“380.
[D1] N. Dobbs, Visible measures of maximal entropy in dimension one, Bull. Lond. Math. Soc.
39 (2007) 366โ€“376.
[D2] N. Dobbs, Renormalisation induced phase transitions for unimodal maps, Comm. Math.
Phys. 286 (2009) 377โ€“387.
36
MIKE TODD
[GR] K. Gelfert, M. Rams, The Lyapunov spectrum of some parabolic systems, Ergodic Theory
Dynam. Systems 29 (2009) 919-940.
[GS] J. Graczyk, S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math. 175
(2009) 335โ€“415.
[HMU] P. Hanus, R.D. Mauldin, M. Urbanฬski, Thermodynamic formalism and multifractal analysis of conformal in๏ฌnite iterated function systems, Acta Math. Hungar. 96 (2002) 27โ€“98.
[H1] F. Hofbauer, The topological entropy of a transformation ๐‘ฅ 7โ†’ ๐‘Ž๐‘ฅ(1 โˆ’ ๐‘ฅ), Monath. Math. 90
(1980) 117โ€“141.
[H2] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Relat. Fields 72
(1986) 359โ€“386.
[H3] F. Hofbauer, Local dimension for piecewise monotonic maps on the interval, Ergodic Theory
Dynam. Systems 15 (1995) 1119โ€“1142.
[HR] F. Hofbauer, P. Raith, The Hausdor๏ฌ€ dimension of an ergodic invariant measure for a
piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992) 84โ€“98.
[HRS] F. Hofbauer, P. Raith, T. Steinberger, Multifractal dimensions for invariant subsets of
piecewise monotonic interval maps, Fund. Math. 176 (2003) 209โ€“232.
[I1] G. Iommi, Multifractal analysis for countable Markov shifts, Ergodic Theory Dynam. Systems
25 (2005) 1881โ€“1907.
[I2] G. Iommi, Multifractal analysis of Lyapunov exponent for the backward continued fraction
map, Ergodic Theory Dynam. Systems 30 (2010) 211โ€“232.
[K1] G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete 69 (1985) 461โ€“478.
[K2] G. Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989) 183โ€“200.
[K3] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory
Dynam. Systems 10 (1990) 717โ€“744.
[K4] G. Keller, Equilibrium states in ergodic theory, London Mathematical Society Student Texts,
42. Cambridge University Press, Cambridge, 1998.
[KN] G. Keller, T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points
for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992) 31โ€“69.
[KeS] M. Kesseboฬˆhmer, B.O. Stratmann, A multifractal formalism for growth rates and applications to geometrically ๏ฌnite Kleinian groups, Ergodic Theory Dynam. Systems 24 (2004)
141โ€“170.
[L] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,
Ergodic Theory Dynam. Systems 1 (1981) 77โ€“93.
[MS] W. de Melo, S. van Strien, One dimensional dynamics, Ergebnisse Series 25, Springerโ€“
Verlag, 1993.
[Na] K. Nakaishi, Multifractal formalism for some parabolic maps, Ergodic Theory Dynam. Systems 20 (2000) 843โ€“857.
[NS] T. Nowicki, D. Sands, Non-uniform hyperbolicity and universal bounds for ๐‘†-unimodal maps,
Invent. Math. 132 (1998) 633โ€“680.
[P] Y. Pesin, Dimension theory in dynamical systems, University of Chicago Press, Chicago, IL,
1997.
[PSe] Y. Pesin, S. Senti, Equilibrium measures for maps with inducing schemes, J. Mod. Dyn. 2
(2008) 397โ€“427.
[PW1] Y. Pesin, H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions, J. Statist. Phys. 86 (1997) 233โ€“275.
[PW2] Y. Pesin, H. Weiss, The multifractal analysis of Birkho๏ฌ€ averages and large deviations,
Global analysis of dynamical systems, 419โ€“431, Inst. Phys., Bristol, 2001.
[PZ] Y. Pesin, K. Zhang, Phase transitions for uniformly expanding maps, J. Stat. Phys. 122
1095-1110 (2006).
[PoWe] M. Pollicott, H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction
and Manneville-Pomeau transformations and applications to Diophantine approximation,
Comm. Math. Phys. 207 (1999) 145โ€“171.
[Pr] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.
119 (1993) 309โ€“317.
[RS] J. Rivera-Letelier, W. Shen Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. Preprint (arXiv:1004.0230).
[S1] O. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys. 217 (2001)
555โ€“577.
MULTIFRACTAL ANALYSIS FOR MULTIMODAL MAPS
37
[S2] O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc.
131 (2003) 1751โ€“1758.
[S3] O. Sarig, Continuous phase transitions for dynamical systems, Comm. Math. Phys. 267
(2006) 631โ€“667.
[SV] S. van Strien, E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal
maps, J. Amer. Math. Soc. 17 (2004) 749โ€“782.
[We] H. Weiss, The Lyapunov spectrum for conformal expanding maps and axiom-A surface
di๏ฌ€eomorphisms, J. Statist. Phys. 95 (1999) 615โ€“632.
[Y] M. Yuri, Multifractal analysis of weak Gibbs measures for intermittent systems, Comm. Math.
Phys. 230 (2002) 365โ€“388.
[Z] R. Zweimuฬˆller, Invariant measures for general(ized) induced transformations, Proc. Amer.
Math. Soc. 133 (2005) 2283โ€“2295.
Centro de Matemaฬtica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007
Porto, Portugal 1,
E-mail address: [email protected]
URL: http://math.bu.edu/people/mtodd/
1
Current address:
Department of Mathematics and Statistics
Boston University
111 Cummington Street
Boston, MA 02215
USA