Density large-deviations of nonconserving driven models Or Cohen and David Mukamel STATPHYS 25 Conference, SNU, Seoul, Korea, July 2013 Grand canonical ensemble out of equilibrium ? Equilibrium H[ ] T,µ Grand canonical ensemble out of equilibrium ? Equilibrium H[ ] T,µ r d d x ( x) P[ ] exp H [ ] Vr * exp log Pcons . [ ] F ( , r ) Vr conserving steady state Helmholtz free energy Grand canonical ensemble out of equilibrium ? Equilibrium r d d x ( x) H[ ] P[ ] exp H [ ] Vr * exp log Pcons .[ ] F ( , r ) Vr T,µ conserving steady state Driven system q p * Pcons .[ ] conserving steady state Helmholtz free energy Grand canonical ensemble out of equilibrium ? Equilibrium r d d x ( x) H[ ] P[ ] exp H [ ] Vr * exp log Pcons .[ ] F ( , r ) Vr T,µ conserving steady state Driven system q p * Pcons .[ ] conserving steady state e-βμ 1 Helmholtz free energy Grand canonical ensemble out of equilibrium ? Equilibrium r d d x ( x) H[ ] P[ ] exp H [ ] Vr * exp log Pcons .[ ] F ( , r ) Vr T,µ conserving steady state Driven system q p * Pcons .[ ] conserving steady state Helmholtz free energy r * P[ ] exp log Pcons.[ ] V dr ' s ( r ') Vr 0 s [ P * cons . e-βμ 1 [ ]] Dynamics-dependent chemical potential of conserving system General particle-nonconserving driven model wLC w-NC wRC L sites w+NC General particle-nonconserving driven model wLC wRC w-NC t P( ) L sites w+NC w P( ') w P( ) w P( ') w P( ) ' N C ' C ' N ' N ' N ' NC ' NC ' conserving nonconserving (sum over η’ with same N) (sum over η’ with N’≠N) General particle-nonconserving driven model wLC wRC w-NC t P( ) L sites w+NC w P( ') w P( ) w P( ') w P( ) ' N C ' C ' N ' N ' N ' NC ' NC ' conserving nonconserving (sum over η’ with same N) (sum over η’ with N’≠N) Guess a steady state of the form : P ( ) P * cons . higher order ( ; N ) f ( N ) O in L General particle-nonconserving driven model wLC wRC w-NC t P ( ) L sites w+NC w P ( ') w P ( ) ' N C ' C ' N ' N ' N ' NC wNC' P ( ') w ' P ( ) conserving nonconserving (sum over η’ with same N) (sum over η’ with N’≠N) Guess a steady state of the form : It is consistent if : P ( ) P * cons . wNC' higher order ( ; N ) f ( N ) O in L 1 cons . For diffusive systems cons. ~ L2 Slow nonconserving dynamics To leading order in L we obtain 0 N ' N f ( N ')[ N ' N ' * wNC' Pcons . ( '; N ')] f ( N )[ 0 N N ' N ' N ' f ( N ')WN ', N f ( N )WN , N ' * wNC' Pcons . ( '; N )] Slow nonconserving dynamics 0 N ' N f ( N ')[ N ' N ' * wNC' Pcons . ( '; N ')] f ( N )[ 0 N N ' N N min ' N ' f ( N ')WN ', N f ( N )WN , N ' WN , N 1 V (N ) * wNC' Pcons . ( '; N )] WN , N 1 N* = 1D - Random walk in a potential N max Slow nonconserving dynamics 0 N ' N f ( N ')[ N ' N ' * wNC' Pcons . ( '; N ')] f ( N )[ 0 N N ' N ' N ' * wNC' Pcons . ( '; N )] f ( N ')WN ', N f ( N )WN , N ' V ( N ) LG ( N / L) WN , N 1 = 1D - Random walk in a potential WN 1, N N min N r L N* N WN ', N '1 f ( N ) exp log( ) WN '1, N ' N ' N0 N max Slow nonconserving dynamics 0 N ' N f ( N ')[ N ' N ' * wNC' Pcons . ( '; N ')] f ( N )[ 0 N N ' N ' N ' * wNC' Pcons . ( '; N )] f ( N ')WN ', N f ( N )WN , N ' V ( N ) LG ( N / L) WN , N 1 w-NC WN 1, N N min N* N max r N r L w+NC wNC e wNC L dr ' s ( r ) L r N WN ', N '1 f ( N ) exp log( ) ~ e 0 e LG ( r ) WN '1, N ' N ' N0 Outline 1. Limit of slow nonconserving w NC L 2 r * P[ ] Pcons.[ ]exp L dr ' s (r ') Lr 0 2. Example of the ABC model 3. Corrections to the rate function G (r ) using MFT 4. Conclusions ABC model Ring of size L Dynamics : q AB BC CA A B C 1 q 1 q 1 M R Evans, Y Kafri , H M Koduvely, D Mukamel - Phys. Rev. Lett. 80 425 (1998 ) BA CB AC ABC model Ring of size L Dynamics : q AB BC CA A q=1 L q<1 B C 1 q 1 q 1 ABBCACCBACABACB AAAAABBBBBCCCCC M R Evans, Y Kafri , H M Koduvely, D Mukamel - Phys. Rev. Lett. 80 425 (1998 ) BA CB AC ABC model site index time q 1 A L 480 B N A N B NC C Conserving ABC model 1 2 q AB BC CA 1 q 1 q 1 BA 0X CB B C 0 1 X0 X=A,B,C N A N B NC r fixed L AC 1 A 1 + 2 A Lederhendler, D Mukamel - Phys. Rev. Lett. 105 105602 (2010) A Lederhendler, OC, D Mukamel - J. Stat. Mech. 11 11016 (2010) Conserving model (canonical ensemble) Conserving ABC model Weakly asymmetric thermodynamic limit1 1. q exp( L Density profile ) M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003) i A ( ) Ai L Conserving ABC model Weakly asymmetric thermodynamic limit1 For low β’s q exp( L Density profile ) * ( x, r ) r N / L * ( x, r ) c 2nd order 1. 2. i A ( ) Ai L M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003) OC, D Mukamel - J. Phys. A 44 415004 (2011) known2 Conserving ABC model Weakly asymmetric thermodynamic limit1 For low β’s q exp( L Density profile ) i A ( ) Ai L * ( x, r ) r N / L * ( x, r ) known2 c 2nd order Stationary measure3: 1. 2. 3. P[ A , B , C ] e LF [ A , B , C ; r ] M Clincy, B Derrida, M R Evans - Phys. Rev. E 58 2764 (2003) OC, D Mukamel - J. Phys. A 44 415004 (2011) T Bodineau, B Derrida - Comptes Rendus Physique 8 540 (2007) Nonconserving ABC model 1 2 q AB BC CA A B C 0 1 q 1 q 1 BA 1 0X CB 1 3 pe-3βμ ABC AC 1 X0 X=A,B,C 1 + 2 + 2 + p 000 Conserving model (canonical ensemble) 3 A Lederhendler, D Mukamel - Phys. Rev. Lett. 105 105602 (2010) A Lederhendler, OC, D Mukamel - J. Stat. Mech. 11 11016 (2010) Nonconserving model (grand canonical ensemble) Slow nonconserving ABC model Slow nonconserving limit WN , N 3 V (N ) N min p~L WN , N 3 N* , 2 ABC N max pe-3βμ p 000 Slow nonconserving ABC model p~L Slow nonconserving limit WN , N 3 V (N ) WN , N 3 WN , N 3 N ABC N* N min ' N 3 , 2 pe-3βμ N max 1 NC * ' cons . w P p N 3 ( '; N ) dx( ( x, )) L 0 * 0 saddle point approx. e LF [ A , B , C ; r ] 000 Slow nonconserving ABC model WN , N 3 V (N ) ABC WN , N 3 pe-3βμ p r N* N min 000 N A N B NC L N max 1 WN , N 3 1 1 S (r ) log( ) log[ 1 3 WN 3, N 3 * 3 dx ( ( x , r )) 0 0 * * * dx ( x , r ) ( x , r ) B C ( x, r ) A 0 r P(r ) exp[ L ( dr ' S (r ') r )] e LG ( r ) ] Slow nonconserving ABC model WN , N 3 V (N ) ABC WN , N 3 pe-3βμ p r N* N min 000 N A N B NC L N max 1 WN , N 3 1 1 S (r ) log( ) log[ 1 3 WN 3, N 3 * 3 dx ( ( x , r )) 0 0 ] * * * dx ( x , r ) ( x , r ) B C ( x, r ) A 0 r P(r ) exp[ L ( dr ' S (r ') r )] e LG ( r ) This is similar to equilibrium : P(r ) exp L [ f (r , ) r ] f = Helmholtz free energy density Rate function of r, G(r) rA rB r r , rC 2 3 3 40 0.025 G (r ) High µ 0.05 G (r ) Low µ 0.052 First order phase transition (only in the nonconserving model) OC, D Mukamel - Phys. Rev. Let. 108, 060602 (2012) Inequivalence of ensembles For NA=NB≠NC : rA rB Conserving (Canonical) disordered r r , rC 2 3 3 0.01 Nonconserving (Grand canonical) disordered ordered ordered 1st order transition Stability line 2nd order transition tricritical point OC, D Mukamel - Phys. Rev. Let. 108, 060602 (2012) Different nonconserving ABC model: J Barton, J L Lebowitz, E R Speer - J. Phys. A 44 065005 (2011) Discussion about ensemble inequivalence: OC, D Mukamel - J. Stat. Mech. 12 12017 (2012) Corrections to G(r) using MFT pe-3βμ ABC p p 000 T 2 L 1 1 d dx Lc ( ρ ( x , ), j( x , )) Lnc ( ρ ( x , ), k ( x , )) 0 0 Pr[ j( x, ), k ( x, )] ~ e L ( x, ) x j ( x, ) Lc - conserving action1 L nc - nonconserving action2,3 3 k ( x, ) j k A, B, C - conserving current - nonconserving current 1. T Bodineau, B Derrida - Comptes Rendus Physique 8 540 (2007) 2. G Jona-Lasinio, C Landim and M E Vares - Probability theory and related fields 97 339 (1993) 3. T Bodineau, M Lagouge - J. Stat. Phys. 139 201 (2010) Corrections to G(r) using MFT pe-3βμ ABC p p 000 T 2 L 1 1 d dxLc ( ρ ( x , ), j( x , )) Lnc ( ρ( x , ), k ( x, )) 0 0 Pr[ j( x, ), k ( x, )] ~ e L r rμ Instanton path: τ 0 T ( x, ) * ( x, r ( )) O( ) A, B, C Conclusions 1. Nonequlibrium ‘grand canonical ensemble’ - Slow nonconserving dynamics 2. Example to ABC model 3. 1st order phase transition for nonmonotoneous µs(r) and inequivalence of ensembles. ( µs(r) is dynamics dependent ! ) 4. Corrections to rate function of r using MFT
© Copyright 2025 Paperzz