Package ‘SpatialEpi’ August 29, 2016 Title Methods and Data for Spatial Epidemiology Version 1.2.2 Depends R (>= 3.0.2), sp Imports Rcpp, MASS, maptools, spdep, methods, grDevices, graphics, stats LinkingTo Rcpp, RcppArmadillo Maintainer Albert Y. Kim <[email protected]> Description Methods and data for cluster detection and disease mapping. License GPL-2 LazyData true NeedsCompilation yes Author Cici Chen [ctb], Albert Y. Kim [aut, cre], Michelle Ross [ctb], Jon Wakefield [aut] Repository CRAN Date/Publication 2016-01-29 01:02:40 R topics documented: SpatialEpi-package bayes_cluster . . . besag_newell . . . coeff . . . . . . . . create_geo_objects eBayes . . . . . . . EBpostdens . . . . EBpostthresh . . . expected . . . . . . GammaPriorCh . . kulldorff . . . . . . latlong2grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 7 8 9 10 11 12 13 14 17 2 SpatialEpi-package ldmultinom . . . . . . . LogNormalPriorCh . . . mapvariable . . . . . . . normalize . . . . . . . . NumericVectorEquality . NYleukemia . . . . . . . pennLC . . . . . . . . . plotmap . . . . . . . . . polygon2spatial_polygon scotland . . . . . . . . . zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 19 20 21 21 22 23 24 25 27 28 29 SpatialEpi-package Methods and Data for Spatial Epidemiology Description This package contains methods for cluster detection and disease mapping, as well as plotting methods using the sp package. Details Package: Type: Version: Date: License: LazyLoad: SpatialEpi Package 1.2.1 2014-06-03 GPL yes Author(s) Cici Chen Albert Y. Kim Michelle E. Ross Jon Wakefield See Also sp <[email protected]> <[email protected]> <[email protected]> <[email protected]> bayes_cluster 3 Examples data(pennLC) data(scotland) data(NYleukemia) ?kulldorff ?besag_newell ?bayes_cluster bayes_cluster Bayesian Cluster Detection Method Description Implementation of the Bayesian Cluster detection model of Wakefield and Kim (2013) for a study region with n areas. The prior and posterior probabilities of each of the n.zones single zones being a cluster/anti-cluster are estimated using Markov chain Monte Carlo. Furthermore, the posterior probability of k clusters/anti-clusters is computed. Usage bayes_cluster(y, E, population, sp.obj, centroids, max.prop, shape, rate, J, pi0, n.sim.lambda, n.sim.prior, n.sim.post, burnin.prop = 0.1, theta.init = vector(mode="numeric", length=0)) Arguments y vector of length n of the observed number of disease in each area E vector of length n of the expected number of disease in each area population vector of length n of the population in each area sp.obj an object of class SpatialPolygons (See SpatialPolygons-class) representing the study region centroids n x 2 table of the (x,y)-coordinates of the area centroids. The coordinate system must be grid-based max.prop maximum proportion of the study region’s population each single zone can contain shape vector of length 2 of narrow/wide shape parameter for gamma prior on relative risk rate vector of length 2 of narrow/wide rate parameter for gamma prior on relative risk J maximum number of clusters/anti-clusters pi0 prior probability of no clusters/anti-clusters n.sim.lambda number of importance sampling iterations to estimate lambda n.sim.prior number of MCMC iterations to estimate prior probabilities associated with each single zone 4 bayes_cluster n.sim.post number of MCMC iterations to estimate posterior probabilities associated with each single zone burnin.prop proportion of MCMC samples to use as burn-in theta.init Initial configuration used for MCMC sampling Value List containing prior.map A list containing, for each area: 1) high.area the prior probability of cluster membership, 2) low.area anti-cluster membership, and 3) RR.est.area smoothed prior estimates of relative risk post.map A list containing, for each area: 1) high.area the posterior probability of cluster membership, 2) low.area anti-cluster membership, and 3) RR.est.area smoothed posterior estimates of the relative risk pk.y posterior probability of k clusters/anti-clusters given y for k=0,...,J Author(s) Albert Y. Kim References Wakefield J. and Kim A.Y. (2013) A Bayesian model for cluster detection. Biostatistics, 14, 752– 765. See Also kulldorff Examples ## ## ## ## Note for the NYleukemia example, 4 census tracts were completely surrounded by another unique census tract; when applying the Bayesian cluster detection model in \code{\link{bayes_cluster}}, we merge them with the surrounding census tracts yielding \code{n=277} areas. ## Load data and convert coordinate system from latitude/longitude to grid data(NYleukemia) sp.obj <- NYleukemia$spatial.polygon population <- NYleukemia$data$population cases <- NYleukemia$data$cases centroids <- latlong2grid(NYleukemia$geo[, 2:3]) ## Identify the 4 census tract to be merged into their surrounding census tracts remove <- NYleukemia$surrounded add <- NYleukemia$surrounding ## Merge population and case counts and geographical objects accordingly population[add] <- population[add] + population[remove] besag_newell 5 population <- population[-remove] cases[add] <- cases[add] + cases[remove] cases <- cases[-remove] sp.obj <SpatialPolygons(sp.obj@polygons[-remove], proj4string=CRS("+proj=longlat +ellps=WGS84")) centroids <- centroids[-remove, ] ## Set parameters y <- cases E <- expected(population, cases, 1) max.prop <- 0.15 shape <- c(2976.3, 2.31) rate <- c(2977.3, 1.31) J <- 7 pi0 <- 0.95 n.sim.lambda <- 10^4 n.sim.prior <- 10^5 n.sim.post <- 10^5 ## (Uncomment first) Compute output #output <- bayes_cluster(y, E, population, sp.obj, centroids, max.prop, # shape, rate, J, pi0, n.sim.lambda, n.sim.prior, n.sim.post) #plotmap(output$prior.map$high.area, sp.obj) #plotmap(output$post.map$high.area, sp.obj) #plotmap(output$post.map$RR.est.area, sp.obj, log=TRUE) #barplot(output$pk.y, names.arg=0:J, xlab="k", ylab="P(k|y)") besag_newell Besag-Newell Cluster Detection Method Description Besag-Newell cluster detection method. There are differences with the original paper and our implementation: • we base our analysis on k cases, rather than k other cases as prescribed in the paper. • we do not subtract 1 from the accumulated numbers of other cases and accumulated numbers of others at risk, as was prescribed in the paper to discount selection bias • M is the total number of areas included, not the number of additional areas included. i.e. M starts at 1, not 0. • p-values are not based on the original value of k, rather the actual number of cases observed until we view k or more cases. Ex: if k = 10, but as we consider neighbors we encounter 1, 2, 9 then 12 cases, we base our p-values on k = 12 • we do not provide a Monte-Carlo simulated R: the number of tests that attain significance at a fixed level α The first two and last differences are because we view the testing on an area-by-area level, rather than a case-by-case level. 6 besag_newell Usage besag_newell(geo, population, cases, expected.cases=NULL, k, alpha.level) Arguments geo an n x 2 table of the (x,y)-coordinates of the area centroids cases aggregated case counts for all n areas population aggregated population counts for all n areas expected.cases expected numbers of disease for all n areas k number of cases to consider alpha.level alpha-level threshold used to declare significance Details For the population and cases tables, the rows are bunched by areas first, and then for each area, the counts for each strata are listed. It is important that the tables are balanced: the strata information are in the same order for each area, and counts for each area/strata combination appear exactly once (even if zero). Value List containing clusters information on all clusters that are α-level significant, in decreasing order of the p-value p.values for each of the n areas, p-values of each cluster of size at least k m.values for each of the n areas, the number of areas need to observe at least k cases observed.k.values based on m.values, the actual number of cases used to compute the p-values Note The clusters list elements are themselves lists reporting: location.IDs.included population number.of.cases expected.cases SMR p.value Author(s) Albert Y. Kim ID’s of areas in cluster, in order of distance population of cluster number of cases in cluster expected number of cases in cluster estimated SMR of cluster p-value coeff 7 References Besag J. and Newell J. (1991) The Detection of Clusters in Rare Diseases Journal of the Royal Statistical Society. Series A (Statistics in Society), 154, 143–155 See Also pennLC, expected, besag_newell_internal Examples ## Load Pennsylvania Lung Cancer Data data(pennLC) data <- pennLC$data ## Process geographical information and convert to grid geo <- pennLC$geo[,2:3] geo <- latlong2grid(geo) ## Get aggregated counts of population and cases for each county population <- tapply(data$population,data$county,sum) cases <- tapply(data$cases,data$county,sum) ## Based on the 16 strata levels, computed expected numbers of disease n.strata <- 16 expected.cases <- expected(data$population, data$cases, n.strata) ## Set Parameters k <- 1250 alpha.level <- 0.05 # not controlling for stratas results <- besag_newell(geo, population, cases, expected.cases=NULL, k, alpha.level) # controlling for stratas results <- besag_newell(geo, population, cases, expected.cases, k, alpha.level) coeff Compute log Bayes Factors Description Compute log Bayes Factors for each single zone based on observed and expected counts from n areas Usage coeff(y_vector, E_vector, a_values, b_values, cluster_list) 8 create_geo_objects Arguments y_vector Vector of length n of cases E_vector Vector of length n of expected cases a_values Vector of length 2 of shape parameters (wide, narrow) b_values Vector of length 2 of rate parameters cluster_list Output of create_geo_objects: list of length n.zones listing, for each single zone, its component areas Value Vector of length n.zones with log Bayes Factor for each single zone. Author(s) Albert Y. Kim References Wakefield J. and Kim A.Y. (2013) A Bayesian model for cluster detection. Biostatistics, 14, 752– 765. create_geo_objects Create geographical objects to be used in Bayesian Cluster Detection Method Description This internal function creates the geographical objects needed to run the Bayesian cluster detection method in bayes_cluster. Specifically it creates all single zones based data objects, where single zones are the zones defined by Kulldorff (1997). Usage create_geo_objects(max.prop, population, centroids, sp.obj) Arguments max.prop maximum proportion of study region’s population each single zone can contain population vector of length n of the population of each area centroids n x 2 table of the (x,y)-coordinates of the area centroids. The coordinate system must be grid-based sp.obj object of class SpatialPolygons (See SpatialPolygons-class) representing the study region eBayes 9 Value overlap list with two elements: 1. presence which lists for each area all the single zones it is present in and 2. cluster.list for each single zone its component areas cluster.coords n.zones x 2 matrix of the center and radial area of each single zone Author(s) Albert Y. Kim References Wakefield J. and Kim A.Y. (2013) A Bayesian model for cluster detection. Biostatistics, 14, 752– 765. See Also latlong2grid, zones Examples data(pennLC) max.prop <- 0.15 population <- tapply(pennLC$data$population, pennLC$data$county, sum) centroids <- latlong2grid(pennLC$geo[, 2:3]) sp.obj <- pennLC$spatial.polygon output <- create_geo_objects(max.prop, population, centroids, sp.obj) ## number of single zones nrow(output$cluster.coords) eBayes Empirical Bayes Estimates of Relative Risk Description The computes empirical Bayes estimates of relative risk of study region with n areas, given observed and expected numbers of counts of disease and covariate information. Usage eBayes(Y, E, Xmat = NULL) Arguments Y a length n vector of observed cases E a length n vector of expected number of cases Xmat n x p dimension matrix of covariates 10 EBpostdens Value A list with 5 elements: RR the ecological relative risk posterior mean estimates RRmed the ecological relative risk posterior mean estimates beta the MLE’s of the regression coefficients alpha the MLE of negative binomial dispersion parameter SMR the standardized mortality/morbidity ratio Y/E References Clayton D. and Kaldor J. (1987) Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43, 671–681 See Also scotland, mapvariable Examples data(scotland) data <- scotland$data x <- data$AFF Xmat <- cbind(x,x^2) results <- eBayes(data$cases,data$expected,Xmat) scotland.map <- scotland$spatial.polygon mapvariable(results$RR, scotland.map) EBpostdens Produce plots of emprical Bayes posterior densities when the data Y are Poisson with expected number E and relative risk theta, with the latter having a gamma distribution with known values alpha and beta, which are estimated using empirical Bayes. Description This function produces plots of empirical Bayes posterior densities which are gamma distributions with parameters (alpha+Y, (alpha+E*mu)/mu) where mu = exp(x beta). The SMRs are drawn on for comparison. Usage EBpostdens(Y, E, alpha, beta, Xrow = NULL, lower = NULL, upper = NULL, main = "") EBpostthresh 11 Arguments Y observed disease counts E expected disease counts alpha beta Xrow lower upper main Value A plot containing the gamma posterior distribution Author(s) Jon Wakefield See Also EBpostthresh, eBayes Examples data(scotland) Y <- scotland$data$cases E <- scotland$data$expected ebresults <- eBayes(Y,E) EBpostdens(Y[1], E[1], ebresults$alpha, ebresults$beta, lower=0, upper=15, main="Area 1") EBpostthresh Produce the probabilities of exceeding a threshold given a posterior gamma distribution. Description This function produces the posterior probabilities of exceeding a threshold given a gamma distributions with parameters (alpha+Y, (alpha+E*mu)/mu) where mu = exp(x beta). This model arises from Y being Poisson with mean theta times E where theta is the relative risk and E are the expected numbers. The prior on theta is gamma with parameters alpha and beta. The parameters alpha and beta may be estimated using empirical Bayes. Usage EBpostthresh(Y, E, alpha, beta, Xrow = NULL, rrthresh) 12 expected Arguments Y observed disease counts E expected disease counts alpha beta Xrow rrthresh Value Posterior probabilities of exceedence are returned. Author(s) Jon Wakefield See Also eBayes Examples data(scotland) Y <- scotland$data$cases E <- scotland$data$expected ebresults <- eBayes(Y,E) # Find probabilities of exceedence of 3 thresh3 <- EBpostthresh(Y, E, alpha=ebresults$alpha, beta=ebresults$beta, rrthresh=3) mapvariable(thresh3, scotland$spatial.polygon) expected Compute Expected Numbers of Disease Description Compute the internally indirect standardized expected numbers of disease. Usage expected(population, cases, n.strata) Arguments population a vector of population counts for each strata in each area cases a vector of the corresponding number of cases n.strata number of strata considered GammaPriorCh 13 Details The population and cases vectors must be balanced: all counts are sorted by area first, and then within each area the counts for all strata are listed (even if 0 count) in the same order. Value expected.cases a vector of the expected numbers of disease for each area Author(s) Albert Y. Kim References Elliot, P. et al. (2000) Spatial Epidemiology: Methods and Applications. Oxford Medical Publications. Examples data(pennLC) population <- pennLC$data$population cases <- pennLC$data$cases ## In each county in Pennsylvania, there are 2 races, gender and 4 age bands ## considered = 16 strata levels pennLC$data[1:16,] expected(population, cases, 16) GammaPriorCh Compute Parameters to Calibrate a Gamma Distribution Description Compute parameters to calibrate the prior distribution of a relative risk that has a gamma distribution. Usage GammaPriorCh(theta, prob, d) Arguments theta upper quantile prob upper quantile d degrees of freedom 14 kulldorff Value A list containing a b shape parameter rate parameter Author(s) Jon Wakefield See Also LogNormalPriorCh Examples param <- GammaPriorCh(5, 0.975,1) curve(dgamma(x,shape=param$a,rate=param$b),from=0,to=6,n=1000,ylab="density") kulldorff Kulldorff Cluster Detection Method Description Kulldorff spatial cluster detection method for a study region with n areas. The method constructs zones by consecutively aggregating nearest-neighboring areas until a proportion of the total study population is included. Given the observed number of cases, the likelihood of each zone is computed using either binomial or poisson likelihoods. The procedure reports the zone that is the most likely cluster and generates significance measures via Monte Carlo sampling. Further, secondary clusters, whose Monte Carlo p-values are below the α-threshold, are reported as well. Usage kulldorff(geo, cases, population, expected.cases=NULL, pop.upper.bound, n.simulations, alpha.level, plot=TRUE) Arguments geo an n x 2 table of the (x,y)-coordinates of the area centroids cases aggregated case counts for all n areas population aggregated population counts for all n areas expected.cases expected numbers of disease for all n areas pop.upper.bound the upper bound on the proportion of the total population each zone can include n.simulations number of Monte Carlo samples used for significance measures alpha.level alpha-level threshold used to declare significance plot flag for whether to plot histogram of Monte Carlo samples of the log-likelihood of the most likely cluster kulldorff 15 Details If expected.cases is specified to be NULL, then the binomial likelihood is used. Otherwise, a Poisson model is assumed. Typical values of n.simulations are 99, 999, 9999... Value List containing: most.likely.cluster information on the most likely cluster secondary.clusters information on secondary clusters, if none NULL is returned type type of likelihood log.lkhd log-likelihood of each zone considered simulated.log.lkhd n.simulations Monte Carlo samples of the log-likelihood of the most likely cluster Note The most.likely.cluster and secondary.clusters list elements are themselves lists reporting: location.IDs.included population number.of.cases expected.cases SMR log.likelihood.ratio monte.carlo.rank p.value ID’s of areas in cluster, in order of distance population of cluster number of cases in cluster expected number of cases in cluster estimated SMR of cluster log-likelihood of cluster rank of lkhd of cluster within Monte Carlo simulated values Monte Carlo p-value Author(s) Albert Y. Kim References SatScan: Software for the spatial, temporal, and space-time scan statistics http://www.satscan. org/ Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496. Kulldorff M. and Nagarwalla N. (1995) Spatial disease clusters: Detection and Inference. Statistics in Medicine, 14, 799–810. 16 kulldorff See Also pennLC, expected Examples ## Load Pennsylvania Lung Cancer Data data(pennLC) data <- pennLC$data ## Process geographical information and convert to grid geo <- pennLC$geo[,2:3] geo <- latlong2grid(geo) ## Get aggregated counts of population and cases for each county population <- tapply(data$population,data$county,sum) cases <- tapply(data$cases,data$county,sum) ## Based on the 16 strata levels, computed expected numbers of disease n.strata <- 16 expected.cases <- expected(data$population, data$cases, n.strata) ## Set Parameters pop.upper.bound <- 0.5 n.simulations <- 999 alpha.level <- 0.05 plot <- TRUE ## Kulldorff using Binomial likelihoods binomial <- kulldorff(geo, cases, population, NULL, pop.upper.bound, n.simulations, alpha.level, plot) cluster <- binomial$most.likely.cluster$location.IDs.included ## plot plot(pennLC$spatial.polygon,axes=TRUE) plot(pennLC$spatial.polygon[cluster],add=TRUE,col="red") title("Most Likely Cluster") ## Kulldorff using Poisson likelihoods poisson <- kulldorff(geo, cases, population, expected.cases, pop.upper.bound, n.simulations, alpha.level, plot) cluster <- poisson$most.likely.cluster$location.IDs.included ## plot plot(pennLC$spatial.polygon,axes=TRUE) plot(pennLC$spatial.polygon[cluster],add=TRUE,col="red") title("Most Likely Cluster Controlling for Strata") latlong2grid 17 latlong2grid Convert Coordinates from Latitude/Longitude to Grid Description Convert geographic latitude/longitude coordinates to kilometer-based grid coordinates. Usage latlong2grid(input) Arguments input either an n x 2 matrix of longitude and latitude coordinates in decimal format or an object of class SpatialPolygons (See SpatialPolygons-class) Details Longitude/latitudes are not a grid-based coordinate system: latitudes are equidistant but the distance between longitudes varies. Value Either a data frame with the corresponding (x,y) kilometer-based grid coordinates, or a SpatialPolygons object with the coordinates changed. Note Rough conversion of US lat/long to km (used by GeoBUGS): (see also forum.swarthmore.edu/dr.math/problems/longandlat.ht Radius of earth: r = 3963.34 (equatorial) or 3949.99 (polar) mi = 6378.2 or 6356.7 km, which implies: km per mile = 1.609299 or 1.609295 a change of 1 degree of latitude corresponds to the same number of km, regardless of longitude. arclength=r*theta, so the multiplier for coord\$y should probably be just the radius of earth. On the other hand, a change of 1 degree in longitude corresponds to a different distance, depending on latitude. (at N pole, the change is essentially 0. at the equator, use equatorial radius. Author(s) Lance A. Waller Examples ## Convert coordinates coord <- data.frame(rbind( # Montreal, QC: Latitude: 45deg 28' 0" N (deg min sec), Longitude: 73deg 45' 0" W c(-73.7500, 45.4667), # Vancouver, BC: Latitude: 45deg 39' 38" N (deg min sec), Longitude: 122deg 36' 15" W c(-122.6042, 45.6605) )) 18 ldmultinom latlong2grid(coord) ## Convert SpatialPolygon data(pennLC) new <- latlong2grid(pennLC$spatial.polygon) par(mfrow=c(1,2)) plot(pennLC$spatial.polygon,axes=TRUE) title("Lat/Long") plot(new,axes=TRUE) title("Grid (in km)") ldmultinom log multinomial Density Description Compute log of density of multinomial Usage ldmultinom(x, prob) Arguments x vector of multinomial counts prob vector of bin probabilities Value log of density of multinomial Author(s) Albert Y. Kim Examples p <- rep(0.2, 5) x <- rmultinom(1, 10, p) dmultinom(x, prob=p, log=TRUE) ldmultinom(x, p) LogNormalPriorCh LogNormalPriorCh 19 Compute Parameters to Calibrate a Log-normal Distribution Description Compute parameters to calibrate the prior distribution of a relative risk that has a log-normal distribution. Usage LogNormalPriorCh(theta1, theta2, prob1, prob2) Arguments theta1 lower quantile theta2 upper quantile prob1 lower probability prob2 upper probability Value A list containing: mu mean of log-normal distribution sigma variance of log-normal distribution Author(s) Jon Wakefield See Also GammaPriorCh Examples # Calibrate the log-normal distribution s.t. the 95% confidence interval is [0.2, 5] param <- LogNormalPriorCh(0.2, 5, 0.025, 0.975) curve(dlnorm(x,param$mu,param$sigma), from=0, to=6, ylab="density") 20 mapvariable mapvariable Plot Levels of a Variable in a Colour-Coded Map Description Plot levels of a variable in a colour-coded map along with a legend. Usage mapvariable(y, spatial.polygon, ncut=1000, nlevels=10, lower=NULL, upper=NULL, main=NULL, xlab=NULL, ylab=NULL) Arguments y variable to plot spatial.polygon an object of class SpatialPolygons (See SpatialPolygons-class) ncut number of cuts in colour levels to plot nlevels number of levels to include in legend lower lower bound of levels upper upper bound of levels main an overall title for the plot xlab a title for the x axis ylab a title for the y axis Value A map colour-coded to indicate the different levels of y Author(s) Jon Wakefield, Nicky Best, Sebastien Haneuse, and Albert Y. Kim References Bivand, R. S., Pebesma E. J., and Gomez-Rubio V. (2008) Applied Spatial Data Analysis with R. Springer Series in Statistics. E. J. Pebesma and R. S. Bivand. (2005) Classes and methods for spatial data in R. R News, 5, 9–13. Examples data(scotland) map <- scotland$spatial.polygon y <- scotland$data$cases E <- scotland$data$expected SMR <- y/E mapvariable(SMR,map,main="Scotland",xlab="Eastings (km)",ylab="Northings (km)") normalize normalize 21 Normalize vector to sum to 1. Description Divide each element in the vector by the sum of the vector elements. Usage normalize(x) Arguments x Vector to be normalized Value Normalized vector Author(s) Albert Y. Kim Examples x <- rep(1, 10) x <- normalize(x) x NumericVectorEquality Test if two numeric vectors are equal Description Test if two numeric vectors are equal in their length and their elements Usage NumericVectorEquality(x, y) Arguments x NumericVector y NumericVector 22 NYleukemia Value 1 if equal, 0 if not. Author(s) Albert Y. Kim Examples x <- c(1:10) y <- rev(c(10:1)) NumericVectorEquality(x,y) NYleukemia Upstate New York Leukemia Data Description Census tract level (n=281) leukemia data for the 8 counties in upstate New York from 1978-1982, paired with population data from the 1980 census. Note that 4 census tracts were completely surrounded by another unique census tract; when applying the Bayesian cluster detection model in bayes_cluster, we merge them with the surrounding census tracts yielding n=277 areas. Usage data(NYleukemia) Format List with 5 items: geo data spatial.polygon surrounded surrounding table of the FIPS code, longitude, and latitude of the geographic centroid of each census tract table of the FIPS code, number of cases, and population of each census tract object of class SpatialPolygons (See SpatialPolygons-class) containing a map of the study region row IDs of the 4 census tracts that are completely surrounded by the surrounding census tracts row IDs of the 4 census tracts that completely surround the surrounded census tracts Source http://www.sph.emory.edu/~lwaller/ch4index.htm References Turnbull, B. W. et al (1990) Monitoring for clusters of disease: application to leukemia incidence in upstate New York American Journal of Epidemiology, 132, 136–143 pennLC 23 See Also scotland, pennLC Examples ## Load data and convert coordinate system from latitude/longitude to grid data(NYleukemia) map <- NYleukemia$spatial.polygon population <- NYleukemia$data$population cases <- NYleukemia$data$cases centroids <- latlong2grid(NYleukemia$geo[, 2:3]) ## Identify the 4 census tract to be merged into their surrounding census tracts. remove <- NYleukemia$surrounded add <- NYleukemia$surrounding ## Merge population and case counts population[add] <- population[add] + population[remove] population <- population[-remove] cases[add] <- cases[add] + cases[remove] cases <- cases[-remove] ## Modify geographical objects accordingly map <- SpatialPolygons(map@polygons[-remove], proj4string=CRS("+proj=longlat +ellps=WGS84")) centroids <- centroids[-remove, ] ## Plot incidence in latitude/longitude plotmap(cases/population, map, log=TRUE, nclr=5) points(grid2latlong(centroids), pch=4) pennLC Pennsylvania Lung Cancer Description County-level (n=67) population/case data for lung cancer in Pennsylvania in 2002, stratified on race (white vs non-white), gender and age (Under 40, 40-59, 60-69 and 70+). Additionally, countyspecific smoking rates. Usage data(pennLC) Format List of 3 items: geo data a table of county IDs, longitude/latitude of the geographic centroid of each county a table of county IDs, number of cases, population and strata information 24 plotmap smoking spatial.polygon a table of county IDs and proportion of smokers an object of class SpatialPolygons (See SpatialPolygons-class) Source Population data was obtained from the 2000 decennial census, lung cancer and smoking data were obtained from the Pennsylvania Department of Health website: http://www.dsf.health.state. pa.us/ See Also scotland, NYleukemia Examples data(pennLC) pennLC$geo pennLC$data pennLC$smoking # Map smoking rates in Pennsylvania mapvariable(pennLC$smoking[,2], pennLC$spatial.polygon) plotmap Plot Levels of a Variable in a Colour-Coded Map Description Plot levels of a variable in a colour-coded map. Usage plotmap(values, map, log = FALSE, nclr = 7, include.legend = TRUE, lwd = 0.5, round = 3, brks = NULL, legend = NULL, location = "topright", rev = FALSE) Arguments values variable to plot map an object of class SpatialPolygons (See SpatialPolygons-class) log boolean of whether to plot values on log scale nclr number of colour-levels to use include.legend boolean of whether to include legend lwd line width of borders of areas round number of digits to round to in legend brks if desired, pre-specified breaks for legend polygon2spatial_polygon legend location rev 25 if desired, a pre-specified legend location of legend boolean of whether to reverse colour scheme (darker colours for smaller values) Value A map colour-coded to indicate the different levels of values. Author(s) Albert Y. Kim See Also mapvariable Examples ## Load data data(scotland) map <- scotland$spatial.polygon y <- scotland$data$cases E <- scotland$data$expected SMR <- y/E ## Plot SMR plotmap(SMR, map, nclr=9, location="topleft") polygon2spatial_polygon Convert a Polygon to a Spatial Polygons Object Description Converts a polygon (a matrix of coordinates with NA values to separate subpolygons) into a Spatial Polygons object. Usage polygon2spatial_polygon(poly, coordinate.system, area.names = NULL, nrepeats = NULL) Arguments poly a 2-column matrix of coordinates, where each complete subpolygon is separated by NA’s coordinate.system the coordinate system to use area.names names of all areas nrepeats number of subpolygons for each area 26 polygon2spatial_polygon Details Just as when plotting with the polygon function, it is assumed that each subpolygon is to be closed by joining the last point to the first point. In the matrix poly, NA values separate complete subpolygons. coordinate.system must be either '+proj=utm' or '+proj=longlat'. In the case with an area consists of more than one separate closed polygon, nrepeats specifies the number of closed polygons associated with each area. Value An object of class SpatialPolygons (See SpatialPolygons-class from the sp package). Author(s) Albert Y. Kim References Bivand, R. S., Pebesma E. J., and Gomez-Rubio V. (2008) Applied Spatial Data Analysis with R. Springer Series in Statistics. E. J. Pebesma and R. S. Bivand. (2005) Classes and methods for spatial data in R. R News, 5, 9–13. Examples data(scotland) polygon <- scotland$polygon$polygon coord.system <- '+proj=utm' names <- scotland$data$county.names nrepeats <- scotland$polygon$nrepeats spatial.polygon <- polygon2spatial_polygon(polygon,coord.system,names,nrepeats) par(mfrow=c(1,2)) # plot using polygon function plot(polygon,type='n',xlab="Eastings (km)",ylab="Northings (km)",main="Polygon File") polygon(polygon) # plot as spatial polygon object plot(spatial.polygon,axes=TRUE) title(xlab="Eastings (km)",ylab="Northings (km)",main="Spatial Polygon") # Note that area 23 (argyll-bute) consists of 8 separate polygons nrepeats[23] plot(spatial.polygon[23],add=TRUE,col="red") scotland scotland 27 Lip Cancer in Scotland Description County-level (n=56) data for lip cancer among males in Scotland between 1975-1980 Usage data(scotland) Format List containing: geo data spatial.polygon polygon a table of county IDs, x-coordinates (eastings) and y-coordinates (northings) of the geographic centroid o a table of county IDs, number of cases, population and strata information a Spatial Polygons class (See SpatialPolygons-class) map of Scotland a polygon map of Scotland (See polygon2spatial_polygon) Source Kemp I., Boyle P., Smans M. and Muir C. (1985) Atlas of cancer in Scotland, 1975-1980, incidence and epidemiologic perspective International Agency for Research on Cancer 72. References Clayton D. and Kaldor J. (1987) Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43, 671–681 See Also mapvariable, polygon2spatial_polygon, pennLC, NYleukemia Examples data(scotland) data <- scotland$data scotland.map <- scotland$spatial.polygon SMR <- data$cases/data$expected mapvariable(SMR,scotland.map) 28 zones zones Create set of all single zones and output geographical information Description Based on the population counts and centroid coordinates of each of n areas, output the set of n.zones single zones as defined by Kulldorff and other geographical information. Usage zones(geo, population, pop.upper.bound) Arguments geo n x 2 table of the (x,y)-coordinates of the area centroids population a vector of population counts of each area pop.upper.bound maximum proportion of study region each zone can contain Value A list containing nearest.neighbors list of n elements, where each element is a vector of the nearest neighbors in order of distance up until pop.upper.bound of the total population is attained cluster.coords n.zones x 2 table of the center and the radial area for each zone dist n x n inter-point distance matrix of the centroids Author(s) Albert Y. Kim References Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496. Kulldorff M. and Nagarwalla N. (1995) Spatial disease clusters: Detection and Inference. Statistics in Medicine, 14, 799–810. Examples data(pennLC) geo <- pennLC$geo[,2:3] geo <- latlong2grid(geo) population <- tapply(pennLC$data$population, pennLC$data$county, sum) pop.upper.bound <- 0.5 geo.info <- zones(geo, population, pop.upper.bound) Index kulldorff, 4, 14 ∗Topic datasets NYleukemia, 22 pennLC, 23 scotland, 27 ∗Topic file bayes_cluster, 3 besag_newell, 5 create_geo_objects, 8 eBayes, 9 EBpostdens, 10 EBpostthresh, 11 expected, 12 GammaPriorCh, 13 kulldorff, 14 latlong2grid, 17 ldmultinom, 18 LogNormalPriorCh, 19 mapvariable, 20 normalize, 21 NumericVectorEquality, 21 plotmap, 24 polygon2spatial_polygon, 25 zones, 28 ∗Topic interal coeff, 7 ∗Topic package SpatialEpi-package, 2 latlong2grid, 9, 17 ldmultinom, 18 LogNormalPriorCh, 14, 19 mapvariable, 10, 20, 25, 27 normalize, 21 NumericVectorEquality, 21 NYleukemia, 22, 24, 27 pennLC, 7, 16, 23, 23, 27 plotmap, 24 polygon, 26 polygon2spatial_polygon, 25, 27 scotland, 10, 23, 24, 27 sp, 2 SpatialEpi (SpatialEpi-package), 2 SpatialEpi-package, 2 SpatialPolygons-class, 3, 8, 17, 20, 22, 24, 26, 27 zones, 9, 28 bayes_cluster, 3, 8, 22 besag_newell, 5 besag_newell_internal, 7 coeff, 7 create_geo_objects, 8, 8 eBayes, 9, 11, 12 EBpostdens, 10 EBpostthresh, 11, 11 expected, 7, 12, 16 GammaPriorCh, 13, 19 29
© Copyright 2026 Paperzz