Gaussian quadrature Advisor: J. T. Chen Reporter: Jia-Wei Lee Date: Mar., 11, 2010 Page 1 計算機在工程上的應用 2010/3/11 Trapezoidal rule 1 f ( x0 ) 2 f ( x1 ) 2 f ( x2 ) n 1 I f ( x)dx 1 1 1 x0 x1 x2 I xn x0 where Page 2 2 f ( xn 1 ) f ( xn ) wi xn 1 n f ( x)dx wi f ( xi ) i 1 xn x0 1 xn 1 is weighting coefficient 計算機在工程上的應用 (JWLee) 2010/3/11 Gaussian quadrature N I f ( x)dx wi f ( xi ) 1 1 i 1 f (x) is the polynomial of degree 2n-1 or less f ( x) Pn ( x)Qn1 ( x) Rn1 ( x) N I wi f ( xi ) 1 I f ( x )dx i 1 1 1 1 1 1 Pn ( x)Qn 1 ( x )dx Rn 1 ( x )dx 1 ? Rn 1 ( x )dx ??? 1 ( x1 ,..., xn ) Page 3 N N i 1 i 1 wi Qn 1 ( xi ) Pn ( xi ) wi Rn 1 ( xi ) N wi Rn 1 ( xi ) N n i 1 are the zeros of polynomial 計算機在工程上的應用 (JWLee) Pn ( x) 0 2010/3/11 Legendre polynomial Legendre’s equation: Legendre polynomial: 1 (1 x 2 ) y 2 xy n(n 1) y 0 1 dn 2 Pn ( x) n ( x 1) n , 1 x 1 n 2 n ! dx P0 ( x) 1 P1 ( x) x 0.5 -1 -0.5 0.5 1 -0.5 -1 Page 4 1 (3 x 2 1) 2 1 P3 ( x) (5 x3 3 x) 2 1 P4 ( x) (35 x 4 30 x 2 3) 8 P2 ( x) Here are n distinct roots of Pn ( x) 計算機在工程上的應用 (JWLee) in the interval (1,-1) 2010/3/11 The orthogonality of Legendre polynomial e2 vectors e1 1, if i j ei e j 0, if i j e3 functions b a w( x) A( x) B ( x)dx 0 Legendre polynomial Page 5 A( x) and B( x) 0 1 P ( x ) P ( x ) dx 2 1 n m 2n 1 1 e1 e2 e2 e3 e e 3 1 are orthogonal if n m if n m 計算機在工程上的應用 (JWLee) 2010/3/11 Gaussian quadrature N I f ( x)dx wi f ( xi ) 1 1 i 1 f (x) is the polynomial of degree 2n-1 or less f ( x) Pn ( x)Qn 1 ( x) Rn 1 ( x) n 1 i Pi ( x) Pn ( x) Rn 1 ( x) i 0 N I wi f ( xi ) 1 I f ( x)dx i 1 1 n 1 i Pi ( x) Pn ( x)dx Rn 1 ( x )dx i 0 1 1 1 1 i 1 i 1 wi Qn 1 ( xi ) Pn ( xi ) wi Rn 1 ( xi ) wi Rn 1 ( xi ) 1 ( x1 ,..., xn ) N N Rn 1 ( x)dx 1 N N n i 1 are the zeros of Legendre polynomial Pn ( x) 0 Therefore the integral can be obtained by using n points Page 6 計算機在工程上的應用 (JWLee) 2010/3/11 Gaussian quadrature n I f ( x)dx wi f ( xi ) 1 1 i 1 n f ( x) i ( x) f ( xi ) i 1 1, i j i ( x j ) 0, i j ( x x1 )( x x2 ) ( x xn ) ( xi xi ) ( x x )( x x ) ( x x ) ( x xi ) i n i 1 i 2 i ( x) Ex: (n=3) Page 7 Pn ( x) 1 Pn( xi ) ( x xi ) 1 ( x) ( x x1 )( x x2 )( x x3 ) ( x x2 )( x x3 ) 1 ( x1 x2 )( x1 x3 ) ( x x1 ) ( x1 x2 )( x1 x3 ) 2 ( x) ( x x1 )( x x2 )( x x3 ) ( x x1 )( x x3 ) 1 ( x2 x1 )( x2 x3 ) ( x x2 ) ( x2 x1 )( x2 x3 ) 3 ( x) ( x x1 )( x x2 )( x x3 ) ( x x1 )( x x2 ) 1 ( x3 x1 )( x3 x2 ) ( x x3 ) ( x3 x1 )( x3 x2 ) 計算機在工程上的應用 (JWLee) 2010/3/11 Gaussian quadrature n I f ( x)dx wi f ( xi ) 1 1 i 1 n Let:f ( x) f ( x ) L ( x) i i 1 Li ( x) where Pn ( x) 1 Pn( xi ) ( x xi ) i (Lagrange polynomial) f ( x) n I f ( x)dx wi f ( xi ) 1 1 1 1 n f ( x ) L( x ) i 0 n i 1 Pn ( x) 1 i i f ( x ) P( x ) ( x x ) dx i 1 i n i i 1 P ( x) 1 n dx f ( xi ) 1 ( x x ) P ( x ) i n i 1 P ( x) 1 n wi dx 1 Pn( xi ) ( x xi ) Page 8 x0 計算機在工程上的應用 (JWLee) xi xn 2010/3/11 Weighting coefficients w and associated points x i i Number of points n Weighting coefficients Associated points xi wi 8 9 5 9 3 4 n w i 1 Page 9 i 2 0.774596669 0.6521451549 0.3399810436 0.3478548451 0.8611363116 0.5688888888 5 0 0 0.4786286705 0.5384693101 0.2369268851 0.9061798459 Because the integral interval is from -1 to 1. 計算機在工程上的應用 (JWLee) 2010/3/11 The general integral interval (a,b) b I f ( x)dx a b s 1 r 1 s 1 1 a b a s r 1 1 1 r t x rt s xs r dx rdt b 1 1 a 1 1 b n n a i 1 i 1 I f ( x)dx r f (rt s)dt r F (t )dt I f ( x)dx r wi f (rti s ) r wi F (ti ) Page 10 計算機在工程上的應用 (JWLee) 2010/3/11 Numerical examples Ex: 1 f1 ( x) x7 100x6 x4 x2 1 f1 ( x) is a polynomial degree of 7 2n 1 7 I1 1 ( x 7 100 x 6 x 4 x 2 1)dx 1 n 4 1 Exact 1 8 100 7 1 5 1 3 I solution: 1 8 x 7 x 5 x 3 x x 31.6381 1 Number of points w f (x ) 5 31.6381 4 31.6381 3 27.0667 2 10.2963 n Page 11 n i 1 i 1 i 計算機在工程上的應用 (JWLee) 2010/3/11 Numerical examples Ex: 2 f 2 ( x) x2e3 x I 2 1 x 2e3 x dx 1 1 Exact 1 solution: I 2 e3 x 9 x 2 6 x 2 3.6882 27 1 Number of points n Page 12 n w f (x ) i 1 i i 5 3.6881 4 3.6876 3 3.6716 2 3.4374 計算機在工程上的應用 (JWLee) 2010/3/11 Numerical examples Ex: 3 f3 ( x) x2 sin( x) 2 1 1 1 5 1 5 I 3 2 x sin( x)dx 1 t sin t dt 2 2 2 2 2 3 Exact 2 3 solution:I3 2 x sin( x) ( x 2 2)cos( x) 3.3072 2 Number of points Page 13 n n 1 w f (x ) 5 3.3072 4 3.3072 3 3.6716 2 3.3043 i 1 i i 計算機在工程上的應用 (JWLee) 2010/3/11 Fortran program Page 14 計算機在工程上的應用 (JWLee) 2010/3/11 Fortran program Page 15 計算機在工程上的應用 (JWLee) 2010/3/11 The end Thanks for your kind attentions Page 16 計算機在工程上的應用 (JWLee) 2010/3/11 Gaussian quadrature N I f ( x)dx wi f ( xi ) 1 1 i 1 f (x) is the polynomial of degree 2n-1 or less f ( x) Pn ( x)Qn 1 ( x) Rn 1 ( x) n 1 i Pi ( x) Pn ( x) Rn 1 ( x) i 0 N I wi f ( xi ) 1 I f ( x)dx i 1 1 n 1 i Pi ( x) Pn ( x)dx Rn 1 ( x )dx i 0 1 1 1 1 i 1 i 1 wi Qn 1 ( xi ) Pn ( xi ) wi Rn 1 ( xi ) wi Rn 1 ( xi ) 1 ( x1 ,..., xn ) N N Rn 1 ( x)dx 1 N N n i 1 are the zeros of Legendre polynomial Pn ( x) 0 Therefore the integral can be obtained by using n points Page 17 計算機在工程上的應用 (JWLee) 2010/3/11
© Copyright 2026 Paperzz